跳到主要內容

臺灣博碩士論文加值系統

(44.200.140.218) 您好!臺灣時間:2024/07/19 01:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:鐘鈺琮
研究生(外文):CHUNG,YU-TSUNG
論文名稱:利用吸附-脫附-生物降解組合之程序去除水中布洛芬
論文名稱(外文):Removal of Ibuprofen in Water by an Adsorption-Desorption-Biodegradation Process
指導教授:宋孟浩
指導教授(外文):SUNG,MENG-HAU
口試委員:范煥榮郭獻文
口試委員(外文):FAN,HUAN-JUNGKUO,HSION-WEN
口試日期:2017-01-05
學位類別:碩士
校院名稱:東海大學
系所名稱:環境科學與工程學系
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:81
中文關鍵詞:新興污染物布洛芬活性碳臭氧生物降解
外文關鍵詞:emerging contaminantsibuprofenactivated carbonozonebiodegradation
相關次數:
  • 被引用被引用:1
  • 點閱點閱:213
  • 評分評分:
  • 下載下載:23
  • 收藏至我的研究室書目清單書目收藏:0
本研究的目的是測試吸附(Adsorption)-脫附(Desorption)-生物降解(Biodegradation)(ADB)流程去除水中微量有機物的可行性評估,目標污染物設定為布洛芬,該污染物是污水中常見的新興污染物。在吸附實驗中,以活性碳(F-400)進行吸附水中布洛芬。接著以微米氣泡機產生之臭氧氣泡水溶液流經活性碳,以氧化法降解脫附活性碳上之布洛芬。最後將脫附後的溶液以生物降解系統進一步去除殘餘的有機物。經實驗證實此套ADB概念系統能有效處理含布洛芬水溶液,並能有效減少臭氧之使用量,與提升後續生物降解的處理效率。在實驗中,可得知pH 5、7與9之吸附等溫線,當中以pH 5之吸附效率最快,而pH 7時則會產生最大吸附量。實驗也針對上列相同pH下之脫附效率進行探討,由該結果可得知在pH 7的條件下,能產生85 %以上之脫附效率。此外,經過臭氧處理後,其生物降解效率會顯著增強。其效率可達到2.8 mg / L /day的TOC去除效率,並且能達到72 %的礦化效率。由本實驗的結果看來,此系統是相當有前景的,且此ADB系統流程相當簡單,推估此系統未來能運用於污水處理廠之水回收處理單元。
The objective of this study is to test the feasibility of the adsorption - desorption - biodegradation (ADB) process for the removal of trace organics in water, exemplified by ibuprofen, a well-known emerging contaminants frequently found in wastewater effluents. In adsorption, activated carbon (F-400) is employed to adsorb ibuprofen. Then, ozonated water produced by the microbubble reactor was passed through the activated carbon to remove ibuprofen by oxidative desorption. Finally, the desorbed solution is fed to a bioreactor to further remove residual organic byproducts. The rationale behind the ADB concept is to effectively treat ibuprofen, to efficiently minimize ozone usage, and to improve the efficiency of subsequent biodegradation. In experiments, adsorption isotherms at pH 5, 7, and 9 have been obtained. The adsorption efficiency at pH 5 is the fastest, and the maximum adsorption occurs at pH 7. Also, desorption efficiencies at these respective pHs have also been tested. It was found that at pH 7, a desorption efficiency of over 85 % can be achieved. In addition, the rate of biodegradation is significantly enhanced as a result of ozonation treatment. A TOC removal rate of about 2.8 mg/L/day can be achieved and a mineralization of 72 % was attained. From our results, it seems promising that this easy ADB process can be used in future water reclamation processes.
摘 要 I
Abstract II
目錄 III
表目錄 V
圖目錄 VI
第一章 前言 1
1-1研究起源 1
1-2研究目的 2
第二章 文獻回顧 3
2-1 新興污染物 3
2-2 環境中之PPCPs 4
2-3 Ibuprofen特性與其環境宿命 7
2-4 活性碳特性與吸附污染物之運用 9
2-5 臭氧(Ozone)之基本特性與反應 14
2-6 微米氣泡之特性與應用 16
第三章 材料與方法 17
3-1 實驗架構與目標 17
3-2 藥品布洛芬配製與製備 20
3-4 靛藍比色法 22
3-5 碘化鉀比色法 23
3-6 散氣盤與微米氣泡之水中臭氧濃度比較 25
3-7 pH 緩衝溶液 26
3-8 批次吸附Ibuprofen實驗 28
3-9 批次降解脫附實驗 29
3-10 吸附等溫線實驗 32
3-11 管柱吸附Ibuprofen實驗 34
3-12 管柱降解脫附實驗 36
3-13 生物降解水中有機污染物實驗 38
3-14 高效能液相層析儀分析方法 40
3-15 總有機碳分析儀分析方法 41
3-16 串連式液相層析質譜儀分析方法 42
第四章 結果與討論 43
4-1 活性碳特性分析結果 43
4-2 散氣盤法與微米氣法之水中臭氧濃度比較 46
4-3 批次吸附Ibuprofen實驗 48
4-4 批次降解脫附實驗 50
4-5 吸附等溫線實驗 56
4-6 管柱吸附Ibuprofen實驗 60
4-7 管柱降解脫附實驗 65
4-8 生物降解水中有機污染物實驗 68
4-9 ADB系統去除效率評估 72
4-10 Ibuprofen副產物LC/MS分析 74
第五章 結論與建議 77
5-1 結論 77
5-2 建議 78

1.T. H. Yu, A. Y. Lin, S. C. Panchangam, P. A. Hong, P. Y. Yang, (2011). "Biodegradation and bio-sorption of
antibiotics and non-steroidal anti-inflammatory drugs using immobilized cell process." Chemosphere 84(9):
1216-1222.
2.M. J. Cai, and Y. P. Lin, (2016). "Effects of effluent organic matter (EfOM) on the removal of emerging
contaminants by ozonation." Chemosphere 151: 332-338.
3.X. Yang, Riley C. Flowers, Howard S. Weinberg, Philip C. Singer, (2011). "Occurrence and removal of
pharmaceuticals and personal care products (PPCPs) in an advanced wastewater reclamation plant." Water
Research 45(16): 5218-5228.
4.J. B. Ellis, (2006). "Pharmaceutical and personal care products (PPCPs) in urban receiving waters."
Environmental Pollution 144(1): 184-189.
5.W. Chen, J. Xu, S. Lu, W. Jiao, L. Wu, A. C. Chen, (2013). "Fates and transport of PPCPs in soil receiving
reclaimed water irrigation." Chemosphere 93(10): 2621-2630.
6.P. J. Ferguson, M. J. Bernot, J. C. Doll, T. E. Lauer, (2013). "Detection of pharmaceuticals and personal care
products (PPCPs) in near-shore habitats of southern Lake Michigan." Science of The Total Environment 458–460:
187-196.
7.S. Álvarez-Torrellas, A. Rodríguez, G. Ovejero, J. García, (2016). "Comparative adsorption performance of
ibuprofen and tetracycline from aqueous solution by carbonaceous materials." Chemical Engineering Journal 283:
936-947.
8.D. Zhang, R. M. Gersberg, W. J. Ng, S. K. Tan, (2014). "Removal of pharmaceuticals and personal care products
in aquatic plant-based systems: A review." Environmental Pollution 184: 620-639.
9.N. Collado, G. Buttiglieri, L. Ferrando-Climent, S. Rodriguez-Mozaz, D. Barceló, (2012). "Removal of ibuprofen
and its transformation products: Experimental and simulation studies." Science of The Total Environment 433:
296-301.
10.Y. Rao, D. Xue, H. Pan, J. Feng, Y. Li, (2016). "Degradation of ibuprofen by a synergistic UV/Fe(III)/Oxone
process." Chemical Engineering Journal 283: 65-75.

11.H. H. Salih, C. L. Patterson, G. A. Sorial, R. Sinha, R. Krishnan, (2011). "The fate and transport of the
SiO2 nanoparticles in a granular activated carbon bed and their impact on the removal of VOCs." Journal of
Hazardous Materials 193: 95-101.
12.H. Ledon, (1991). "Why Not ozone." Studies in Surface Science and Catalysis 66: 603-611.
13.M. Quero-Pastor, A. Valenzuela, J. M. Quiroga, A. Acevedo, (2014). "Degradation of drugs in water with
advanced oxidation processes and ozone." J Environ Manage 137: 197-203.
14.H. E. Prengle, and C.E. Mauk, (1978). "New Technology:Ozone/UV Chemical Oxidation Wastewater Process for
Metal Complexes, Organic Sprcies and Disinfection."AIChE Sym 74: 228-236
15.H. Ikeura, F. Kobayashi, M. Tamaki, (2011). "Removal of residual pesticides in vegetables using ozone
microbubbles." Journal of Hazardous Materials 186(1): 956-959.
16.R. Parmar, and S. K. Majumder, (2013). "Microbubble generation and microbubble-aided transport process
intensification—A state-of-the-art report." Chemical Engineering and Processing: Process Intensification
64:79-97.
17.D. B. Mawhinney, and J. T. Yates Jr, (2001). "FTIR study of the oxidation of amorphous carbon by ozone at 300
K — Direct COOH formation." Carbon 39(8): 1167-1173.
18.C. Laginhas, J. M. V. Nabais, M. M. Titirici, (2016). "Activated carbons with high nitrogen content by a
combination of hydrothermal carbonization with activation." Microporous and Mesoporous Materials 226: 125-
132.
19.X. Li, Y. Wang, S. Yuan, Z. Li, B. Wang, J. Huang, S. Deng, G. Yu, (2014). "Degradation of the anti-
inflammatory drug ibuprofen by electro-peroxone process." Water Research 63: 81-93.
20.Y. Xiang, J. Fang, C. Shang, (2016). "Kinetics and pathways of ibuprofen degradation by the UV/chlorine
advanced oxidation process." Water Research 90: 301-308.
21.林正芳 (2008). "特定污染源廢(污)水中新興污染物管制研究專案計畫. " 行政院環保署 計畫編號,EPA-96-G106-02-237.
22.林勳佑 (2005). "資源再利用粉狀活性碳吸附氣相氯化汞之研究." 國立中山大學 博士論文.
23.何易威 (2013). "正丙醇/正丁醇/正戊醇三成份水溶液在活性碳固定床之吸附動力學研究." 長庚大學 碩士論文.

24.楊宗憲 (2012). "利用臭氧微米氣泡去除水中三氯乙烯之研究." 東海大學 碩士論文.
25.蔡穎彰 (2013). "利用微米氣泡去除水中布洛芬之研究." 東海大學 碩士論文.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊