跳到主要內容

臺灣博碩士論文加值系統

(44.192.48.196) 您好!臺灣時間:2024/06/26 02:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳延昭
研究生(外文):Chen, Yan-Zhao
論文名稱:建立非麻醉大鼠腦部定位方法並發展生物化學分子磁振頻譜之定性定量
論文名稱(外文):Establishing of Stereotactic Method in Unanesthetized Rat Brain and Development of Qualitative and Quantitative for Molecular Biochemistry Magnetic Resonance Spectroscopy
指導教授:許博翔許博翔引用關係
指導教授(外文):Hsu, Po-Hsiang
口試委員:戴國峯馮清榮許博翔
口試委員(外文):Tai, Kuo-FengPang, Cheng-YoongHsu, Po-Hsiang
口試日期:2015-01-30
學位類別:碩士
校院名稱:慈濟技術學院
系所名稱:放射醫學科學研究所
學門:醫藥衛生學門
學類:醫學技術及檢驗學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:85
中文關鍵詞:磁振頻譜磁振頻譜定位方法非麻醉神經化學物質生物化學分子磁振頻譜
外文關鍵詞:MRS3D stereotactic methodneurochemicalsMolecular Biochemistry magnetic resonance spectroscopy
相關次數:
  • 被引用被引用:0
  • 點閱點閱:83
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
中文摘要

磁振頻譜(magnetic resonance spectroscopy, MRS)可偵測大腦的神經化學物質濃度變化,藉以提供臨床輔助診斷。為改善過去研究中動物必需麻醉及定位不一致的缺點。本研究不但發展不具侵入性的大鼠固定模具,亦建立大鼠腦部定位的參考座標,以提升MRS之準確性及再現性。另外,針對基線雜訊的不穩定性,本研究發展體外生物化學分子磁振頻譜技術,利用混合溶液所獲得的頻譜,進行各種參數的改良,並有效地定性定量。

我們利用非侵入性的熱塑性材質面膜(masks),在加溫後達到塑型且有效固定的效果,並於 3 T MRI 中進行偵測。為提升 MRS 的切面選擇及感興趣體積(voxel of interest;VOI)圈選的再現性,參考微透析技術中透針植入的方式,推算出 MRS 專用的大鼠腦部各位置的標準座標。將嗅球下緣及小腦下緣的連線定義為 Y 軸(A/P),腦下垂體上緣向上垂直 Y 軸定義為 Z 軸(D/V),兩線交叉位置為原點,再依據所需圈選的部位定義出 X 軸(M/L)。另外為了改善 3T 磁場強度下的 MRS 在頻譜基線(Baseline) 處雜訊過大,我們利用乳酸(Lactate) 與肌酸 (Creatine) 的混合溶液進行各種參數的改良。觀察不同擺放位置、不同線圈及改變 TE、TR、VOI 大小,對頻譜的影響。

本研究利用3T MRI並配合固定模具的使用,發現固定效果十分良好,並成功取得大鼠在非麻醉狀態下的神經化學物質頻譜。另外,測試頻譜在不同時間點下的檢測具有良好的重覆性。再者,藉由體外生物磁振頻譜技術可利用Lactate作為固定基準值,改變Creatine濃度,以計算出Creatine在不同濃度下與Lactate之間的比例,之後利用回推的方式有效的進行濃度上的定量。為克服頻譜基線雜訊的不穩定性,由體外生物磁振頻譜技術可知磁場中心與左右兩側的頻譜有所差異,使用表面線圈能夠提供頻譜較平坦基線訊號。在參數上的設定,使用PRESS序列,TE=50-70 msec、TR=2 sec、VOI至少要4×4× 4 mm3 以上,可提供頻譜基線較佳的表現。最後,經改良的頻譜可有效定性定量,且具有高度的重覆性。

Abstract

Magnetic resonance spectroscopy (MRS) has been extensively employed to detect neurochemicals concentration in clinical diagnosis. To improve the disadvantages of anesthetic necessity and inconsistent orientation in previous studies, the non-invasive method of thermoplastic mask for fixation and the 3D stereotactic method were developed to improve MRS accuracy and reproducibility. In the other hand, in order to improve the instability of baseline noise, the technique of in vitro molecular biochemistry MRS was developed, and the adjustment of various parameters and effectively qualitative as well as quantitative measurement were performed after providing mixed solution of lactate and creatine.

Effective fixation could be achieved using the non-invasive thermoplastic mask, and animal with mask was then placed in the 3.0T MRI for the detection. To improve the reproducibility of MRS slice position and voxel of interest (VOI), the method of microdialysis probe implantation was refered to calculate MRS dedicated standard coordinating each position in rat brain. The line of olfactory bulb lower edge and cerebellum lower edge is defined as the Y-axis (A/P), pituitary gland upper edge perpendicular to the Y axis is defined as the Z-axis (D/V), the cross of these two lines is defined as the origin, and X-axis (M/L) definition is according to the selected portion. In addition, the baseline noise of 3T MRS is too large to lead instability of spectroscopy, therefore, mixed solution of lactate and creatine were used to adjust various parameters. The influences to MRS were observed by trying different coils, different positions and change of TE, TR, VOI size.

We successfully got the stable neurochemical MRS of unanesthesia rats by fixation with the non-invasive thermoplastic mask in the 3T MRI machines, and the detective result was reproducible at different time points. In addition, the ratios of creatine in various concentration to fixed concentration of lactate were used to effectively qunatitate concentration by in vitro biological magnetic resonance spectroscopy. It is also known that the spectroscopy signal away from the center of the magnetic fields was slightly different from these obtained in the centers of magnetic fields. Comparison of surface coil and a head coil, the former can provide better signal-to-noise ratio(SNR) and a relatively flat baseline of the spectroscopy to improve the stability of spectroscopy baseline noise. The selection of parameters as follows: PRESS sequence, TE = 50-70 msec, TR = 2 sec, VOI must be greater than 4 × 4 × 4 mm3, will provide a better performance of the spectrum. Finally, MRS can effectively proceed qualitative and quantitative measurement, and the result is reproducible after improving the spectral parameters.

目 錄

中文摘要..................................................... I
英文摘要....................................................III
致謝..........................................................v
目錄....................................................... VII
圖目錄.......................................................IX
表目錄.......................................................XI

第一章 導論
1.1 研究背景 ....................................................1
1.2 磁振造影及磁振頻譜原理 ........................................3
1.2.1 磁振造影原理...............................................3
1.2.2 磁振頻譜原理...............................................4
1.3 磁振頻譜定位方式...............................................5
1.4 清醒動物的磁振造影及磁振頻譜 ...................................7
1.5 磁振頻譜觀察顱內出血的神經化學物質的變化.........................9
1.6 磁振頻譜的定量................................................11
1.7 研究目的 .....................................................12
第二章 研究設備與方法
2.1 研究設備 .....................................................14
2.1.1 實驗動物 ..................................................14
2.1.2 固定模具 ..................................................14
2.1.3 截取磁振頻譜儀器設備 .......................................14
2.2 實驗流程及固定方法.............................................15
2.3 磁振頻譜的定位方法.............................................15
2.4 動物的磁振造影及磁振頻譜的脈衝序列...............................17
2.5 動物磁振頻譜的重覆性............................................19
2.6 體外溶液的製作.................................................19
2.7 溶液的定位方式及磁振頻譜的脈衝序列...............................20
2.8 磁振頻譜對菌的分析..............................................21
第三章 結果
3.1 理想大鼠腦部 3T 的磁振頻譜 .....................................22
3.2 顱內出血的磁振頻譜..............................................22
3.3 模具固定 ......................................................23
3.4 大鼠腦部的磁振頻譜標準座標 ......................................23
3.5 非麻醉大鼠的磁振造影影像與磁振頻譜................................23
3.5.1 不當的定位...................................................23
3.5.2 有效定位後的磁振頻譜..........................................23
3.6 動物磁振頻譜的重覆性.............................................25
3.7 體外生物化學分子磁振頻譜的定性定量................................25
3.6.1 乳酸(Lactate)溶液的頻譜.......................................25
3.6.2 肌酸(Creatine)溶液的頻譜 .....................................25
3.6.3 乳酸(Lactate)與肌酸(Creatine)混合的溶液頻譜....................25
3.6.4 測試不同位置對磁振頻譜的影響...................................26
3.6.5 使用不同線圈的比較............................................26
3.6.6 不同參數的比較............................................... 27
3.6.7 磁振頻譜的定量............................................... 27
3.6.8 磁振頻譜對菌的分析結果 .......................................28
第四章 討論 ........................................................30
第五章 結論 ........................................................35
參考文獻............................................................77

圖目錄
圖 2.1 熱塑性材質固定面膜.............................................36
圖 2.2 截取磁振頻譜儀器設備...........................................37
圖 2.3 傳統磁振頻譜偵測的流程 ........................................38
圖 2.4 傳統麻醉磁振頻譜固定方式 ......................................38
圖 2.5 本實驗流程圖..................................................39
圖 2.6 固定模具製作..................................................39
圖 2.7 利用立體定位儀的定位圖 ........................................40
圖 2.8 大鼠頭骨圖 ...................................................41
圖 2.9 大鼠腦部的矢狀切面圖..........................................41
圖 2.10 大鼠大腦 MRI 側向影像 .......................................42
圖 2.11 磁振頻譜基準線起始位置........................................42
圖 2.12 磁振頻譜基準線實際運用........................................43
圖 2.13 左、右側紋狀體的磁振頻譜的基準座標.............................43
圖 2.14 Three plane location 波序的大鼠腦部定位影像...................44
圖 2.15 T1W FSE 波序得到大鼠腦部的軸向切面的影像 ......................44
圖 2.16 Point Resolved Spectroscopy (PRESS)脈衝波序圖 ...............45
圖 2.17 Stimulated-Echo Acquisition Mode(STEAM)脈衝波序圖 ...........45
圖 2.18 VOI 圈選後獲取的頻譜 .........................................46
圖 2.19 利用頭部線圈(head coil)的定位 ................................48
圖 2.20 頭部線圈利用 Three plane location 序列獲得的定位影像 ..........48
圖 2.21 頭部線圈獲取的 T1 FRFSE 影像..................................49
圖 2.22 頭部線圈 VOI 圈選的方式 ......................................49
圖 2.23 使用磁振頻譜假體驗證不同擺放位置對頻譜的影響 ...................50
圖 2.24 利用表面線圈(surface coil)的定位..............................51
圖 2.25 表面線圈利用 Three plane location 序列獲得基本的定位影像 ......51
圖 2.26 利用頭部線圈(head coil)的定位 ................................52
圖 2.27 表面線圈 VOI 圈選的方式 ......................................52
圖 3.1 理想大鼠腦部 3.0T 的磁振頻譜 .................................53
圖 3.2 磁振頻譜觀察顱內出血出血位置(右側)紋狀體的磁振頻譜 .............54
圖 3.3 磁振頻譜觀察顱內出血出血處對側(左側)紋狀體的磁振頻譜 ...........55
圖 3.4 利用熱塑性材質面膜作為大鼠的固定模具 ..........................56
圖 3.5 利用熱塑性材質面膜作固定的大鼠 MRI 的影像.......................56
圖 3.6 不當的定位的影像..............................................58
圖 3.7 不當的定位的頻譜.............................................58
圖 3.8 大鼠左側紋狀體的磁振頻譜 ......................................59
圖 3.10 不同測的紋狀體磁振頻譜........................................60
圖 3.11 麻醉與非麻醉大鼠紋狀體的磁振頻譜...............................60
圖 3.12 重覆性測試的大鼠磁振頻譜 .....................................61
圖 3.13 大鼠左、右紋狀體神經化學物質比較圖.............................62
圖 3.14 收集兩次神經化學物質數據比較圖.................................63
圖 3.15 兩天神經化學物質數據比較圖 ...................................64
圖 3.16 乳酸(Lactate)溶液的頻譜......................................65
圖 3.17 肌酸(Creatine)溶液的頻譜.....................................66
圖 3.18 第一組乳酸(Lactate)與肌酸(Creatine)混合溶液...................67
圖 3.19 第二組乳酸(Lactate)與肌酸(Creatine)混合溶液...................68
圖 3.20 液體濃度與訊號強度間的趨勢圖 ..................................69
圖 3.21 頭部線圈(head coil)對不同位置的測試............................70
圖 3.22 頭部線圈(head coil)相同位置的測試.............................71
圖 3.23 假體驗證不同擺放位置對頻譜的影響...............................72
圖 3.24 不同線圈的比較................................................73
圖 3.25 改變 TE(echo time)的磁振頻譜..................................74
圖 3.26 改變 VOI 大小的磁振頻譜 ......................................75
圖 3.27 頭部線圈三個不同位置的頻譜 ....................................76
圖 3.28 表面線圈三個皆在相同位置的頻譜.................................77
圖 3.29 磁振頻譜對菌的偵測的頻譜 ......................................80

表目錄
表 2.1 乳酸(Lactate)溶液濃度表........................................47
表 2.2 肌酸(Creatine)溶液濃度表.......................................47
表 2.3 第一組乳酸(Lactate)與肌酸(Creatine)混合溶液濃度表 ..............47
表 2.4 第二組肌酸(Creatine)與乳酸(Lactate)混合溶液濃度表 ..............47
表 3.1 磁振頻譜神經代謝物質的位置 .....................................53
表 3.2 大鼠腦部的磁振頻譜標準座標 .....................................57
表 3.3 不同濃度間的比例關係...........................................69
表 3.3 頭部線圈獲得的頻譜頻譜訊號強度..................................78
表 3.4 表面線圈獲得的頻譜頻譜訊號強度..................................79

參考文獻
1. 潘震澤, 楊志剛, 高毓儒, 黃娟娟, 袁宗凡, & 謝坤叡. (2005). 人體生理學, 第三版.
2. Kreft, M., Bak, L. K., Waagepetersen, H. S., & Schousboe, A. (2012).
Aspects of astrocyte energy metabolism, amino acid neurotransmitter
homoeostasis and metabolic compartmentation. ASN neuro, 4(3), 187-199.
3. Bogen, I. L., Risa, Ø ., Haug, K. H., Sonnewald, U., Fonnum, F., & Walaas,
S. I. (2008). Distinct changes in neuronal and astrocytic amino acid
neurotransmitter metabolism in mice with reduced numbers of synaptic
vesicles. Journal of neurochemistry, 105(6), 2524-2534.
4. Lust, W. D., Pundik, S., Zechel, J., Zhou, Y., Buczek, M., & Selman, W. R.
(2003). Changing metabolic and energy profiles in fetal, neonatal, and
adult rat brain. Metabolic brain disease, 18(3), 195-206.
5. Nehlig, A. (2004). Brain uptake and metabolism of ketone bodies in animal
models. Prostaglandins, leukotrienes and essential fatty acids, 70(3), 265
-275.
6. Vannucci, S. J., Seaman, L. B., Brucklacher, R. M., & Vannucci, R. C.
(1994). Glucose transport in developing rat brain: glucose transporter
proteins, rate constants and cerebral glucose utilization. Molecular and
cellular biochemistry, 140(2), 177-184.
7. Blüml, S., Seymour, K. J., & Ross, B. D. (1999). Developmental changes in
choline ‐ and ethanolamine‐containing compounds measured with proton ‐
decoupled 31P MRS in in vivo human brain. Magnetic resonance in medicine,
42(4), 643-654.
8. Yao, F. S., Caserta, M. T., & Wyrwicz, A. M. (1999). In vitro proton and
phosphorus NMR spectroscopic analysis of murine (C57Bl/6J) brain
development. NMR in Biomedicine, 12(7), 463-470.
9. Quarles, R. H., Macklin, W. B., & Morell, P(2006). Myelin formation,
structure and biochemistry. Cited on, 47.
10. Albrecht, J., & Schousboe, A. (2005). Taurine interaction with
neurotransmitter receptors in the CNS: an update. Neurochemical research,
30(12), 1615 -1621.
11. Lin, M. T., & Beal, M. F. (2006). Mitochondrial dysfunction and oxidative
stress in neurodegenerative diseases. Nature, 443(7113), 787-795.
12. Vonsattel, J. P., Myers, R. H., Stevens, T. J., Ferrante, R. J., Bird, E.
D., & Richardson Jr, E. P. (1985). Neuropathological classification of
Huntington's disease. Journal of Neuropathology & Experimental Neurology,
44(6), 559-577.
13. Dauer, W., & Przedborski, S. (2003). Parkinson's disease: mechanisms and
models. Neuron, 39(6), 889-909.
14. Coyle, J. T., Price, D. L., & DeLong, M. R. (1983). Alzheimer's disease: a
disorder of cortical cholinergic innervation. Science, 219(4589), 1184-
1190.
15. Ungersledl, U. (1986). Microdialysis-A new bioanalytical sampling
technique.
16. Cheng, F. C., Yang, L. L., Yang, D. Y., Tsai, T. H., Lee, C. W., & Chen,
S. H. (2000). Monitoring of extracellular pyruvate, lactate, and ascorbic
acid during cerebral ischemia: a microdialysis study in awake gerbils.
Journal of chromatography A, 870(1), 389-394.
17. van der Graaf, M. (2010). In vivo magnetic resonance spectroscopy: basic
methodology and clinical applications. European Biophysics Journal, 39(4),
527-540.
18. Lee, M. R., Denic, A., Hinton, D. J., Mishra, P. K., Choi, D. S., Pirko,
I., & Macura, S. I. (2012). Preclinical 1H-MRS neurochemical profiling in
neurological and psychiatric disorders. Bioanalysis, 4(14), 1787-1804.
19. Nelson, S. J., Graves, E., Pirzkall, A., Li, X., Antiniw Chan, A.,
Vigneron, D. B., & McKnight, T. R. (2002). In vivo molecular imaging for
planning radiation therapy of gliomas: an application of 1H MRSI. Journal
of Magnetic Resonance Imaging, 16(4), 464-476.
20. Howe, F. A., Barton, S. J., Cudlip, S. A., Stubbs, M., Saunders, D. E.,
Murphy, M., & Griffiths, J. R. (2003). Metabolic profiles of human brain
tumors using quantitative in vivo 1H magnetic resonance spectroscopy.
Magnetic Resonance in Medicine, 49(2), 223-232.
21. Govindaraju, V., Young, K., & Maudsley, A. A. (2000). Proton NMR chemical
shifts and coupling constants for brain metabolites. NMR in Biomedicine,
13(3), 129-153.
22. Pegos, V. R., Canevarolo, R. R., Sampaio, A. P., Balan, A., & Zeri, A.
(2014). Xanthan Gum Removal for 1H-NMR Analysis of the Intracellular
Metabolome of the Bacteria Xanthomonas axonopodis pv. citri 306.
Metabolites, 4(2), 218-231.
23. Pfeuffer, J., Tkáč, I., Provencher, S. W., & Gruetter, R. (1999). Toward
an in Vivo Neurochemical Profile: Quantification of 18 Metabolites in Short
-Echo-Time 1H NMR Spectra of the Rat Brain. Journal of Magnetic Resonance,
141(1), 104-120.
24. Tkáč, I., Rao, R., Georgieff, M. K., & Gruetter, R. (2003). Developmental
and regional changes in the neurochemical profile of the rat brain
determined by in vivo 1H NMR spectroscopy. Magnetic resonance in medicine,
50(1), 24-32.
25. Kulak, A., Duarte, J., Do, K. Q., & Gruetter, R. (2010). Neurochemical
profile of the developing mouse cortex determined by in vivo 1H NMR
spectroscopy at 14.1 T and the effect of recurrent anaesthesia. Journal of
neurochemistry, 115(6), 1466-1477.
26. Xin, L., Gambarota, G., Duarte, J., Mlynárik, V., & Gruetter, R. (2010).
Direct in vivo measurement of glycine and the neurochemical profile in the
rat medulla oblongata. NMR in biomedicine, 23(9), 1097-1102.
28. Bloch, F. (1946). Nuclear induction. Physical review, 70(7-8), 460.
29. Duarte, J., Lei, H., Mlynárik, V., & Gruetter, R. (2012). The
neurochemical profile quantified by in vivo 1H NMR spectroscopy.
Neuroimage, 61(2), 342-362.
30. Khandelwal, P., Beyer, C. E., Lin, Q., McGonigle, P., Schechter, L. E., &
Bach II, A. C. (2004). Nanoprobe NMR spectroscopy and in vivo
microdialysis: new analytical methods to study brain neurochemistry.
Journal of neuroscience methods, 133(1), 181-189.
31. Yablonsky-Alter, E., Agovic, M. S., Gashi, E., Lidsky, T. I., Friedman,
E., & Banerjee, S. P. (2009). Cocaine challenge enhances release of
neuroprotective amino acid taurine in the striatum of chronic cocaine
treated rats: a microdialysis study. Brain research bulletin, 79(3), 215-
218.
32. Wang, Y., & Michael, A. C. (2012). Microdialysis probes alter presynaptic
regulation of dopamine terminals in rat striatum. Journal of neuroscience
methods, 208(1), 34-39.
33. Paxinos G, Watson C. (2007)The rat brain in stereotaxic coordinates, CD-
ROM. 6th ed. San Diego: Academic Press
34. Ueki M, Miles G & Hossmann K-A. (1992) Effect of alpha-chloralose,
halothane, pentobarbital and nitrous oxide anesthesia on metabolic
coupling in somatosensory cortex of rat. Acta Anesthesiol Scand 36:318−322.
35. Xie, Z., Culley, D. J., Dong, Y., Zhang, G., Zhang, B., Moir, R. D.,&
Tanzi, R. E. (2008). The common inhalation anesthetic isoflurane induces
caspase activation and increases amyloid β‐protein level in vivo. Annals
of neurology, 64(6), 618-627.
36. Xiong, W. X., Zhou, G. X., Wang, B., Xue, Z. G., Wang, L., Sun, H. C., &
Ge, S. J. (2013). Impaired Spatial Learning and Memory after Sevoflurane–
Nitrous Oxide Anesthesia in Aged Rats Is Associated with Down-Regulated
cAMP/CREB Signaling. PloS one, 8(11), e79408.
37. Mawhinney, L. J., de Rivero Vaccari, J. P., Alonso, O. F., Jimenez, C. A.,
Furones, C., Moreno, W. J., & Bramlett, H. M. (2012). Isoflurane/nitrous
oxide anesthesia induces increases in NMDA receptor subunit NR2B protein
expression in the aged rat brain. Brain research, 1431, 23-34.
38. Jevtovic-Todorovic, V., Hartman, R. E., Izumi, Y., Benshoff, N. D.,
Dikranian, K., Zorumski, C. F., & Wozniak, D. F. (2003). Early exposure to
common anesthetic agents causes widespread neurodegeneration in the
developing rat brain and persistent learning deficits. The Journal of
neuroscience, 23(3), 876-882.
39. Culley, D. J., Baxter, M. G., Yukhananov, R., & Crosby, G. (2004). Long-
term impairment of acquisition of a spatial memory task following
isoflurane-nitrous oxide anesthesia in rats. Anesthesiology, 100(2), 309-
314.
40. Lahti, K. M., Ferris, C. F., Li, F., Sotak, C. H., & King, J. A. (1998).
Imaging brain activity in conscious animals using functional MRI. Journal
of neuroscience methods, 82(1), 75-83.
41. King, J. A., Garelick, T. S., Brevard, M. E., Chen, W., Messenger, T. L.,
Duong, T. Q., & Ferris, C. F. (2005). Procedure for minimizing stress for
fMRI studies in conscious rats. Journal of neuroscience methods, 148(2),
154 -160.
42. Martin, C., Jones, M., Martindale, J., & Mayhew, J. (2006). Haemodynamic
and neural responses to hypercapnia in the awake rat. European Journal of
Neuroscience, 24(9), 2601-2610.
43. Sachdev, R. N., Champney, G. C., Lee, H., Price, R. R., Pickens, D. R.,
Morgan, V. L., & Ebner, F. F. (2003). Experimental model for functional
magnetic resonance imaging of somatic sensory cortex in the unanesthetized
rat. Neuroimage, 19(3), 742-750.
44. Stefanacci, L., Reber, P., Costanza, J., Wong, E., Buxton, R., Zola, S., &
Albright, T. (1998). fMRI of monkey visual cortex. Neuron, 20(6), 1051-
1057.
45. Pfeuffer, J., Juchem, C., Merkle, H., Nauerth, A., & Logothetis, N. K.
(2004). High-field localized 1H NMR spectroscopy in the anesthetized and
in the awake monkey. Magnetic resonance imaging, 22(10), 1361-1372.
46. Logothetis, N. K., Guggenberger, H., Peled, S., & Pauls, J. (1999).
Functional imaging of the monkey brain. Nature neuroscience, 2(6), 555-562.
47. Desai, M., Kahn, I., Knoblich, U., Bernstein, J., Atallah, H., Yang, A., &
Boyden, E. S. (2011). Mapping brain networks in awake mice using combined
optical neural control and fMRI. Journal of neurophysiology, 105(3), 1393
-1405.
48. Wyrwicz, A. M., Chen, N. K., Li, L., Weiss, C., & Disterhoft, J. F.
(2000). fMRI of visual system activation in the conscious rabbit. Magnetic
resonance in medicine, 44(3), 474-478.
49. Xu, S., Ji, Y., Chen, X., Yang, Y., Gullapalli, R. P., & Masri, R.
(2012). In vivo high‐resolution localized 1H MR spectroscopy in the awake
rat brain at 7 T. Magnetic Resonance in Medicine.
50. Linfante, I., Llinas, R. H., Caplan, L. R., & Warach, S. (1999). MRI
features of intracerebral hemorrhage within 2 hours from symptom onset.
Stroke, 30(11), 2263-2267.
51. Carhuapoma, J. R., Wang, P. Y., Beauchamp, N. J., Keyl, P. M., Hanley, D.
F., & Barker, P. B. (2000). Diffusion-weighted MRI and proton MR
spectroscopic imaging in the study of secondary neuronal injury after
intracerebral hemorrhage. Stroke, 31(3), 726-732.
52. Harris, J. L., Yeh, H. W., Choi, I. Y., Lee, P., Berman, N. E., Swerdlow,
R. H., & Brooks, W. M. (2012). Altered neurochemical profile after
traumatic brain injury: 1H-MRS biomarkers of pathological mechanisms.
Journal of Cerebral Blood Flow & Metabolism, 32(12), 2122-2134.
53. Provencher, S. W. (1993). Estimation of metabolite concentrations from
localized in vivo proton NMR spectra. Magnetic Resonance in Medicine,
30(6), 672-679.
54. Provencher, S. W. (2001). Automatic quantitation of localized in vivo1H
spectra with LCModel. NMR in Biomedicine, 14(4), 260-264.
55. Pfeuffer, J., Tkáč, I., Provencher, S. W., & Gruetter, R. (1999). Toward
an in Vivo Neurochemical Profile: Quantification of 18 Metabolites in
Short-Echo-Time 1H NMR Spectra of the Rat Brain. Journal of Magnetic
Resonance, 141(1), 104-120.
56. Mlynárik, V., Cudalbu, C., Xin, L., & Gruetter, R. (2008). 1H NMR
spectroscopy of rat brain in vivo at 14.1 Tesla: Improvements in
quantification of the neurochemical profile. Journal of Magnetic Resonance,
194(2), 163-168.
57. Govindaraju, V., Young, K., & Maudsley, A. A. (2000). Proton NMR chemical
shifts and coupling constants for brain metabolites. NMR in Biomedicine,
13(3), 129-153.
58. Kantarci, K., Reynolds, G., Petersen, R. C., Boeve, B. F., Knopman, D. S.,
Edland, S. D., & Jack, C. R. (2003). Proton MR spectroscopy in mild
cognitive impairment and Alzheimer disease: comparison of 1.5 and 3 T.
American journal of neuroradiology, 24(5), 843-849.
59. Cohen, L. G., Roth, B. J., Nilsson, J., Dang, N., Panizza, M., Bandinelli,
S., & Hallett, M. (1990). Effects of coil design on delivery of focal
magnetic stimulation. Technical considerations. Electroencephalography and
clinical neurophysiology, 75(4), 350-357.
60. Hashemi, R. H., Bradley, W. G., & Lisanti, C. J. (2012). MRI: the basics.
Lippincott Williams & Wilkins.

電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top