跳到主要內容

臺灣博碩士論文加值系統

(44.222.104.206) 您好!臺灣時間:2024/05/29 23:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:鍾尹之
研究生(外文):CHUNG, YIN-TZU
論文名稱:以瞬間蒸發法製備奈米微粒之研究
論文名稱(外文):The Research on the Fabrication of Nanoparticles by Flash Vaporization Method
指導教授:王昌仁
指導教授(外文):WANG, CHANG-REN
口試委員:袁輔德張晃暐王昌仁
口試委員(外文):YUAN, FU-TECHANG, HUANG-WEIWANG, CHANG-REN
口試日期:2017-07-25
學位類別:碩士
校院名稱:東海大學
系所名稱:應用物理學系
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:83
中文關鍵詞:瞬間蒸發法
外文關鍵詞:Flash Vaporization Method
相關次數:
  • 被引用被引用:3
  • 點閱點閱:143
  • 評分評分:
  • 下載下載:19
  • 收藏至我的研究室書目清單書目收藏:0
奈米金屬 (合金)的氧化一直是製作奈米金屬 (合金)微粒的挑戰。本論文成功地以液體中的瞬蒸法來製作未被氧化的奈米金屬 (合金)微粒。
本研究中分別以放電加工與脈衝式雷射的技術於液體中製作出未氧化稀土元素 (Tb與Dy)奈米微粒與高熵合金TiVNbMoTa奈米微粒。
稀土元素 (Tb與Dy)奈米微粒使用放電加工法及液相雷射剝蝕法兩種方法來製備。Tb與Dy在瞬時的高功率能量下瞬間被蒸發且迅速地於液體 (辛烷)中冷卻形成奈米級的微粒並於棉膠的包覆下乾燥。利用TEM分析晶格結構及EDS的成分檢測可說明我們製作的稀土奈米微粒樣品均無明顯氧化的跡象。放電加工法製備出的微粒粒徑分佈平均在10nm附近,而液相雷射剝蝕法製備出的樣品平均粒徑略小,約為7 nm附近,且粒徑的分佈較放電加工製備的樣品均勻。
高熵合金TiVNbMoTa微粒使用電弧熔融法製備出的純相BCC結構的五元合金。再以液相雷射剝蝕法分別使用三個不同雷射功率參數於去離子水中製備出高熵合金的奈米微粒。微粒的平均粒徑約為14~16 nm。從EDS的成分分析可發現靶材的成分雖然多元但瞬蒸的方法仍能有效維持奈米微粒的成分與靶材相近。從TEM的觀察分析可發現以此法製作的高熵奈米微粒多屬非晶態的微粒,而隨製程的雷射功率提高而有部分逐漸晶化的趨勢。其原因可能源自液相中的瞬蒸-凝固過程有極高的冷卻速率,使得樣品形成非晶相。這些非晶相又有機會在製程中因雷射照射之故,被熱處理而晶化。
綜合而言兩種在液態中利用瞬蒸法製作出的樣品尺寸均很微小 (小於20 nm),其原因可能源自在液相中的製程均有很高的冷卻速率,使得樣品在成核形成固體後不易再進行後續的成長過程所致。
The oxidation had always been a challenge in producing metal and alloy nanoparticles. In this research, unoxidized rare earth nanoparticles (Tb and Dy) and high entropy alloy (TiVNbMoTa) nanoparticles had been successfully prepared by flash vaporization method in liquid.
Both Tb and Dy nanoparticles were fabricated by electrical discharge machining (EDM) and laser ablation in liquid (LAL). In process, the samples were rapidly evaporated by momentary high energy, and then rapidly cooled in working liquid (octane) to be the nanoparticles. The suspended nanoparticles would be coated with collodion during dry process. Both the lattice structure (by TEM) and the component analysis (by EDS) showed that no significant oxidation can be found in these rare earth nanoparticles. The particle size of EDM process was about 10 nm; and LAL process was about 7 nm, which was smaller than EDM process and the size distribution was more uniform.
High entropy alloy (TiVNbMoTa) was produced by arc melting method, and that was single BCC phase. The high entropy alloy nanoparticles were fabricated by LAL process, which was using three different laser power parameters in deionized water. The average particle size was about 14-16 nm. The EDS result showed that the constituent of nanoparticles were similar to the bulk, because the flash vaporization method was an effective way to maintain the component. From the TEM observation can be found that the high entropy alloy nanoparticles were mostly amorphous in this method, and crystal structure changed from amorphous to crystal by modifying laser power parameter. The reason might be that the flash vaporization method in liquid has a high cooling rate, so that the samples composed of amorphous. These amorphous had the opportunity been changed to crystal by laser irradiation heat treatment.
In general, the samples fabricated by two series flash vaporization method in liquid were very tiny (less than 20 nm). The reason might be due to the liquid process had a high cooling rate, so that the samples were difficult to growth after solidification into the nucleus.
誌謝 i
中文摘要 iii
英文摘要 v
目錄 vii
表目錄 ix
圖目錄 x
第一章 導論 1
1-1 奈米材料與塊材間的差異性[1] 1
1-2 常見之奈米微粒製備方法 4
1-3 動機與目的 12
第二章 文獻回顧與實驗原理 14
2-1 實驗原理及背景 14
2-1-1 成核理論[10] 14
2-1-2 稀土元素介紹 21
2-1-3 高熵合金介紹[11] 22
2-2 文獻回顧 23
2-2-1 放電加工法文獻 23
2-2-2 液相雷射剝蝕法文獻 25
2-2-3 稀土文獻 28
2-2-4 高熵合金文獻 29
第三章 樣品製備及儀器介紹 31
3-1 塊材製備 32
3-2 放電加工法 (EDM) 34
3-3 液相雷射剝蝕法 (LAL) 37
3-4 X光繞射儀 (XRD)[19] 39
3-5 穿透式電子顯微鏡 (TEM)[20][21] 41
3-6 X光能量分佈分析儀 (EDS)[20] 44
第四章 結果與討論 46
4-1 稀土元素奈米微粒 46
4-1-1 放電加工法製備稀土元素奈米微粒 47
4-1-2 液相雷射剝蝕法製備稀土元素奈米微粒 58
4-2 高熵合金奈米微粒 67
4-2-1 塊材的製備 68
4-2-2 奈米微粒的製備 70
第五章 結論 79
參考文獻 81
納米材料技術,周瑞發、韓雅芳、陳祥寶,pp. 1~7,(2003)

納米材料製備技術,王世敏、許祖勳、傅晶,pp. 9~10、pp. 22~24、pp. 57~ 59、pp. 115~119,(2001)

Ce3Pt4奈米微粒的製作與磁特性研究 ,詹育霖,p. 38,(2009)

先進電火花加工技術,趙萬生,pp. 1~ 20,(2003)

以放電加工法製作Bi2Te3-xSex奈米熱電材料及其物性之研究,邱明宏,p. 20,(2013)

以火花放電法製作奈米合金之研究,李健群,pp. 79~ 80,(2014)

五元合金的超導研究,郭岳霖,p. 59、p. 75(2009)

Coercivity Enhancement by the Grain Boundary Diffusion Process to Nd–Fe–B Sintered Magnets, K. Hirota, H. Nakamura, T. Minowa, and M. Honshima, IEEE TRANSACTIONS ON MAGNETICS, VOL. 42, NO. 10, (2006)

Increase of Coercivity and Composition Distribution in Fluoride-Diffused NdFeB Sintered Magnets Treated by Fluoride Solutions, Matahiro Komuro, Yuichi Satsu, and Hiroyuki Suzuki, IEEE TRANSACTIONS ON MAGNETICS, VOL. 46, NO. 11, (2010)

Materials Science and Engineering, 8/e,Callister. Rethwisch,林貞君、林旻澐 譯,pp. 303~311,(2014)

奈米高熵合金的研發成果,國科會專欄,葉均蔚,(2007)

Shape-controlled synthesis of Cu-based nanofluid using submerged arc nanoparticle synthesis system (SANSS), Chih-Hung Loa, Tsing-Tshih Tsunga, Liang-Chia Chen, Journal of Crystal Growth 277 636-642, (2005)

Characterization and Optimization of Arc Spray Process Parameters for Synthesis of TiO2 Nanoparticles, Liang-Chia Chen, Tsing-Tshih Tsung, Ho Chang and Jen-Yan Sun, Materials Transactions, Vol. 45, No. 10 pp. 3011 to 3017, (2004)

Preparation of nano-size particles of silver with femtosecond laser ablation in water, Takeshi Tsuji, Toshihiko Kakita, Masaharu Tsuji, Applied Surface Science 206 314-320 , (2003)

Synthesis of colloidal nanoparticles during femtosecond laser ablation of gold in water, A. V. Kabashin, M. Meunier, J. Appl. Phys., Vol. 94, No. 12, 7941, (2003)

Gram Scale Synthesis of Pure Ceramic Nanoparticles by Laser Ablation in Liquid, Csaba László Sajti, Ramin Sattari, Boris N. Chichkov, and Stephan Barcikowski, J. Phys. Chem. C, Vol. 114, No. 6, 2421-2427, (2010)

Magnetic properties of Dy nanoparticles and Al2O3-coated Dy nanocapsules, X. G. Liu, S. W. Or, B. Li, Z. Q. Ou, L. Zhang, Q. Zhang, D. Y. Geng, F. Yang, D. Li, E. Brűck, Z. D. Zhang, J Nanopart Res 13:1163–1174, (2011)

Discovery of a Superconducting High-Entropy Alloy, P. Koželj, S. Vrtnik, A. Jelen, S. Jazbec, Z. Jagličić, S. Maiti, M. Feuerbacher, W. Steurer, and J. Dolinšek, PRL 113, 107001, (2014)

X光繞射原理與材料結構分析,許樹恩,pp. 121~133、pp. 163~165 (1993)

近代穿透式電子顯微鏡實務,鮑忠興,劉思謙,pp. 2~45、 pp. 234~258,(2008)

材料電子顯微鏡學,陳力俊,pp. 21~43、p. 293,(2004)

Preparation and properties of dysprosium nanocapsules coated with boron, carbon, and dysprosium oxide, P.Z. Si, E. Brück, Z.D. Zhang, I. Škorvánek, J. Kováč, M. Zhang, Materials Research Bulletin 39 1005–1012, (2004)

The International Centre for Diffraction® (ICDD®) ; F.H.Spedding,A.H.Daane & K.W.Herrmann, Acta Crystallogr., 9, 559, (1956)

The International Centre for Diffraction® (ICDD®) ; Spedding, Daane, Herrmann., Acta Crystallogr., 9, 559, (1956)

The International Centre for Diffraction® (ICDD®) ; Mayer, I., Polytechnic Institute of Brooklyn, Brooklyn, New York, USA., ICDD Grant-in-Aid, (1961)

The International Centre for Diffraction® (ICDD®) ; Natl. Bur. Stand. (U.S.), Circ. 539, 9, 30, (1959)


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top