跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.86) 您好!臺灣時間:2024/12/06 15:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:甘少儒
研究生(外文):Shou-Ju Kan
論文名稱:含咪唑基三角形配體之過渡金屬配位聚合物之自組裝、結構與螢光性質探討
論文名稱(外文):Self-assembly, Structures and Luminescent Properties of Imidazolyl-containing Tripodal Coordination Polymers
指導教授:呂光烈曾添文
指導教授(外文):Kuang-Lieh LuTien-Wen Tseng
口試委員:楊重光陳生明劉彥祥
口試日期:20170609
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:化學工程與生物科技系化學工程碩士班(碩士在職專班)
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
中文關鍵詞:螢光金屬有機框架自組裝
外文關鍵詞:LuminescenceMetal–Organic FrameworkSelf-Assembly
相關次數:
  • 被引用被引用:1
  • 點閱點閱:154
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究採用有機配子為1,3,5-tris(1-imidazolyl)-benzene (tib) 分別與含羧酸根有機配子及含磺酸根有機配子與金屬鹽類反應,生成有機金屬配位聚合物 (1-5),並以單晶X-ray繞射解析其結構,並研究結構及螢光性質。
本論文分為兩部分,如下所示:
化合物1-2為有機配子1,3,5-tris(1-imidazolyl)-benzene (tib)與羧酸根有機配子2,5-dihydroxyterephthalic acid (H2dhtp)及1,2,4,5-benzenetetracarboxylic acid (H4betc)與鎘及鎳金屬鹽類反應而製備所得,本部分乃探討推電子基團及拉電子基團後螢光的效率降低。以tib配子與H2dhtp配子及Cd(NO3)2·4H2O,以水浴法自組裝方式合成,反應後得到化合物{[Cd(tib)(dhtp)]·2H2O·DMF}n (1)。將tib配子與H4betc配子及NiSO4·6H2O 以180 °C水熱反應得到化合物{[Ni(tib)0.5(betc)]·H2O}n (2)。
化合物1為二次互穿的二維結構,透過分子內氫鍵穩定結構,為高強度放出綠光的化合物,化合物2為二次互穿三維結構,其有機配子的排列呈現對稱,化合物2可透過π-π stacking作用力以及與客分子水的氫鍵作用力使結構穩定。
化合物3-5為有機配子1,3,5-tris(1-imidazolyl)-benzene (tib)與帶有磺酸根有機配子Monosodium 2-Sulfoterephthalate (NaH2stp)、4-sulfobenzoic acid potassium salt (KHsb)及1,5-naphthalenedisulfonic acid disodium salt (1,5-nds)與鋅金屬鹽類反應而製備所得,本部分乃探討當有機配子由羧酸根改變成磺酸根時對化合物維度的影響及螢光性質的探討。將tib配子與stp配子及Zn(NO3)2·6H2O以120 °C水熱反應或微波加熱反應得到化合物{[Zn5(tib)5(Hstp)5(H2O)6]·EtOH·12H2O}n (3);將tib配子與KHsba配子及Zn(NO3)2·6H2O以水浴法自組裝方式合成,反應後得到化合物{[Zn(tib)(sb)]·H2O·DMF}n (4);將tib配子與1,5-nds配子以160 °C水熱反應得到化合物{[Zn(tib)(H2O)]·(1,5-nds)}n (5)。
化合物3為多層波浪狀二維結構,其螢光放射強度介於兩個有機配子之間,加熱乾燥後化合物3有吸水結構呈現可逆狀態,化合物4為二維結構,透過客分子水與磺酸根形成氫鍵穩定結構,為高強度放出藍光的化合物,化合物5為二維結構,其有機配子1,5-nds2在結構中扮演客分子的角色,與化合物形成π-π stacking作用力及氫鍵作用力維持結構穩定。
Reaction of imidazole-based ligand, namely 1,3,5-tris(1-imidazolyl)-benzene (tib) with different substitution carboxylic acids and sulfonic salts afforded 5 compounds. The crystal structures of the compounds (15) were characterized by IR, PXRD, TGA, EA and the photoluminescence properties of the compounds were also investigated.
This thesis is divided into two parts, as followed:
(i) Photoluminescence investigation. Effect of different electron withdrawing and donating groups towards emission.
Compound {[Cd(tib)(dhtp)]·2H2O·2DMF}n (1) was synthesized by reacting cadmium nitrate tetrahydrate (Cd(NO3)2·4H2O), tib and 2,5-dihydroxyterephthalic acid (H2dhtp) under mild reaction conditions at 50 °C. Compound 1 is a two-fold interpenetrated 2D framework, with high luminescence green light. These 2D networks were packed in an AA manner, with intramolecular hydrogen bonding interactions in dhtp2ligand, yielding a 3D structure.
Compound {[Ni(tib)0.5(betc)]·H2O}n (2) was synthesized by reacting nickel sulfate hexahydrate (NiSO4·6H2O), tib and 1,2,4,5-benzenetetracarboxylic acid (H4betc) under hydrothermal conditions. Compound 2 is a two-fold interpenetrated 3D framework. These sheets are regularly packed in an AA arrangement with strong ππ interaction and hydrogen bonding interactions.
(ii) The dimensional investigation. Effect of altering carboxylate to sulfonic salts.
Compound {[Zn5(tib)5(Hstp)5(H2O)6]·EtOH·12H2O}n (3) was synthesized by reacting zinc nitrate hexahydrate (Zn(NO3)2·6H2O), tib and monosodium 2-sulfoterephthalate (NaH2stp) under hydrothermal conditions. Compound 3 consist of the super-undulated layeres, which are packed into a 3D structure via a strong hydrogen bonding interactions.
Compound {[Zn(tib)(sb)]·H2O·DMF}n (4) was synthesized by reacting zinc nitrate hexahydrate (Zn(NO3)2·6H2O), tib and 4-sulfobenzoic acid potassium salt (KHsb) under mild reaction conditions at 50 °C. Compound 4 contains a 2D networks, which are packed in an AA arrangement via hydrogen bonding interactions, resulting in a 3D framework. Interestingly, the luminescence of 4 can display a high intensity of blue light.
Compound {[Zn(tib)(H2O)]·(1,5-nds)}n (5) was synthesized by reacting zinc nitrate hexahydrate (Zn(NO3)2·6H2O), tib and 1,5-naphthalenedisulfonic acid disodium salt (1,5-nds) under hydrothermal conditions. The 1,5-nds2 ligand just only acts as the guest molecules, which are emcapsulated within the 2D frameworks of Compound 5 as guest molecules in compound 5, that can stabilized the overall structure via the strong ππ stacking and hydrogen bonding interactions.
The luminescence behavior of compounds (12) indicates an increase in emission intensities when electron donating groups are present. In the resulting multi-dimensional compounds (35), all of which had 2D structures, sulfonic salts were involved in hydrogen bonding, which maintained the stability of the compounds.
目錄 1
圖目錄 4

第一章 序論 10
1.1 前言 11
1.2 超分子化學與自組裝 11
1.3 配位聚合物 17
1.4 MOF結構設計 18
1.5 實驗條件控制 21
1.6 實驗方法 26
第二章 實驗設計 31
第三章 實驗部份 34
3.1儀器及藥品 34
3.2有機配子之合成 36
有機配子1,3,5-tris(1-imidazolyl)-benzene (tib) 的合成 36
3.3金屬-有機配位聚合物的合成 37
水浴法合成製備{[Cd(tib)(dhtp)]·2DMF·2H2O}n (1) 37
水熱法合成製備{[Ni(tib)0.5(betc)]·H2O}n (2) 38
水熱法合成製備{[Zn5(tib)5(Hstp)5(H2O)6]·EtOH·12H2O}n (3) 39
微波加熱法製備{[Zn5(tib)5(Hstp)5(H2O)6]·EtOH·12H2O}n (3) 40
水浴法合成製備{[Zn(tib)(sb)]·H2O·DMF}n (4) 41
水熱法合成製備{[Zn(tib)(H2O)]·(1,5-nds)}n (5) 42
第四章 結果與討論 43
第一節化合物結構與物性的探討 43
1. 化合物{[Cd(tib)(dhtp)]·2DMF·2H2O}n (1)的結構描述及其性質分析: 43
2. 化合物{[Ni(tib)(H2betc)]·H2O}n (2)的結構描述及其性質分析: 60
3. 化合物{[Zn5(tib)5(Hstp)5(H2O)6]·EtOH·12H2O}n (3)的結構描述及其性質分析: 71
4. 化合物{[Zn(tib)(sb)]·H2O·DMF}n (4)的結構描述及其性質分析: 90
5. 化合物{[Zn(tib)(H2O)]·(1,5-nds)}n (5)的結構描述及其性質分析: 99
第二節化合物1-5之結構分析 109
4.2.1 化合物1-2之結構與物性討論 110
4.2.2 化合物3-5之結構與物性討論 112
4.2.3 化合物2之結構與文獻的比較 114
第五章 結論 116
參考文獻 118
附錄 120
1. (a) Pedersen, C. J. J. Am. Chem. Soc. 1967, 89, 7017. (b) Pedersen, C. J. J. Am. Chem. Soc. 1967, 89, 2495.
2. Kyba, E. P.; Helgeson, R. C.; Madan, K.; Gokel, G. W.; Tarnowski, T. L.; Moore, S. S.; Cram, D. J. J. Am. Chem. Soc. 1977, 8, 2564.
3. Lehn, J. M. Nobel lecture 1987, 21, 351.
4. (a) Lehn, J. M. Angew. Chem., Int. Ed. 1988, 27, 89. (b) Burnett, B.; Choe, W. Dalton Trans. 2012, 41, 3889.
5. Cook, T. R.; Zheng, Y. R.; Stang, P. J. Chem. Rev. 2013, 113, 734.
6. Chang, J. C.; Tseng, S. H.; Liu, Y. H.; Peng, S. M.; Chiu, S. H. Nature Chemistry. 2017, 9, 128.
7. Hartlieb, K. J.; Holcroft, J. M.; Moghalem, P. Z.; Snurr, R. Q.; Stoddart, J. L. J. Am. Chem. Soc. 2016, 138, 2292.
8. Yanai, N.; Granick, S. Angew. Chem., Int. Ed. 2012, 124, 1.
9. Tian, J.; Zheng, F.; Zhao, H. J. Mater. Chem. 2011, 21, 16928
10. Cook, T. R.; Zheng, Y. R.; Stang, T. P. Chem. Rev. 2013, 113, 734.
11. (a) Neel, A. J.; Hilton, M. J.; Sigman, M. S.; Toste, F. D. Nature, 2016, 543, 637. (b) Hunter, A. C.; Sanders, J. K. J. Am. Chem. Soc. 1990, 112, 5525.
12. Newberry, R. W.; Raines, R. T. Nat. Chem. Biol. 2016, 12, 1084.
13. Tao, C.; Wang, J.; Qin, S.; Long, S.; Zhu, H.; Jiang, Z. J. Mater. Chem. 2012, 22, 24856.
14. (a) Sanchez, C.; Belleville, P.; Popalld, M.; Nicoleab, L. Chem. Soc. Rev. 2010, 10, 696. (b) Batten, S. R.; Champness, N. R.; Chen, X. M.; Javier, G. M.; Kitagawa, S.; Öhrström, L.; O’Keeffe, M.; Suh, M. P. Pure Appl. Chem. 2013, 85, 1715.
15. (a) Maurin, G.; Serre, C.; Cooper, A.; Fѐrey, G. Chem. Soc. Rev., 2017, 46, 3104. (b) Siman, P.; Trickett, C. A.; Furukawa, H.; Yaghi, O. M. Chem. Commun., 2015, 51, 17463.
16. (a) Rieth, A. J.; Tulchinsky, Y.; Dincǎ, M. J. Am. Chem. Soc. 2016, 138, 9401. (b) Hu, Z.; Lustig, W. P.; Gong, Q.; Rudd, N. D.; Li, J. J. Am. Chem. Soc. 2015, 137, 16209.
17. Chen, D. M.; Ma, X. Z.; Zhang, X. J.; Xu, N.; Cheng, P. T. Inorg. Chem., 2015, 54, 2976.
18. Barea, E.; Montoro, C.; Navarro, J. R. Chem. Soc. Rev., 2014, 43, 5419.
19. (a) Zhang, C. L.; Qin, L.; Shi, Z. Z.; Zheng, H. G. Dalton Trans. 2015, 44, 4238. (b) Brammer, L. Chem. Soc. Rev. 2004, 33, 476.
20. Friedrichs, O. D.; OKeeffe, M.; Yaghi, O. M. Acta Crystallogr., Sect. A: Found. Crystallogr. 2003, 59, 22.
21. (a) Dong, Y. B.; Jiang, Y. Y.; Li, J.; Ma, J. P.; Liu, F. L.; Tang, B.; Huang, R. Q.; Batten, S. R. J. Am. Chem. Soc. 2007, 129, 4520. (b) Peikert, K.; Hoffmann, F.; Frőba, M. CrystEngComm, 2015, 17, 353.
22. Yang, M. X.; Lin, S.; Chen, L. J.; Yang, X. H.; Guo, J. Polyhedron, 2015, 87, 329.
23. Mendes, R. F.; Almedia Paz, F. Inorg. Chem. Front., 2015, 2, 495.
24.Lu, Y. L.; Wu, J. Y.; Chan, M. C.; Huang, S. M.; Lin, C. S.; Chiu, T. W.; Liu, Y. H.; Wen,Y. S.; Ueng, C. H.; Chin, T. M.; Hung, C. H.; Lu, K. L. Inorg. Chem. 2006, 45, 2430.
25. Yang, X. Y.; Chen, L. H.; Li, Y.; Su, B. L. Chem. Soc. Rev., 2017, 46, 481.
26. Campos, N. R.; Ribeiro, M. A.; Stumpf, H. O.; Marinho, M. V. Dalton Trans., 2016, 45, 172.
27. Bloch, W. M.; Doonan, C. J.; Sumby, C. J. Nature Chemistry. 2014, 6, 906.
28. Srujana, P.; Gera, T.; Radhakrishnan, T. P. J. Mater. Chem. C. 2016, 4, 6510.
29. Klinowski, J.; Almeida, P. Dalton Trans. 2011, 40, 321.
30. Sun, Di.; Yan, Z. H.; Vladislav, A. B.; Wang, Lei.; Sun, D. F. Cryst. Growth Des. 2013, 13, 1277.
31. Jian, F.; Lu, G.; Tang, W. X.; Sun, W. Y. J. Chem. Eur. 2003, 9, 3965.
32. Li,Y. L.; Zhao Y.; Kang, Y. S.; Sun, W. Y. Cryst. Growth Des. 2016, 16, 7112.
33. Jayaramulu, K.; Narayanan, R. P.; George, S. J.; Maji, T. K. Inorg. Chem. 2012, 51, 10089.
34. Sun, Di.; Yan, Z. H.; Vladislav, A. B.; Wang, Lei.; Sun, D. F. Cryst. Growth Des. 2013, 13, 1277.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊