跳到主要內容

臺灣博碩士論文加值系統

(44.220.247.152) 您好!臺灣時間:2024/09/16 22:13
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林明輝
研究生(外文):LIM MENG HUI
論文名稱:結合熱泵空調熱水器於能源管理系統之經濟效益分析
論文名稱(外文):Economic Analysis for Application of Air Conditioner with Heat Pump Water Heater in Energy Management System
指導教授:凌拯民
指導教授(外文):JEEN-MIN LING
口試委員:呂順利王瑋民凌拯民
口試委員(外文):LU, SHUN-LIWANG, WEI-MINJEEN-MIN LING
口試日期:2017-01-20
學位類別:碩士
校院名稱:南臺科技大學
系所名稱:電機工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:117
中文關鍵詞:空調與熱泵之熱水器熱回收時間電價太陽能系統回收年限
外文關鍵詞:Air-Conditioner Water HeaterHeat recoveryTime-varying electricity priceOptimal capacity photovoltaic systemPayback year
相關次數:
  • 被引用被引用:0
  • 點閱點閱:256
  • 評分評分:
  • 下載下載:25
  • 收藏至我的研究室書目清單書目收藏:0
在傳統空調系統中,在提供室內冷氣時室外機的熱交換器以冷凝器的形態把室內的熱空氣傳遞到室外當熱廢氣。結合空調與熱泵應用於室內提供冷氣及住戶熱水供應的科技在近年來已經發展成熟。當空調提供室內冷氣時,熱回收裝置可以從過程中吸收空調所排出的廢熱然後把廢熱透過熱交換器去加熱住戶或建築物水塔的水。與比較傳統的電熱水器,空調與熱泵之熱水器(ACWH)可以達到熱水加熱及室內冷氣提供的功能,且低電能消耗。國際能源署於世界各國推廣此技術,藉以減少全球溫室氣體排放,解決能源危機與氣候變遷問題。

本論文探討混合式再生能源發電系統考慮了多國用電電價及再生能源躉購費率後,系統之最佳成本與容量配置規劃問題。本研究提出了控制空調熱泵之熱水器(ACWH)的運轉時間及儲能系統調度之能源管理系統。論文的目的是制定一個與市電電網鏈接的再生能源建築模擬,以投資回收年限為目標函數同時考慮系統可靠度及成本以取得最佳太陽能(PV)容量的規劃設計。

In conventional air conditioning system, the air-heat exchanger in the outdoor unit works as a condenser during air conditioning operation. The heat of the indoor air is transferred to the outside air and exhausted as waste heat. The technology of air-conditioner integrated heat pump water heater system (ACWH) for space conditioning and domestic hot water supply in residential has been developed in recent years. The heat recovery unit can collect the rejected waste heat from air conditioning systems during space cooling and the waste heat passes through a heat exchanger that connects to a home or building’s hot water tank for water heating. Compared to traditional electric water heaters, ACWH can achieve the multi-functions of water heating and space cooling, thus reduced energy consumption concurrently. The International Energy Agency in countries around the world to promote this technology to reduce global greenhouse gas emissions and to solve the energy crisis and climate change issues.
This thesis presents optimal capacity planning problem for hybrid renewable generation system with storage devices. This thesis proposes an energy management system that manages the ACWH operation time and storage system. The purpose of this thesis is to elaborate a grid-connected renewable energy building is simulated using payback year as an objective function in order to obtain the optimized photovoltaic (PV) system constructional design in terms of availability and system costs.

Abstract I
摘要 II
Outline III
Chapter 1 Introduction 1
1.1 Objectives 1
1.2 Review of literature 5
1.3 Method 6
1.4 Thesis Structure 7
Chapter 2 Proposed System Architecture 8
2.1 Air conditioner with heat pump water heater 8
2.2 Photovoltaic System 16
2.3 Storage System 19
2.4 Load profile 21
2.5 System architecture 22
2.6 Time of use tariffs 23
2.7 Feed in Tariff (FIT) of Renewable Resources 25
2.8 Economic considerations 26
Chapter 3 Load priority of hybrid renewable energy power system regulation planning and economic analysis 29
3.1 Description of Proposed Simulation System 29
3.2 Simulation model 32
3.3 Consumer Water Usage Scenario 34
3.4 Economic rates under different load data analysis 35
3.4.1 Load A 35
3.4.2 Load B 42
3.4.3 Load C 47
Chapter 4 Analysis Economic Benefit of Time Price and Heat Pump Control 55
4.1 Considering time of use rate with heat pump model 55
4.1.1 Three electricity price periods 55
4.1.2 Two electricity price periods 75
4.2 Considering time of use rate without heat pump 93
4.3 Considering time of use rate with heat pump (maximum 10kW of PV) 94
4.3.1 Three electricity price periods 94
4.3.2 Two electricity price periods 100
4.4 Considering time of use rate without heat pump (maximum 10kW of PV) 106
Chapter 5 Conclusions 107
Reference 109

[1]Enerdata, Global Energy Statistical Yearbook 2014. Available: https://yearbook.enerdata.net/.
[2]"Annual Energy Outlook 2015 with project to 2014" United States Department of Energy, DOE/EIA-0383(2015), April 2015.
[3]B. Sparn, K. Hudon, and D. Christensen, “Laboratory Performance Evaluation of Residential Integrated Heat Pump Water Heaters,” National Renewable Energy Laboratory.
[4]Kate Hudon, Bethany Sparn, Jeff Maguire, and Dane Christensen, “Heat Pump Water Heater Technology Assessment Based on Laboratory Research and Energy Simulation Models,” National Renewable Energy Laboratory, ASHRAE Winter Conference Chicago, Illinois, January 21-25 2012.
[5]Jie J., Gang P., Tin-tai C., Wei H., 2005, “Performance of Multi-functional Domestic Heat-pump System, ”Applied Energy, Vol.80, p.317-326.
[6]D.B. Nelson, M.H.Nehrir, C.Wang, “Unit sizing and cost analysis of standalone hybrid Wind/PV/fuel cell power generation systems,” Renewable Energy, Vol. 31, 2006, 1641–1656.
[7]Hongxing yang, Lin Lu, Wei zhou “A novel optimization sizing model for hybrid solar wind power generation system,” Solar Energy, Vol. 81, 2007, pp.76-84.
[8]Wei Zhou, Chengzhi Lou, Zhongshi Li, Lin Lu, Hongxing Yang, “Current status of research on optimum sizing of stand-alone hybrid solar–wind power generation systems,” Applied Energy, Vol.87, 2010, pp.380–389.
[9]Bagul AD, Salameh ZM, Borowy B, "Sizing of a stand-alone hybrid wind photovoltaic system using a three-event probability density approximation," Solar Energy, Vol.56(4), 1996, pp.323–35.
[10]Kellogg WD et al, “Generation unit sizing and cost analysis for stand-alone wind, photovoltaic and hybrid wind/PV systems,” IEEE Trans Energy Convers, Vol.13(1), 1998, pp.70–75.
[11]Mellit A, Kalogirou SA, Hontoria L, Shaari S, “Artificial intelligence techniques for sizing photovoltaic systems: a review,” Renew Sustain Energy Rev, Vol. 13(2), 2009, pp.406–419.
[12]A. Mellit, M. Benghanemb, A. Hadj Arab, A. Guessoum, “An adaptive artificial neural network model for an adaptive artificial neural network model for for isolated sites in Algeria,” Renewable Energy, Vol.30, 2005, pp.1501–1524.
[13]Soteris A, Kalogirou, “Optimization of solar systems using artificial neural networks and genetic algorithms,” Apply Energy, Vol. 77(4), 2004, pp.383–405.
[14]Dufo-López, Bernal-Agustin, “Multi-objective design of PV–wind–diesel–hydrogen–battery systems,” Renew Energy, Vol. 33(12), 2008, pp.2559–2572.
[15]J Bernal-Agustın, Dufo-López, “Multi-objective design and control of hybrid systems minimizing costs and unmet load,” Electric Power Systems Research, Vol.79, 2009, pp.170–180.
[16]Eftichios Koutroulis, Dionissia Kolokotasa, Antonis Potirakts, Kostas kalaizakis, “Methodology for optimal sizing of stand-alone photovoltaic/wind-generator systems using genetic algorithms” solar energy, vol 80, 2006, pp.1072-1088.
[17]Hongxing Yang, Wei Zhou, Lin Lu, Zhaohong Fang, “Optimal sizing method for stand-alone hybrid solar-wind system with LPSP technology by using genetic algorithm”, solar energy, vol.82, pp.354-367.
[18]Ali Naci Celik, “Techno-economic analysis of autonomous PV-wind hybrid energy systems using different sizing methods”, Energy conversion and Management, vol.44, 2003, pp.1951-1968.
[19]Ali Naci Celik, “Optimization and techno-economic analysis of autonomous to single photovoltaic and wind systems”, Energy conversion and Management, vol.43, 2002, pp.2453-2468.
[20]Soteris A, Kalogirou, “Optimazation of solar systems using artificial neural networks and genetic algorithms”, Apply Energy, vol.77(4), 2004, pp.383-405.
[21]S.Diaf, G.Notton, M.Belhamel, M.Haddadi, A.Louche “Design and techno-economical optimization for hybrid Design and techno-economical optimization for hybrid”, Applied Energy, vol.85, 2008, pp.968-987.
[22]D.Saheb-Koussa, M.Haddadi, M.Belhamel, “Economic and technical study of a hybrid system for rural electrification in Algeria”, Applied Energy, vol.86, 2009, pp.1024-1030.
[23]Jie Ji, Tin-tai Chow, Gang Pei, Jun Dong, Wei He, “Domestic air-conditioner and integrated water heater for subtropical climate,” Applied Thermal Engineering, Vol 23, Issue 5, April 2003, pp.581-592.
[24]Zhaolin Gu, Hongjuan Liu, Yun Li, “Thermal energy recovery of air conditioning system-heat recovery system calculation and phase change materials development”, Applied Thermal Engineering, vol.24, 2004, pp.2511-2526.
[25]“Energy Stored Water - kWh”, Available: http://www.engineeringtoolbox.com/.
[26]“Renewable Energy Policy Network for the 21st century (REN21)”, Renewables 2010 Global Status Report, Paris, 2010, pp. 1–80.
[27]Tam Hunt, "The Solar Singularity Is Nigh", Greentech Media. Retrieved 29 April 2015.
[28]"Snapshot of Global PV 1992–2014", International Energy Agency Photovoltaic Power Systems Programme, 30 March 2015.
[29]"Global Market Outlook for Photovoltaics until 2016", Solar Power Europe, 2012, pp. 9, 11, 12, 64.
[30]Jeeng-Min. Ling and Anh Son Khuong, “Economic Analysis of Lagrangian and Genetic Algorithm for the Optimal Capacity Planning of Photovoltaic Generation,” Information-An International Interdisciplinary Journal, 2012.
[31]Weidong Xiao “Anovel Modeling Method for Photovoltaic Cell,” 35th Annual IEEE Power Electronics Specialists Conference. Aachen, Germany, pp. 1950-1956, 2004.
[32]“Deka battery module”, available: http://www.ecodirect.com/MK-Battery-8G31-DEKA-p/mk-battery-8g31-deka.htm.
[33]F. Lasnier, T. G. Ang, Y.J.Wang, T. Hemasuk, “PV power system component characterization and system simulation” ASEAN J.Sci. Technol. Develop. Vol.5, No.2, pp. 29-41, 1988.
[34]“Smart-Grid Smart-City Customer Trial Data”, available: http://data.gov.au/.
[35]“ComEd’s Historical Hourly Load Profiles”, available: https://www.comed.com/.
[36]Elhodeiby, A.S.; Metwally, H.M.B; Farahat, M.A (March 2011). "PERFORMANCE ANALYSIS OF 3.6 KW ROOFTOP GRID CONNECTED PHOTOVOLTAIC SYSTEM IN EGYP" (PDF). International Conference on Energy Systems and Technologies (ICEST 2011): 151–157. Retrieved 2011-07-21
[37]T., Cory, K., Kreycik, C., Williams, E., “Policymaker's Guide to Feed-in Tariff Policy Design Couture”, National Renewable Energy Laboratory, U.S. Dept. of Energy, 2010.
[38]Couture, T., Gagnon, Y., “An analysis of feed-in tariff remuneration models: Implications for renewable energy investment”, Energy Policy, 38 (2), 955-965, 2010.
[39]Kaunda, Salim , "Understanding Electricity Tariffs", Academia.edu. Retrieved 22 March 2016.
[40]Bruce M.Kahn, Mark Fulton “Paying for renewable energy”, Climate Change Investment Research, December 2009.
[41]Lipp, Judith, "Lessons for effective renewable electricity policy from Denmark, Germany and the United Kingdom", Energy Policy.35 (11), pp.5481–5495, 2007.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top