跳到主要內容

臺灣博碩士論文加值系統

(44.212.99.208) 您好!臺灣時間:2024/04/23 23:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:邱建榮
研究生(外文):CIOU,JIAN-RONG
論文名稱:以螢光光譜訊號評估實廠混凝單元的操作效能及鋁鹽瓶杯試驗的等溫吸附模式
論文名稱(外文):Operational Efficiency of Coagulation Units in Varied Full-Scale Plants by Fluorescent Signal and Isothermal Adsorption Model by Alum Jar-Test.
指導教授:賴文亮賴文亮引用關係
指導教授(外文):LAI,WEN-LIANG
口試委員:賴文亮邱俊彥高志明
口試委員(外文):LAI,WEN-LIANGCHIU,CHUN-YENKAO,CHIN-MING
口試日期:2017-07-15
學位類別:碩士
校院名稱:大仁科技大學
系所名稱:環境管理研究所
學門:環境保護學門
學類:環境資源學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:106
中文關鍵詞:瓶杯試驗螢光激發發射光譜圖平行因子高效能層析儀似黃酸似腐植酸分子量大小紅移藍移
外文關鍵詞:Jar TestExcitation Emission Fluorescence Matrix (EEFM)Parallel factor analysis (PARAFAC)High performance size exclusion chromatography(HPSEC)Humic substancesFulvic acidmolecular weightRed shiftBlue shift
相關次數:
  • 被引用被引用:1
  • 點閱點閱:166
  • 評分評分:
  • 下載下載:26
  • 收藏至我的研究室書目清單書目收藏:0
本研究選取南部澄清湖(CCL)、拷潭(KT)及牡丹(MT)淨水廠,比較實廠不同氧化劑後加混凝單元對水中顆粒性及有機物參數移除效能之差異性,另選取CCL及MT實際原水於不同溫度下添加不同混凝劑量進行瓶杯試驗,瞭解有機物去除效能及評估有機碳量及螢光各種參數等溫吸附模式之可行性,並藉由有機物螢光激發發射光譜圖(Excitation emission fluorescent matrix, EEFM)+平行因子(Parallel factor analysis, PARACFAC)進行有機物主成份分析,並瞭解不同溫度下各組成份之激發及發射波長移動之差別。其中顆粒性參數包括濁度顆粒性平均粒徑及界達電位測定;在有機物部分, EEFM進行各種有機物性質指標轉化,表現有機物性質經氧化劑/混凝劑單元之變化,同時透過高效能層析儀配合DAD 偵檢器利用HPSEC(High performance size exclusion chromatography)分析管柱進行有機物分子量大小量測,再透過總有機碳測定儀進行水中非揮發性溶解性有機碳(non-purgable dissolved organic carbon, NPDOC)之定量。
結果顯示,CCL淨水廠前臭氧/混凝沉澱對濁度移除優於KT及MT淨水廠之前加氯/混凝沉澱;在膠體粒徑,CCL可有效降低平均粒徑,但KT及MT膠體平均粒徑反而升高。CCL對NPDOC移除效能較其它兩水廠為佳。三水廠螢光光譜部分,包括似黃酸(fulvic-like)及似腐植酸(humic-like)成份的減量及部分激發發射波鋒位置均有發生消失、強度消減或位置之移動,推測應與氧化劑與混凝劑的添加量相關。三水廠有機物主要分子量大小分別為43~76 kDa、47~110 kDa、69~110 kDa,經前氧化劑/混凝後,其波峰強度及積分面積均呈現大幅減少之現象。另實驗室以CCL及MT原水進行混凝等溫吸附實驗,濁度、顆粒粒徑、膠體表面電位絕對值,皆隨明礬劑量添加呈現減少,其中以35℃混凝移除效能最佳,最佳劑量落在2.5 mg-Al3+/L。關於NPDOC值去除最佳劑量,CCL 15℃及35℃為1.5 mg-Al3+/L,25℃則是1 mg-Al3+/L,MT三種溫度皆為2 mg-Al3+/L。鋁混凝去除NPDOC之吸附模式,僅有25oC模擬較佳,其餘溫度下之模擬不佳,可能與鋁與有機物亦可能形成錯合,非僅以吸附機制預測。CCL以Freundlich之預測(R=0.8028)較Langmuir吸附模型(R=0.6729)為優;MT於NPDOC及第五類有機物似腐植質皆是以Langmuir吸附模型為優;利用EEFM+PARAFAC平行因子法解析CCL及MT原水有機物螢光特徵成份,前者C1(240、328/430 nm)、C2(264、350/466 nm)及C3(224、290/385 nm),後者C1(234、308/406)、C2(254、340/454)及C3(276、370/490),CCL 經15℃ 之混凝後,三種成分皆有明顯紅移現象且移動範圍最大;MT三主成分在不同溫度混凝作用後,激發發射波長皆呈現藍移現象,移動範圍C1以15℃為最大,25及35℃範圍相似;C2及C3成份皆是25℃移動範圍最大,不同主成分激發/發射波長移動現象及螢光強度百分比變化應與腐植質中官能基與鋁離子作用的機制不同相關。

In this paper, three water plants including Cheng-Ching Lake (CCL), Kaotan (KT), and Mudan (MT) in southern Taiwan were compared in the efficiency of removing particles and organic matter by the treatment units which are pre-oxidized by adding different oxidant following to coagulation. In order to investigate the absorption model for removing particles and organic matter, and evaluate the feasibility of isothermal absorption model applied to some parameters like total organic carbon(TOC) and fluorescent intensity related with organic matter, the jar tests individually using CCL and MT source water were also completed at various temperature and coagulant dose. In addition, excitation emission fluorescent matrix (EEFM) combined with Parallel factor analysis (PARACFAC) was used to indicate the variation of major ingredients of organic matter in jar tests. In this research, particle’s parameters such as turbidity, average particle size and zeta potential were measured to indicate the variation of particle property. Regarding to the parameters related with the property of organic matter, EEFM obtained by fluorometer, molecular weight (MW) measured by High performance size exclusion chromatography (HPSEC) combined with DAD detector, and non-purgable dissolved organic carbon (NPDOC) measured by total organic carbon meter (TOC) were used to indicate the variation of the property of organic matter in oxidation/coagulation units.
The results indicated that removing of turbidity for pre-ozonation/coagulation units of CCL is superior to that for pre-chlorination/coagulation units of MT and KT. Average particle size of colloid in units of CCL was reduced, but that in units of MT and KT was enhanced. CCL has better ability to remove NPDOC than MT and KT. The fluorescent spectrum variation related with humus including fulvc-like and humic-like in three water plants all appeared that the target peak might vanish or its intensity became weak or the shift of emission wavelength or excitation wavelength in spectrum, which might be attributed to the dose of oxidant and coagulant. Molecular weight cut-offs of organic matter detected in three water plants were distributed in 43~76 kDa, 47~110 kDa, 69~110 kDa and after oxidation/coagulation units, the peak intensity and area were greatly decreased. In addition, the jar tests for isothermal absorption model were done by individually using CCL and MT source water. The results showed that as the dose of coagulant increased , turbidity, average particle size and zeta potential absolute value decreased, and the efficiency of removing was the best at 35℃ and the optimal dose 2.5 mg-Al3+/L. The optimal dose of coagulant in removing NPDOC for CCL was 1.5 mg-Al3+/L at 15℃ and 35℃, and 1.0 mg-Al3+/L at 25℃; for MT, the optimal dose was 2 mg-Al3+/L at the above temperatures. The isothermal adsorption model of removing NPDOC by aluminum salt only fitted better at 25℃ and fitted worse at the other temperatures. The reason might be attributed to complexing of aluminum ion with organic matter, which did not follow the absorption mechanism. For jar tests of CCL source water , we found that Freundlich model (R=0.8028) applied to NPDOC removing fitted better than Langmuir model (R=0.6729) did, but for MT test, Langmuir model individually applied to NPDOC and humus-like peak intensity in EEFM had a better fit. In addition, EEFM combined with PARACFAC was used to extract the major characteristic ingredients from organic fluorescent groups in spectrum for CCL and MT source water, which appear at C1(240, 328/430 nm), C2(264,350/466 nm) and C3(224, 290/385 nm) for CCL source water , and C1(234, 308/406 nm)、C2(254, 340/454 nm) and C3(276, 370/490 nm) for MT source water. After jar tests of CCL source water, whole three components (C1, C2 and C3) in spectrum arose red shift at 15℃ and the shift was the greatest. For MT source water tests, whole three components in spectrum arose blue shift at various temperature, excitation wavelength and emission wavelength, and the shift for C1 was the greatest at 15℃ and was close at 25℃ and 35℃; the shift for C2 and C3 was the greatest at 25℃. This may be related with the different mechanisms happened in the reaction between functional group in humic matter and aluminium ion.

摘要 II
Abstract IV
致謝 VII
第一章 前言 1
1-1 研究背景 1
1-2 研究目的 2
第二章 文獻回顧 3
2-1 有機物之性質 3
2-1-1 有機物之分類 3
2-1-2 有機物對淨水程序影響 4
2-1-3 光譜分析在有機物之應用 5
2-1-3-1 紫外光吸收 5
2-1-3-2 螢光激發發射光譜 (Excitation-emission fluorescent matrix, EEFM) 6
2-2 混凝機制及影響因子 9
2-2-1 鋁鹽之水化學 9
2-2-2 顆粒去穩定機制及有機物的混凝去除 10
2-2-3影響混凝效果之參數 14
2-2-4 混凝對有機物及濁度去除之效能 15
2-3吸附模式 17
2-3-1吸附型態 17
2-3-2 等溫吸附模式 19
第三章 研究架構、材料及分析方法 22
3-1 研究流程之規劃 22
3-2 淨水廠處理流程及規格 22
3-2-1 澄清湖(CCL)淨水廠 24
3-2-2 拷潭(KT)淨水廠 25
3-2-3 牡丹(MT)淨水廠 26
3-3 瓶杯試驗及實驗材料 26
3-3-1瓶杯試驗 26
3-3-2鋁離子之配置 27
3-4 實驗參數分析 27
3-4-1濁度 27
3-4-2粒徑分析及表面電位測定 27
3-4-3非揮發性溶解性有機碳(non-purgable dissolved organic carbon, NPDOC) 29
3-4-4紫外光-可見光吸收光譜 29
3-4-5螢光激發發射光譜 EEFM 30
3-4-6 分子量分析 31
3-4-7 螢光激發發射光譜三維資料於MATLAB之操作 31
第四章 結果與討論 33
4-1 實廠原水前氧化後接混凝對顆粒特性及有機物之去除 33
4-1-1 濁度、顆粒粒徑及表面電位 33
4-1-2有機物參數 39
4-1-2-1 NPDOC與SUVA值 39
4-1-2-2 螢光激發發射全譜圖 44
4-1-3分子量變化 58
4-2 等溫混凝瓶杯試驗 60
4-2-1濁度、顆粒粒徑及表面電位 60
4-2-2 有機物參數 65
4-1-2-1 NPDOC與SUVA值 65
4-1-2-2 螢光激發發射全譜圖 68
4-2-3 等溫吸附模式 82
4-3 混凝劑量對有機物主成份特徵波峰位置之影響 86
第五章 結論 93
第六章 建議 94
參考文獻 95
作者簡介 105

Adin, A., Y. Soffer and R. B. Aim (1998) Effluent pretreatment by iron coagulation applying various dose-pH combinations for optimum particle separation. Water science and technology 38(6): 27-34.
Aiken, G. (2014) Fluorescence and dissolved organic matter: a chemist's perspective. Aquatic organic matter fluorescence: 35-74.
Amirtharajah, A. and K. M. Mills (1982) Rapid-mix design for mechanisms of alum coagulation. Journal (American Water Works Association): 210-216.
Amirtharagjah, A. and O'Melia, C. R. (1999). Coagulation and Flocculation, Chap 6 in Water Quality and Treatment. 5th Ed., McGraw-Hill, New York.
Babcock, D. B. and P. C. Singer (1979) Chlorination and coagulation of humic and fulvic acids. Journal (American Water Works Association): 149-152.
Bull, R. J., L. BIRNBAUM, K. P. Cantor, J. B. Rose, B. E. Butterworth, R. Pegram and J. Tuomisto (1995) Water chlorination: essential process or cancer hazard? Toxicological Sciences 28(2): 155-166.
Chen, C., X.-j. Zhang, L.-x. Zhu, J. Liu and W.-j. He (2008) Disinfection by-products and their precursors in a water treatment plant in North China: seasonal changes and fraction analysis. Science of the total environment 397(1): 140-147.
Chen, J., B. Gu, E. J. LeBoeuf, H. Pan and S. Dai (2002) Spectroscopic characterization of the structural and functional properties of natural organic matter fractions. Chemosphere 48(1): 59-68.
Chen, W., P. Westerhoff, J. A. Leenheer and K. Booksh (2003) Fluorescence excitation− emission matrix regional integration to quantify spectra for dissolved organic matter. Environmental science & technology 37(24): 5701-5710.
Chen, Y., N. Senesi and M. Schnitzer (1977) Information provided on humic substances by E4/E6 ratios. Soil science society of America journal 41(2): 352-358.
Chow, C. W., J. A. van Leeuwen, R. Fabris and M. Drikas (2009) Optimised coagulation using aluminium sulfate for the removal of dissolved organic carbon. Desalination 245(1-3): 120-134.
De Haan, H. and T. De Boer (1987) Applicability of light absorbance and fluorescence as measures of concentration and molecular size of dissolved organic carbon in humic Lake Tjeukemeer. Water Research 21(6): 731-734.
Drikas, M., C. W. Chow and D. Cook (2003) The impact of recalcitrant organic character on disinfection stability, trihalomethane formation and bacterial regrowth: an evaluation of magnetic ion exchange resin (MIEX®) and alum coagulation. Journal of Water Supply: Research and Technology-AQUA 52(7): 475-487.
Duan, J. and J. Gregory (2003) Coagulation by hydrolysing metal salts. Advances in colloid and interface science 100: 475-502.
Edwards, G. A. and A. Amirtharajah (1985) Removing color caused by humic acids. Journal-American Water Works Association 77(3): 50-57.
Edzwald, J. K. and J. E. Tobiason (1999) Enhanced coagulation: US requirements and a broader view. Water science and technology 40(9): 63-70.
Elkins, K. M. and D. J. Nelson (2002) Spectroscopic approaches to the study of the interaction of aluminum with humic substances. Coordination Chemistry Reviews 228(2): 205-225.
Flaten, T. P. (2001) Aluminium as a risk factor in Alzheimer’s disease, with emphasis on drinking water. Brain research bulletin 55(2): 187-196.
Gone, D. L., J.-L. Seidel, C. Batiot, K. Bamory, R. Ligban and J. Biemi (2009) Using fluorescence spectroscopy EEM to evaluate the efficiency of organic matter removal during coagulation–flocculation of a tropical surface water (Agbo reservoir). Journal of hazardous materials 172(2): 693-699.
He, X., B. Xi, Z. Wei, X. Guo, M. Li, D. An and H. Liu (2011) Spectroscopic characterization of water extractable organic matter during composting of municipal solid waste. Chemosphere 82(4): 541-548.
Helms, J. R., A. Stubbins, J. D. Ritchie, E. C. Minor, D. J. Kieber and K. Mopper (2008) Absorption spectral slopes and slope ratios as indicators of molecular weight, source, and photobleaching of chromophoric dissolved organic matter. Limnology and Oceanography 53(3): 955-969.
Her, N., G. Amy, H.-R. Park and M. Song (2004) Characterizing algogenic organic matter (AOM) and evaluating associated NF membrane fouling. Water Research 38(6): 1427-1438.
Howe, K. J. and M. M. Clark (2002) Fouling of microfiltration and ultrafiltration membranes by natural waters. Environmental science & technology 36(16): 3571-3576.
Hsu, C.-H., W.-L. Jeng, R.-M. Chang, L.-C. Chien and B.-C. Han (2001) Estimation of potential lifetime cancer risks for trihalomethanes from consuming chlorinated drinking water in Taiwan. Environmental Research 85(2): 77-82.
Hua, G. and D. A. Reckhow (2007) Characterization of disinfection byproduct precursors based on hydrophobicity and molecular size. Environmental science & technology 41(9): 3309-3315.
Hudson, N., A. Baker and D. Reynolds (2007) Fluorescence analysis of dissolved organic matter in natural, waste and polluted waters—a review. River Research and Applications 23(6): 631-649.
Huguet, A., L. Vacher, S. Relexans, S. Saubusse, J.-M. Froidefond and E. Parlanti (2009) Properties of fluorescent dissolved organic matter in the Gironde Estuary. Organic Geochemistry 40(6): 706-719.
Jacangelo, J. G., J. DeMarco, D. M. Owen and S. J. Randtke (1995) Selected processes for removing NOM: an overview. Journal-American Water Works Association 87(1): 64-77.
Jarusutthirak, C., G. Amy and J.-P. Croué (2002) Fouling characteristics of wastewater effluent organic matter (EfOM) isolates on NF and UF membranes. Desalination 145(1): 247-255.
Jarvis, P., B. Jefferson and S. Parsons (2004) Characterising natural organic matter flocs. Water Science and Technology: Water Supply 4(4): 79-87.
Jin, P., J. Song, X. C. Wang and X. Jin (2017) Two-dimensional correlation spectroscopic analysis on the interaction between humic acids and aluminum coagulant. Journal of Environmental Sciences.
Joseph, L., J. R. Flora, Y.-G. Park, M. Badawy, H. Saleh and Y. Yoon (2012) Removal of natural organic matter from potential drinking water sources by combined coagulation and adsorption using carbon nanomaterials. Separation and Purification Technology 95: 64-72.
Katsoufidou, K., S. Yiantsios and A. Karabelas (2005) A study of ultrafiltration membrane fouling by humic acids and flux recovery by backwashing: experiments and modeling. Journal of Membrane Science 266(1): 40-50.
Kim, H., S. Lee, S. Byun and M. Yu (2006) Application of improved rapid mixing for enhanced removal of dissolved organic matter and DBPFP (disinfection by-product formation potential) control. Water Science and Technology: Water Supply 6(1): 49-57.
Kimura, K., H. Yamamura and Y. Watanabe (2006) Irreversible fouling in MF/UF membranes caused by natural organic matters (NOMs) isolated from different origins. Separation Science and Technology 41(7): 1331-1344.
Korshin, G. V., M. M. Benjamin and R. S. Sletten (1997) Adsorption of natural organic matter (NOM) on iron oxide: effects on NOM composition and formation of organo-halide compounds during chlorination. Water Research 31(7): 1643-1650.
Maie, N., N. M. Scully, O. Pisani and R. Jaffé (2007) Composition of a protein-like fluorophore of dissolved organic matter in coastal wetland and estuarine ecosystems. Water Research 41(3): 563-570.
Matilainen, A., E. T. Gjessing, T. Lahtinen, L. Hed, A. Bhatnagar and M. Sillanpää (2011) An overview of the methods used in the characterisation of natural organic matter (NOM) in relation to drinking water treatment. Chemosphere 83(11): 1431-1442.
Matilainen, A., M. Vepsäläinen and M. Sillanpää (2010) Natural organic matter removal by coagulation during drinking water treatment: a review. Advances in colloid and interface science 159(2): 189-197.
Matthews, B., A. Jones, N. Theodorou and A. Tudhope (1996) Excitation-emission-matrix fluorescence spectroscopy applied to humic acid bands in coral reefs. Marine Chemistry 55(3): 317-332.
McKnight, D. M., E. W. Boyer, P. K. Westerhoff, P. T. Doran, T. Kulbe and D. T. Andersen (2001) Spectrofluorometric characterization of dissolved organic matter for indication of precursor organic material and aromaticity. Limnology and Oceanography 46(1): 38-48.
Packham, R. (1965) Some studies of the coagulation of dispersed clays with hydrolyzing salts. Journal of Colloid Science 20(1): 81-92.
Patra, D. and A. Mishra (2002) Recent developments in multi-component synchronous fluorescence scan analysis. TrAC Trends in Analytical Chemistry 21(12): 787-798.
Peterson, H. G., S. E. Hrudey, I. A. Cantin, T. R. Perley and S. L. Kenefick (1995) Physiological toxicity, cell membrane damage and the release of dissolved organic carbon and geosmin by Aphanizomenon flos-aquae after exposure to water treatment chemicals. Water Research 29(6): 1515-1523.
Qin, J.-J., M. H. Oo, K. A. Kekre, F. Knops and P. Miller (2006) Impact of coagulation pH on enhanced removal of natural organic matter in treatment of reservoir water. Separation and Purification Technology 49(3): 295-298.
Quang, V. L., H.-C. Kim, T. Maqbool and J. Hur (2016) Fate and fouling characteristics of fluorescent dissolved organic matter in ultrafiltration of terrestrial humic substances. Chemosphere 165: 126-133.
Richardson, S. D., M. J. Plewa, E. D. Wagner, R. Schoeny and D. M. DeMarini (2007) Occurrence, genotoxicity, and carcinogenicity of regulated and emerging disinfection by-products in drinking water: a review and roadmap for research. Mutation Research/Reviews in Mutation Research 636(1): 178-242.
Sadiq, R. and M. J. Rodriguez (2004) Fuzzy synthetic evaluation of disinfection by-products—a risk-based indexing system. Journal of environmental management 73(1): 1-13.
Sanchez, N. P., A. T. Skeriotis and C. M. Miller (2013) Assessment of dissolved organic matter fluorescence PARAFAC components before and after coagulation–filtration in a full scale water treatment plant. Water Research 47(4): 1679-1690.
Senesi, N., T. Miano, M. Provenzano and G. Brunetti (1989) Spectroscopic and compositional comparative characterization of IHSS reference and standard fulvic and humic acids of various origin. Science of the total environment 81: 143-156.
Sharp, E., P. Jarvis, S. Parsons and B. Jefferson (2006) Impact of fractional character on the coagulation of NOM. Colloids and Surfaces A: Physicochemical and Engineering Aspects 286(1): 104-111.
Sharpless, C. M. and L. B. McGown (1999) Effects of aluminum-induced aggregation on the fluorescence of humic substances. Environmental science & technology 33(18): 3264-3270.
Sillanpää, M. and A. Matilainen (2014) NOM removal by coagulation. Natural Organic Matter in Water: Characterization and Treatment Methods: 55.
Stevenson, F. J. (1994) Humus chemistry: genesis, composition, reactions. John Wiley & Sons.
Świetlik, J., A. Dąbrowska, U. Raczyk-Stanisławiak and J. Nawrocki (2004) Reactivity of natural organic matter fractions with chlorine dioxide and ozone. Water Research 38(3): 547-558.
Thurman, E., (1985) Organic Geochemistry of Natural Waters. Developments in Biogeochemistry. Martinus Nijhoff/Dr W. Junk Publishers, Boston, MA.
Thurman, E. M. and R. L. Malcolm (1981) Preparative isolation of aquatic humic substances. Environmental science & technology 15(4): 463-466.
Uyak, V. and I. Toroz (2007) Disinfection by-product precursors reduction by various coagulation techniques in Istanbul water supplies. Journal of hazardous materials 141(1): 320-328.
Verwey, E. J. and Overbeek, G. Th. J., (1948). Theory of the stability of lyophobic colloid, Elserier, Amsterdam.
Wang, J., J. Guan, S. R. Santiwong and T. D. Waite (2010) Effect of aggregate characteristics under different coagulation mechanisms on microfiltration membrane fouling. Desalination 258(1): 19-27.
White, M. C., J. D. Thompson, G. W. Harrington and P. C. Singer (1997) Evaluating criteria for enhanced coagulation compliance. American Water Works Association. Journal 89(5): 64.
Xiao, F., J.-C. H. Huang, B.-j. Zhang and C.-w. Cui (2009) Effects of low temperature on coagulation kinetics and floc surface morphology using alum. Desalination 237(1-3): 201-213.
Xie, P., Y. Chen, J. Ma, X. Zhang, J. Zou and Z. Wang (2016) A mini review of preoxidation to improve coagulation. Chemosphere 155: 550-563.
Yan, M., Q. Fu, D. Li, G. Gao and D. Wang (2013) Study of the pH influence on the optical properties of dissolved organic matter using fluorescence excitation–emission matrix and parallel factor analysis. Journal of Luminescence 142: 103-109.
Zhao, Y., B. Gao, H. Shon, B. Cao and J.-H. Kim (2011) Coagulation characteristics of titanium (Ti) salt coagulant compared with aluminum (Al) and iron (Fe) salts. Journal of hazardous materials 185(2): 1536-1542.
王乃毅. (2016). 活性碳吸附水中苯酚之研究. 輔英科技大學碩士論文.
王淳弘. (2007). 前氧化劑對於藻體胞外物作用之影響. 國立成功大學碩士論文.
王根樹. (2001) 以活性碳吸附水中背景有機物之研究(3/3).行政院國家科學委員會專題研究計畫成果報告.
王敏, 劉海龍, & 王東升. (2009). 預臭氧化對有機物混凝的影響. 城鎮供水, (4), 33-36.
胡靖宜. (2008). 鋁水解物種對腐植酸混凝行為之影響. 國立交通大學環境工程所碩士論文.
倪永年. (2004). 化學計量學在分析化學中的應用, 北京科學出版社,第178 - 185頁
崔立超. (2005). 螢光光譜法在農藥殘留檢測中的應用研究, 電氣工程學院工學碩士學位論文
鄭如涵. (2012). 混凝對天然有機物(NOM)去除之研究. 國立成功大學碩士論文.
黃文鑑. (1997). 混凝、吸附對溶解性有機物去除受預氯影響之研究. 國立成功大學博士論文.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊