跳到主要內容

臺灣博碩士論文加值系統

(44.211.117.197) 您好!臺灣時間:2024/05/22 00:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蔡澤銘
研究生(外文):TSAI, TSE-MING
論文名稱:結合類神經網路與滑動模式觀測器之永磁同步馬達無感測控制
論文名稱(外文):Sensorless Control of Permanent Magnet Synchronous Motor with Neural Networks and Sliding Mode Observer
指導教授:王明賢王明賢引用關係
指導教授(外文):WANG, MING-SHYAN
口試委員:謝旻甫白能勝
口試委員(外文):HSIEH, MIN-FUPAI, NENG-SHENG
口試日期:2017-07-04
學位類別:碩士
校院名稱:南臺科技大學
系所名稱:電機工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:87
中文關鍵詞:滑動模式觀測器無感測控制
外文關鍵詞:Sliding Mode Observer
相關次數:
  • 被引用被引用:0
  • 點閱點閱:317
  • 評分評分:
  • 下載下載:53
  • 收藏至我的研究室書目清單書目收藏:0
永磁同步馬達(Permanent Magnet Synchronous Motor)需要靠光學編碼器來偵測轉子位置與轉速資訊。考慮降低成本與環境因素─如空間、體積、潮濕等等,感測器在惡劣的環境下是不可靠的,有可能會造成轉子位置偵測錯誤,使得造成無法啟動或使轉軸損壞等等,因此才有無感測控制(Sensorless Control)技術被提出。

本論文使用滑動模式觀測器(Sliding Mode Observer, SMO)做無感測控制,滑動模式觀測器具有對於負載擾動及參數變化之強健性,利用定子電壓及電流信號來估測反電動勢,經由反電動勢得到角度,再把角度微分就是馬達估測轉速,並且使用李亞普諾夫穩定準則分析系統是否穩定。滑動模式觀測器不利於在靜止及低速時動作,因低速時反電動勢很小幾乎為零,將會造成估測角度失真或失敗,而且逆變器高頻切換或微控制器計算量造成延遲之下,也會造成真實角度及估測角度之間有相位落後等問題,因此本論文結合滑動模式觀測器與類神經網路來做為角度補償器,將改善以上問題。

在傳統滑動模式觀測器裡,控制切換函數是使用Sign function,會造成估測反電動勢有很大的漣波,這會造成對MCU損壞和馬達抖動現象。因此本論文切換函數使用較平滑的Sigmoid function來取代Sign function,且將可以不使用低通濾波器來濾除估測出的漣波,因此可以降低成本,角度的表現也比傳統式良好,甚至降低切跳現象的發生。

本論文使用Microchip公司所生產的dsPIC30F6010A數位訊號處理單晶片作為馬達控制核心,採用磁場導向控制(Field Oriented Control)以SVPWM(Space Vector Pulse Width Modulation)來驅動控制,再經由ADC抓取馬達三相電流來做閉迴路控制,最後再加上類神經補償滑動模式觀測器的角度來完成無感測控制。

Permanent Magnet Synchronous Motor relies on an optical encoder to detect the rotor position and speed information. Considering cost reduction and environmental factors, for example space, volume, and humidity, the sensor is unreliable in harsh environments. It is possible to cause errors for rotor position detection, make it unable to start up or even cause the shaft collision. Therefore, the sensorless control technique is proposed.

This thesis uses a sliding mode observer for sensorless control. Sliding mode observer provides the robustness to load disturbance and parameter change. The stator voltage and the stator current signals are used to estimate the back electromotive force, calculate angles by arctan equation, and then the differentiate angle to estimate the speed. The stability is proved by using the Lyapunov’s stability theorem to analyze the system. Sliding mode observer is not conducive to standstill and low speed operation, because the amplitude of low-speed back EMF is almost zero. It will cause the estimated angle distortion or failure, and high frequency switching of the inverter or the delay due to microcomputer calculation time also causes phase lag between the actual angle and the estimation angle. So, this thesis combines the sliding mode observer and neural networks as an angle compensator to improve the above problems.

In traditional sliding mode observer, the switch function uses Sign function, which will cause a big ripple of an estimate of the back electromotive force. It can cause damage to the MCU and motor vibration. Therefore, we use the smoother Sigmoid function to replace Sign function. As a result, the low pass filter is then omitted that the system can reduce costs and has better performance of the estimation than the traditional, due to reducing the occurrence of chattering phenomenon.

In this thesis, the Microchip’s digital signal processing single chip dsPIC30F6010A is used as the motor control core. The system structure adopts field oriented control, uses the space vector pulse width modulation to drive the motor, and then uses the ADC to capture the three phase currents to finish closed-loop control. Finally, the neural network is added to compensate the estimated angle of the sliding mode observer to complete the sensorless control.

摘要 I
Abstract II
誌謝 III
目次 IV
圖目錄 VI
表目錄 X
第一章 緒論 1
1.1前言 1
1.2文獻回顧 2
1.3論文章節介紹 3
第二章 永磁同步馬達數學模型介紹 4
2.1永磁同步馬達數學模型 4
2.2座標轉換 5
第三章 空間向量脈波寬度調變 8
3.1向量空間脈波調變設計 9
3.2 SVPWM之合成向量推導 10
第四章 無感測控制 20
4.1滑動模式觀測器 21
第五章 類神經網路補償設計 26
5.1 類神經網路介紹 26
5.2 補償網路架構 27
第六章 系統架構與實驗結果 32
6.1系統架構 32
6.2 dsPIC30F6010A周邊功能介紹 34
6.2.1 Timer計時/計數器 35
6.2.2 Interrupt中斷功能單元 36
6.2.3 Pulse Width Modulation(PWM) 控制單元 36
6.2.4高速類比數位訊號轉換器(ADC)模組 37
6.3 Simulink模擬結果 38
6.3.1永磁同步馬達無感測控制流程 39
6.3.2模擬結果 39
6.4實驗結果 49
6.4.1滑動模式觀測器與類神經補償後角度之比較 50
6.4.2滑動模式觀測器與類神經補償後空載速度響應 56
6.4.3滑動模式觀測器與類神經補償後加載速度響應 63
第七章 未來展望 70
參考文獻 71

馬達基本介紹:
1.H. Liu and S. Li, “Speed control for PMSM servo system using predictive functional control and extended state observer,” IEEE Trans. Ind. Electron., vol. 59, no. 2, pp. 1171–1183, Feb. 2012.
2.B. Alecsa, M. N. Cirstea, and A. Onea, “Simulink modeling and design of an efficient hardware-constrained FPGA-based PMSM speed controller,” IEEE Trans. Ind. Informat., vol. 8, no. 3, pp. 554–562, Aug. 2012.
3.M. Pacas, “Sensorless drives in industrial applications,” IEEE Trans. Ind. Electron. Mag., vol. 5, no. 2, pp. 16–23, Jun. 2011.

滑動模式控制期刊:
4.S. Chi, Z. Zhang and L. Xu, “Sliding-Mode Sensorless Control of Direct-Drive PM Synchronous Motors for Washing Machine Applications,” IEEE Trans. Ind. Applications., vol. 45, no. 2, pp. 582–590, Mar. 2009.
5.C. Li and M. Elbuluk, “A Sliding Mode Observer for Sensorless Control of Permanent Magnet Synchronous Motors,” 2001 IEEE Industry Applications Conference, 36th IAS Annual Meeting, Vol. 2, pp. 1273-1278, Oct. 2001.
6.K.-L. Kang, J.-M. Kim, K.-B. Hwang, and K.-H. Kim, “Sensorless Control of PMSM in High Speed Range with Iterative Sliding Mode Observer,” Nineteenth Annual IEEE Applied Power Electronics Conference and Exposition, pp.1111-1116, 2004.
7.K.-L. Kang, J.-M. Kim, K.-B. Hwang, and K.-H. Kim, “Sensorless control of PMSM in high speed range with iterative sliding mode observer,” in Proc. 19th Annu. Appl. Power Electron. Conf., Vol. 2, pp.1111-1116, 2004.
8.H. Kim, J. Son, and J. Lee, “A High-Speed Sliding-Mode Observer for the Sensorless Speed Control of a PMSM,” IEEE Trans. Industry Electronics, Vol. 58, No. 9, pp. 4069-4077, Sept. 2011.
9.H. Lee and J. Lee, “Design of Iterative Sliding Mode Observer for Sensorless PMSM Control,” IEEE Trans. Control Systems Technology, Vol. 21, No. 4, pp.1394-1399, July 2013.
10.Z. Qiao, T. Shi, Y. Wang, Y. Yan, C. Xia, and X. He, “New Sliding-Mode Observer for Position Sensorless Control of Permanent-Magnet Synchronous Motor,” IEEE Trans. on Industry Electronics, Vol. 60, No. 2, Feb. 2013.
11.D. Jiang, Z. Zhao, and F. Wang, “A Sliding Mode Observer for PMSM Speed and Rotor Position Considering Saliency,” Conference on Power Electronics Specialists, pp.809-814, 2008.
12.J. Liu, G. Yang, and T. Li, “A New approach to Estimated Rotor Position for PMSM Based on Sliding Mode Observer”, Conference on Electrical Machines and Systems, pp.426-431, 2007.
類神經控制期刊:
13.F.-J. Lin, C.-H. Lin, and C.-M. Hong, “Robust Control of Linear Synchronous Motor Servodrive Using Disturbance Observer and Recurrent Neural Network Compensator,” IEEE Proc.-Electr. Power Appl., Vol. 147. No. 4. pp. 263-272, July 2000.
14.H. Li, J. Wang, S. S. Gu, and T. Yang, “A Neural-Network-Based Adaptive Estimator of Rotor Position and Speed for Permanent Magnet Synchronous Motor,” Electrical Machines and Systems, Vol. 2, pp. 735-738, Aug., 2001.
15.S. W. Wang and S. M. Wan, “Identify PMSM’s Parameters by Single-layer Neural Networks with Gradient Descent,” Electrical and Control Engineering (ICECE), pp. 3811-3814, Jun., 2010.
16.J. Yang, Y. Wu, Y. Yu, and W. Zhao, “Permanent Magnet Synchronous Motor Control Based on Retina Neural Network,” E-Product E-Service and E-Entertainment (ICEEE), pp. 1-4, 2010.
17.S. W. Wang and S. M. Wan, “Identify PMSM’s Parameters by Single-layer Neural Networks with Gradient Descent,” Electrical and Control Engineering (ICECE), pp. 3811-3814, Jun., 2010.
18.D. Kumar and S. Gupta, “Comparing Gradient Based Learning Methods for Optimizing Predictive Neural Networks,” Proceedings of 2014 RAECS UIET Panjab University Chandigarh, 06-08 Mar., 2014.
馬達向量控制及方程式:
19.劉昌煥,交流電機控制-向量控制與直接轉矩控制原理東華書局,2001。
20.劉昌煥,交流電機控制,東華書局,2005。
21.張碩主編,自動控制系統,鼎茂圖書出版有限公司,2005。
數位訊號處理器參考資料:
22.龔應時、陳建武、徐永松,TMS320F/C24x DSP 控制器原理與應用,滄海書局,2001。
23.數位訊號處理馬達控制模組(TMS320F281x),智控科技股份有限公司,2012。
24.dsPIC30F6010A 16-Bit Microcontrollers and Digital Signal Controllers Data Sheet,Microchip Technology Inc.
25.曾百由,dsPIC數位訊號控制器原理與應用 MPLAB C30 開發實務,宏友圖書開發股份有限公司,2009。
26.Microchip dsPIC30F4011/4012 Data Sheet, http://ww1.microchip.com/downloads/en/DeviceDoc/70135E.pdf
27.Microchip dsPIC30F4011/4012 Data Sheet (Chinese), http://ww1.microchip.com/downloads/en/DeviceDoc/70135e_cn.pdf
28.Microchip dsPIC30F Family Reference Manual - Section 30 Power Supply PWM, http://ww1.microchip.com/downloads/en/DeviceDoc/70270b_cn.pdf
碩士論文:
29.王藝錡,以DSP為基礎之永磁同步馬達滑動模式控制設計,碩士論文,南臺科技大學電機研究所,2008。
30.蔡佳哲,永磁同步馬達之無感測控制,碩士論文,南臺科技大學電機研究所,2010。
31.蕭博睿,永磁同步馬達之類神經網路速度控制,碩士論文,南臺科技大學電機研究所,2011。
32.賴泰榮,永磁同步馬達之類神經網路無感測控制,碩士論文,南臺科技大學電機研究所,2012。
33.林奉機,基於類神經網路之永磁同步馬達滑動模式無感測控制,碩士論文,南臺科技大學電機研究所,2014。
類神經網路書本:
34.張斐章、張麗秋,類神經網路,東華書局,2005。
35.羅華強,類神經網路,高立圖書,2010。
永磁同步馬達規格書:
36.伺服馬達/伺服驅動器,8CB75馬達參數,日久電子工業有限公司,2001。

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top