|
[1] D. eddelbuettel. cran task view: high-performance and parallel computing with r, 2016. https://cran.r-project.org/web/views/ HighPerformanceComputing.html. [2] Eric Nguyen. Data Mining Applications with R. Elsevier, 2014. [3] M. Liang, C. Trejo, L. Muthu, L. B. Ngo, A. Luckow, and A. W. Apon. Evaluating r-based big data analytic frameworks. In 2015 IEEE International Conference on Cluster Computing, pages 508–509, Sept 2015. [4] Manuel J. A. Eugster, Jochen Knaus, Christine Porzelius, Markus Schmidberger, and Esmeralda Vicedo. Hands-on tutorial for parallel computing with r. Computational Statistics, 26(2):219–239, Jun 2011. [5] Karl Ropkins and David C. Carslaw. openair - data analysis tools for the air quality community. R Journal, 4(1):20 – 29, 2012. [6] Introduction to visualising spatial data in r, 2017. https://cran. r-project.org/doc/contrib/intro-spatial-rl.pdf. [7] Raissa Uskenbayeva, abu Kuandykov, Young Im Cho, Tolganay Temirbolatova, Saule amanzholova, and Dinara Kozhamzharova. Integrating of data using the hadoop and r. Procedia Computer Science, 56:145 – 149, 2015. The 10th International Conference on Future Networks and Communications (FNC 2015) / The 12th International Conference on Mobile Systems and Pervasive Computing (MobiSPC 2015) Affiliated Workshops. [8] Sparkr (r on spark), 2017. https://spark.apache.org/docs/1.6.0/ sparkr.html. [9] Michael Armbrust, Reynold S. Xin, Cheng Lian, Yin Huai, Davies Liu, Joseph K. Bradley, Xiangrui Meng, Tomer Kaftan, Michael J. Franklin, Ali Ghodsi, and Matei Zaharia. Spark sql: Relational data processing in spark. In Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data, SIGMOD ’15, pages 1383–1394, New York, NY, USA, 2015. ACM. [10] Gita Puspita Siknun and Imas Sukaesih Sitanggang. Web-based classification application for forest fire data using the shiny framework and the c5.0 algorithm. Procedia Environmental Sciences, 33:332 – 339, 2016. The 2nd International Symposium on LAPAN-IPB Satellite (LISAT) for Food Security and Environmental Monitoring. [11] Rachma Hermawati and Imas Sukaesih Sitanggang. Web-based clustering application using shiny framework and dbscan algorithm for hotspots data in peatland in sumatra. Procedia Environmental Sciences, 33:317 – 323, 2016. The 2nd International Symposium on LAPAN-IPB Satellite (LISAT) for Food Security and Environmental Monitoring. [12] Matthew Wagner and Kenny Darrell. Exploring discrete database networks of tricare health data using r and shiny. pages 635–658, 01 2014. [13] Ludwig Ries. Areas of influence for idw-interpolation with isotropic environmental data. CATENA, 20(1):199 – 205, 1993. [14] Spatial interpolation via inverse path distance weighting, 2017. https:// cran.r-project.org/web/packages/ipdw/vignettes/ipdw2.html. [15] Cristiane Silva da Silva, Juliana Marzari Rossato, Jocelita Aparecida Vaz Rocha, and Vera Maria Ferrão Vargas. Characterization of an area of reference for inhalable particulate matter (pm2.5) associated with genetic biomonitoring in children. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 778:44 – 55, 2015. [16] Takashi Yorifuji, Saori Kashima, Midory Higa Diez, Yoko Kado, Satoshi Sanada, and Hiroyuki Doi. Prenatal exposure to outdoor air pollution and child behavioral problems at school age in japan. Environment International, 99:192 – 198, 2017. [17] Ludwig Ries. Areas of influence for idw-interpolation with isotropic environmental data. CATENA, 20(1):199 – 205, 1993. [18] Ludwig Ries. Areas of influence for idw-interpolation with isotropic environmental data. CATENA, 20(1):199 – 205, 1993. [19] Bilgehan Ilker Harman, Hasan Koseoglu, and Cemal Ozer Yigit. Performance evaluation of idw, kriging and multiquadric interpolation methods in producing noise mapping: A case study at the city of isparta, turkey. Applied Acoustics, 112:147 – 157, 2016. [20] Carlos Zafra, Yenifer Ángel, and Eliana Torres. Arima analysis of the effect of land surface coverage on pm10 concentrations in a high-altitude megacity. Atmospheric Pollution Research, 8(4):660 – 668, 2017. [21] Ping Wang, Hong Zhang, Zuodong Qin, and Guisheng Zhang. A novel hybridgarch model based on arima and svm for pm2.5 concentrations forecasting. Atmospheric Pollution Research, 8(5):850 – 860, 2017. [22] Chaitra H. Nagaraja. Introduction to r. Handbook of Statistics, 32:1 – 48, 2014. Computational Statistics with R. [23] A. Ian McLeod, Hao Yu, and Esam Mahdi. Time series analysis with r. Handbook of Statistics, 30:661 – 712, 2012. Time Series Analysis: Methods and Applications. [24] Javier López de Lacalle. The r-computing language: Potential for asian economists. Journal of Asian Economics, 17(6):1066 – 1081, 2006. [25] Spatial interpolation of geographical data in r, 2010. http://www.geo.ut. ee/aasa/LOOM02331/R_idw_interpolation.html. References 52 [26] Cran task view: High-performance and parallel computing with r, 2017. https://cran.r-project.org/web/views/HighPerformanceComputing. html. [27] Martin Sedlmayr, Tobias Würfl, Christian Maier, Lothar Häberle, Peter Fasching, Hans-Ulrich Prokosch, and Jan Christoph. Optimizing r with sparkr on a commodity cluster for biomedical research. Computer Methods and Programs in Biomedicine, 137:321 – 328, 2016. [28] Shivaram Venkataraman, Zongheng Yang, Davies Liu, Eric Liang, Hossein Falaki, Xiangrui Meng, Reynold Xin, Ali Ghodsi, Michael Franklin, Ion Stoica, and Matei Zaharia. Sparkr: Scaling r programs with spark. In Proceedings of the 2016 International Conference on Management of Data, SIGMOD ’16, pages 1099–1104, New York, NY, USA, 2016. ACM. [29] S.J. LIN and C.T. HSU. Encryption and decryption methods applied on operating system, June 14 2016. US Patent 9,367,690.
|