跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2024/12/14 18:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳廷睿
研究生(外文):CHEN,TING-RAY
論文名稱:添加劑對聚碸中空纖維膜製備之影響探討
論文名稱(外文):The effects of additive on the fabrication of polysulfone hollow fiber membrane
指導教授:吳文海
指導教授(外文):WU,WEN-HAI
口試委員:李玉郎楊毓民
口試委員(外文):LI,YU-LANGYANG,YU-MIN
口試日期:2017-07-24
學位類別:碩士
校院名稱:南臺科技大學
系所名稱:化學工程與材枓工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:126
中文關鍵詞:聚碸中空纖維膜聚乙二醇聚乙烯吡喀烷酮
外文關鍵詞:polysulfonehollow fiber membranepolyethylene glycolpolyvinylpyrrolidone
相關次數:
  • 被引用被引用:0
  • 點閱點閱:164
  • 評分評分:
  • 下載下載:7
  • 收藏至我的研究室書目清單書目收藏:0
本研究係將聚碸溶解於 N-甲基吡咯烷酮(NMP),加熱溶解後的高分子溶液
經由乾濕式紡絲法製備中空纖維膜。藉由添加 PEG、PVP、NaOH 等添加劑與改
變添加劑量以製備中空纖維膜,使用掃描式電子顯微鏡觀察中空纖維膜之型態;
使用萬能拉力試驗機檢測中空纖維膜的拉伸強度;使用單一膜管超過濾純水滲透
試驗器測定滲水量。在聚碸之 NMP 溶液系統中,實驗結果顯示,添加劑的改變
會造成結構有不同的變化,隨著添加量增加,使用聚乙二醇當作添加劑將可增加
中空纖維膜的滲流量,拉伸強度則隨之下降;使用聚乙烯吡喀烷酮當作添加劑反
而會降低中空纖維膜的滲流量及拉伸強度。
實驗結果顯示,使用 22 wt%聚碸高分子為最佳條件下製備的中空纖維膜,
滲水通量和拉伸應力為 154.6 LMH / Bar 和 2.62 MPa,添加 1 wt%聚乙烯吡咯烷
酮(Mw3500)為最佳條件下製備中空纖維膜滲透通量為 113.6 LMH / Bar,添加 1
wt%聚乙烯吡咯烷酮(Mw30000)為最佳條件下製備中空纖維膜滲透通量為 54.9
LMH / Bar,添加 5 wt%聚乙二醇(Mw1000)為最佳條件下製備製備的中空纖維膜
滲透通量和拉伸應力為 225.4 LMH / Bar 和 2.41 MPa,添加 5 wt%聚乙二醇
(Mw8000) 為最佳條件下製備中空纖維膜滲透通量和拉伸應力為 346.4 LMH /
Bar 和 2.26 MPa,添加 5 wt%氫氧化鈉(0.48 wt%)為最佳條件下製備中空纖維膜
滲透通量和拉伸強度為 277.0 LMH/Ba 和 2.38MPa。
關鍵字:聚碸、中空纖維膜、聚乙二醇、聚乙烯吡喀烷酮。
The dry/wet spinning method was employed to make, the hollow fiber
membranes with PSF/NMP/additives systems by altering adding PVP,PEG,NaOH
additives. The morphologies of the hollow fiber membranes were investigated by a
scanning electron microscope (SEM), tensile stress and elongation measured with a
materials testing machine,water permeation rate; Determined by a monotube UF
hollow fiber pure permeant flux tester. In this investigation, the permeation flux was
increase and the tensile strength was decreases with the addition of polyethylene
glycol(PEG),while the permeation flux and the tensile strength was decrease with
additive polyvinylpyrrolidone(PVP)
Experimental results show that hollow fiber membrane prepared using 22 wt%
polysulfone without adding addtive, which permeation flux is 154.6 LMH / Bar and
tensile stress is 2.62 MPa. Adding 1 wt% polyvinylpyrrolidone(Mw3500) polysulfone
hollow fiber membrane, which permeation flux is 113.6 LMH / Bar.Adding 1 wt%
polyvinylpyrrolidone(Mw30000) polysulfone hollow fiber membrane, which
perm-eation flux is 54.9 LMH / Bar. Adding 5 wt% polyethylene glycol(Mw1000)
polysulfone hollow fiber membrane, which permeation flux is 225.4 LMH / Bar and
tensile stress is 2.41 MPa. Adding 5 wt%polyethylene glycol(Mw8000) polysulfone
hollow fiber membrane, which permeation flux is 346.4 LMH / Bar and tensile stress
2.26 MPa. Adding 5 wt% sodium hydroxide (0.49 wt%) polysulfone hollow fiber
membrane, which permeation flux is 277.0 LMH / Bar and tensile stress 2.38 MPa.
Keyword: polysulfone、hollow fiber membrane、polyethylene glycol、
polyvinylpyrrolidone
摘要........................................................................................................................ I
ABSTRACT..........................................................................................................II
目錄......................................................................................................................III
圖目錄..................................................................................................................VI
表目錄..................................................................................................................IX
第一章 緒論..........................................................................................................1
1.1 前言.........................................................................................................1
1.2 研究目的.................................................................................................2
1.3 文獻回顧.................................................................................................2
1.3.1 薄膜分類......................................................................................2
1.3.2 薄膜製備方式..............................................................................4
1.3.3 相轉移法......................................................................................6
1.3.4 浸入沉澱法..................................................................................8
1.3.5 中空纖維膜..................................................................................9
1.3.6 控制參數....................................................................................10
第二章 實驗設備與方法....................................................................................11
2.1 實驗藥品................................................................................................11
2.2 實驗設備與儀器....................................................................................12
2.3 實驗方法...............................................................................................13
2.3.1 聚碸高分子溶液之製備............................................................13
2.3.2 聚乙烯吡咯烷酮/聚碸高分子溶液之製備 ..............................13
2.3.3 聚乙二醇/聚碸高分子溶液之製備 ..........................................13
2.3.4 中空纖維膜之製備....................................................................14
IV
2.4 中空纖維膜之微結構分析....................................................................15
2.5 中空纖維膜之拉伸強度測試................................................................15
2.6 中空纖維膜之滲水通量測試................................................................16
2.7 中空纖維膜之空孔面積率計算............................................................18
第三章 結果與討論............................................................................................20
3.1 改變聚碸濃度對於中空纖維膜之影響................................................20
3.1.1 改變聚碸高分子濃度對中空纖維膜滲水通量之影響.............20
3.1.2 改變聚碸高分子濃度對中空纖維膜結構及機械性質之探討.27
3.2.紡液與芯液比例及氣縫間距對於中空纖維膜之影響........................30
3.2.1.紡液與芯液比例對於中空纖維膜結構及機械性質之探討.....30
3.2.2.氣縫間距對於中空纖維膜結構及機械性質之探討.................33
3.3 添加聚乙烯吡咯烷酮(Mw3500)對於中空纖維膜之影響 ..................36
3.3.1 添加聚乙烯吡咯烷酮對中空纖維膜滲水通量之影響.............36
3.3.2 添加聚乙烯吡咯烷酮對中空纖維膜結構及機械性質之探討.43
3.4 添加聚乙烯吡咯烷酮(Mw30000)對於中空纖維膜之影響 ................46
3.4.1 添加聚乙烯吡咯烷酮對中空纖維膜滲水通量之影響.............46
3.4.2 添加聚乙烯吡咯烷酮對中空纖維膜結構及機械性質之探討.53
3.5 添加聚乙二醇(Mw1000)對於中空纖維膜之影響 ..............................56
3.5.1 添加聚乙二醇對中空纖維膜滲水通量之影響.........................56
3.5.2 添加聚乙二醇對中空纖維膜結構及機械性質之探討.............64
3.6 添加聚乙二醇(Mw8000)對於中空纖維膜之影響 ..............................68
3.6.1 添加聚乙二醇對中空纖維膜滲水通量之影響.........................68
3.6.2 添加聚乙二醇(Mw8000)對中空纖維膜結構及機械性質之探討
......................................................................................................................78
3.6.3 添加聚乙二醇後存放至甘油之滲水通量研究及探討.............94
V
3.7 添加氫氧化鈉對於中空纖維膜之影響..............................................103
3.7.1 添加氫氧化鈉對中空纖維膜滲水通量之影響.......................103
第四章 結論...................................................................................................... 111
參考文獻............................................................................................................113
[1] J.J. Kim, J.R. Hwang, U.Y. Kim and S.S. Kim, “Operation parameters of melt
spinning of polypropylene hollow fiber membranes”, J. Membr. Sci. 108 (1995)
25.
[2] M. Khayet, C.Y. Feng, K.C. Khulbe and T. Matsuura, “Preparation and
characterization of polyvinylidene fluoride hollow fiber membranes for
ultrafiltration”, J. Polym. 43 (2002) 3879.
[3] C.Y. Feng, K.C. Khulbe, G. Chowdhury, T. Matsuura and V.C. Sapkal, “Structural
and performance study of microporous polyetherimide hollow fiber membranes
made by solvent-spinning”, J. Membr. Sci. 189 (2001) 193.
[4] T.S. Chung, S.K. Teoh,Wanye W.Y. Lau and M.P. Srinivasan, “Effect of shear
stress within the spinneret on hollow fiber membrane morphology and separation
performance”, J. Ind. Eng. Chem. Res. 37 (1998) 3930.
[5] S.G. Li, G.H. Koop, M.H.V. Mulder, T. van den Boomgarrd and C.A. Smolders,
“Wet spinning of integrally skinned hollow fiber membranes by a modified
dual-bath coagulation method using a triple orifice spinneret”, J. Membr. Sci. 94
(1994) 329.
[6] T.S. Chung, S.K. Teoh and X. Hu, “Formation of ultrathin high-performance
polyethersulfone hollow fiber membranes”, J. Membr. Sci. 133 (1997) 161.
[7] O.M. Ekiner and G. Vassilatoe, “Polyaramide hollow fiber for hydrogen/methane
separation-spinning and properties”, J. Membr. Sci. 53 (1990) 259.
[8] S.C. Peseak and W.J. Koros, “Aqueous quenched asymmetric polysulfone hollow
fibers prepared by dry/wet phase separation”, J. Membr. Sci. 88 (1994) 1.
114
[9] J.J. Qin, J. Gu and T.S. Chung, “Effect of wet and dry-jet wet spinning on the
shear-induced orientation during the formation of ultrafiltration hollow fiber
membranes”, J. Membr. Sci. 182 (2001) 57.
[10] W.L. Chou and M.C. Yang, “Effect of take-up speed on physical properties and
permeation performance of cellulose acetate hollow fibers”, J. Membr. Sci. 250
(2005) 259.
[11] I. Cabasso, E. Klein and J.K. Smith, “Polysulfone hollow fibers. I. Spinning and
properties”, J. Appl. Polym. Sci. 20 (1976) 2377.
[12] M.C. Yang and M. Chou, “Effect of post-drawing on the mechanical and mass
transfer properties of polyacrylonitrile hollow fiber membranes”, J. Membr. Sci.
116 (1996) 279.
[13] C.C. Pereira, R. Nobrega, K.V. Peinemann and C.P. Borges, “Hollow fiber
membranes obtained by simultaneous spinning of two polymer solutions: a
morphological study”, J. Membr. Sci. 226 (2003) 35.
[14] J. Ren, T.S. Chung, D. Li, R. Wang and Y. Liu, “Development of asymmetric
6FDA-2,6 DAT hollow fiber membranes for CO2/CH4 separation: 1. The influence
of dope composition and rheology on membrane morphology and separation
performance”, J. Membr. Sci. 207 (2002) 227.
[15] A. Idris, M.Y. Noordin, A.F. Ismail and S.J. Shilton, “Optimization of cellulose
acetate hollow fiber reverse osmosis membrane production using Taguchi
method”, J. Membr. Sci. 205 (2002) 223.
[16] J. Qin and T.S. Chung, “Effect of dope flow rate on the morphology, separation
performance, thermal and mechanical properties of ultrafiltration hollow fibre
membranes”, J. Membr. Sci. 157 (1999) 35.
115
[17] M. Niwa, H. Kawakami, S. Nsgaoka, T. Shinbbo and T. Kanamoni, “Fabrication
of an asymmetric polyimide hollow fiber with a defect-free surface skin layer”, J.
Membr. Sci. 171 (2000) 253.
[18] T.S. Chung and X.D. Hu, “Effect of air-gap distance on the morphology and
thermal properties of polyethersulfone hollow fibers”, J. Appl. Polym. Sci. 66
(1997) 1067.
[19] M. Khayet, C.Y. Feng, K.C. Khulbe and T. Matsuura, “Effect of coagulation
medium on properties of sulfonated polyvinylidene fluoride membranes”, J. Appl.
Polym. Sci. 30 (1985) 3009.
[21] 林俊豪,水氣誘導式相分離對聚碸中空纖維膜成膜機制之研究,中原大學
化學工程學系碩士學位論文,民 94 年。
[22] 王柏翔,聚乙二醇/醋酸纖維素中空纖維膜之探討,南台科技大學化學工程
與材料工程系碩士學位論文,民 100 年。
[23] 吳大猷,UF 薄膜系統應用於高濁度原水處理之可行性研究,逢甲大學環境
工程與科學學系碩士論文,民 100 年。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top