1.謝惠紅, 林朝清, 鄭士仁, and 蔡易縉, The Air Pollutant Emissions from Fire-Powered Power Plants. 2011:97-106.
2.http://www.solar2money.com/index/solarpower_good_bad/wind_power.html
3.http://www.slcss.edu.hk/eca/scisoc/water.html
4.http://scmc0828.pixnet.net/blog/post/83144439
5.https://zh.wikipedia.org/wiki/%E5%9C%B0%E7%86%B1%E8%83%BD
6.http://e-info.org.tw/node/107386
7.林欣瑜, 氫新光綠能-水分解光觸媒技術. 科學發展, 2015. 508:18-23.
8.Kudo, A. and Y. Miseki, Heterogeneous Photocatalyst Materials for Water Splitting. Chem. Soc. Rev., 2009. 38:253-278.
9.Tachibana, Y., L. Vayssieres, and J.R. Durrant, Artificial Photosynthesis for Solar Water Splitting. Nat. Photonics, 2012. 6(8):511-518.
10.孫允武, 半導體物理簡介.
11.Zhang, J., Z. Liu, and Z. Liu, Novel WO3/Sb2S3 Heterojunction Photocatalyst Based on WO3 of Different Morphologies for Enhanced Efficiency in Photoelectrochemical Water Splitting. ACS Appl. Mater. Inter., 2016. 8(15):9684-91.
12.Li, H., W. Tu, Y. Zhou, and Z. Zou, Z-Scheme Photocatalytic Systems for Promoting Photocatalytic Performance: Recent Progress and Future Challenges. Adv. Sci. , 2016. 3(11):1500389.
13.https://en.wikipedia.org/wiki/Heterojunction
14.Kalanur, S.S., Y.J. Hwang, S.Y. Chae, and O.S. Joo, Facile Growth of Aligned WO3 Nanorods on FTO Substrate for Enhanced Photoanodic Water Oxidation Activity. J. Mater. Chem. A, 2013. 1(10):3479-3488.
15.Solarska, R., R. Jurczakowski, and J. Augustynski, a Highly Stable, Efficient Visible-light Driven Water Photoelectrolysis System Using a Nanocrystalline WO3 Photoanode and A Methane Sulfonic Acid Electrolyte. Nanoscale, 2012. 4(5):1553-1556.
16.Yang, J., X. Zhang, H. Liu, C. Wang, S. Liu, P. Sun, L. Wang, and Y. Liu, Heterostructured TiO2/WO3 Porous Microspheres: Preparation, Characterization and Photocatalytic Properties. Catal. Today, 2013. 201:195-202.
17.Hernández-Alonso, M.D., F. Fresno, S. Suárez, and J.M. Coronado, Development of Alternative Photocatalysts to TiO2: Challenges and Opportunities. Energy Environ. Sci., 2009. 2(12):1231-1257.
18.Zeng, Q., J. Li, J. Bai, X. Li, L. Xia, and B. Zhou, Preparation of Vertically Aligned WO3 Nanoplate Array Films Based on Peroxotungstate Reduction Reaction and Their Rxcellent Photoelectrocatalytic Performance. Appl. Catal. B- Environ., 2017. 202:388-396.
19.Zhang, H., G. Chen, and D.W. Bahnemann, Photoelectrocatalytic Materials for Environmental Applications. J. Mater. Chem., 2009. 19(29):5089.
20.Yu, Y., R.H. Wang, Q. Chen, and L.-M. Peng, High-Quality Ultralong Sb2S3 Nanoribbons on Large Scale. J. Phys. Chem. B, 2005. 109:23312-23315.
21.Hu, H., Z. Liu, B. Yang, M. Mo, Q. Li, W. Yu, and Y. Qian, Solvothermal Growth of Sb2S3 Microcrystallites with Novel Morphologies. J. Cryst. Growth, 2004. 262(1-4):375-382.
22.Senthil, T.S., N. Muthukumarasamy, and M. Kang, Study of Various Sb2S3 Nanostructures Synthesized by Simple Solvothermal and Hydrothermal Methods. Mater. Charact., 2014. 95:164-170.
23.Maghraoui-Meherzi, H., T. Ben Nasr, N. Kamoun, and M. Dachraoui, Structural, Morphology and Optical Properties of Chemically Deposited Sb2S3 Thin Films. Physica B, 2010. 405(15):3101-3105.
24.Avilez Garcia, R.G., C.A. Meza Avendaño, M. Pal, F. Paraguay Delgado, and N.R. Mathews, Antimony sulfide (Sb2S3) Thin films by Pulse Electrodeposition: Effect of Thermal Treatment on Structural, Optical and Electrical Properties. Mat. Sci. Semicon. Proc., 2016. 44:91-100.
25.Cao, F., W. Liu, L. Zhou, R. Deng, S. Song, S. Wang, S. Su, and H. Zhang, Well-defined Sb2S3 Microspheres: High-yield Synthesis, Characterization, Their Optical and Electrochemical Hydrogen Storage Properties. Solid State Sci., 2011. 13(6):1226-1231.
26.Chao, J., S. Xing, J. Zhang, C. Qin, D. Duan, X. Wu, and Q. Shen, Synthesis of Sb2S3 Nanowall Arrays for High Performance Visible-light Photodetectors. Materials Res. Bull., 2014. 57:300-305.
27.Karade, S.S., K. Banerjee, S. Majumder, and B.R. Sankapal, Novel Application of Non-aqueous Chemical Bath Deposited Sb2S3 Thin Films as Supercapacitive Electrode. Int. J. Hydrogen Energ., 2016. 41(46):21278-21285.
28.Krishnan, B., A. Arato, E. Cardenas, T.K.D. Roy, and G.A. Castillo, On The Structure, Morphology, and Optical Properties of Chemical Bath Deposited Sb2S3 Thin Films. Appl. Surf. Sci., 2008. 254(10):3200-3206.
29.Maiti, N., S.H. Im, Y.H. Lee, and S.I. Seok, Urchinlike Nanostructure of Single-crystalline Nanorods of Sb2S3 Formed at Mild Reaction Condition. ACS. Appl. Mater. Inter., 2012. 4(9):4787-91.
30.Messina, S., M.T.S. Nair, and P.K. Nair, Antimony Sulfide Thin Films in Chemically Deposited Thin Film Photovoltaic Cells. Thin Solid Films, 2007. 515(15):5777-5782.
31.Shaji, S., L.V. Garcia, S.L. Loredo, B. Krishnan, J.A. Aguilar Martinez, T.K. Das Roy, and D.A. Avellaneda, Antimony Sulfide Thin Films Prepared by Laser Assisted Chemical Bath Deposition. Appl. Surf. Sci., 2017. 393:369-376.
32.Tao, W., J. Chang, D. Wu, Z. Gao, X. Duan, F. Xu, and K. Jiang, Solvothermal Synthesis of Graphene-Sb2S3 Composite and The Degradation Activity Under Visible-light. Mater. Res. Bull., 2013. 48(2):538-543.
33.Validžić, I.L., N.D. Abazović, and M. Mitrić, Growth of Sb2S3 Nanowires Synthesized by Colloidal Process and Self-assembly of Amorphous Spherical Sb2S3 Nanoparticles in Wires Formation. Met. Mater. Int., 2012. 18(6):989-995.
34.Zhu, Y., P. Nie, L. Shen, S. Dong, Q. Sheng, H. Li, H. Luo, and X. Zhang, High Rate Capability and Superior Cycle Stability of a Flower-like Sb2S3 Anode for High-capacity Sodium Ion Batteries. Nanoscale, 2015. 7(7):3309-15.
35.Zimmermann, E., T. Pfadler, J. Kalb, J.A. Dorman, D. Sommer, G. Hahn, J. Weickert, and L. Schmidt-Mende, Toward High-Efficiency Solution-Processed Planar Heterojunction Sb2S3 Solar Cells. Adv. Sci. (Weinh), 2015. 2(5):1500059.
36.洪偉修, 世界上最薄的材料-石墨烯. 康熹化學報報, 2009. 11.
37.Lee, C., X. Wei, J.W. Kysar, and J. Hone, Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene. Science, 2008. 321:385-387.
38.https://zh.wikipedia.org/wiki/石墨烯
39.Compton, O.C. and S.T. Nguyen, Graphene Oxide, Highly Reduced Graphene Oxide, and Graphene: Versatile Building Blocks for Carbon-based Materials. Small, 2010. 6(6):711-23.
40.Becerril, H.A., J. Mao, Z. Liu, R.M. Stoltenberg, Z. Bao, and Y. Chen, Evaluation of Solution-Processed Reduced Graphene Oxide Films as Transparent Conductors. ACS. Nano, 2008. 2:463-470.
41.Chen, J., B. Yao, C. Li, and G. Shi, An Improved Hummers Method for Eco-friendly Synthesis of Graphene Oxide. Carbon, 2013. 64:225-229.
42. https://zh.wikipedia.org/wiki/威廉∙倫琴
43.林麗娟, X光繞射原理及其應用. 工業材料, 1994. 86:100-109.44.羅聖全, 科學基礎研究之重要利器─掃描式電子顯微鏡(SEM). 科學研習, 2013. 52:2-4.
45.林宣鳴 and 洪連輝, 拉曼 Chandrasekhara Venkata Raman. 科技部高瞻自然科學教學資源平台, 2017:1-2.
46.http://rndcic.ntut.edu.tw/files/11-1150-9114.php
47.http://www.cc.ntut.edu.tw/~wwwemo/instrument_manual/ultraviolet.htm
48.Turło., J. and K. Rozwadowska-Jaśniewska, Optical and Electrical Energy Gap Investigations in Low-temperature Glassy Carbon Layers. J. Non-Cryst. Solids, 1987. 90(1-3):641-644.
49. https://www.researchgate.net/post/What_is_the_common_way_to_define _the_onset_potential_from_linear_sweep_voltammogram_LSV_of_PEC_measurement
50.Lisdat, F. and D. Schafer, The Use of Electrochemical Impedance Spectroscopy for Biosensing. Anal. Bioanal. Chem., 2008. 391(5):1555-67.
51.李子正, 生物高感度偵測技術快速鑑別人類血紅素結合蛋白之表現型 Rapid Phenotypes Determination of Human Haptoglobin by a Homemade Bio-Electrochemical Analyzer, in 生物醫學研究所 2009, 國立交通大學 新竹. p. 107.
52.A. Ganjoo. and R. Golovchak, Computer Program PARAV for Calculating Optical Constants of Thin Films and Bulk Materials Case Study of Amorphous Semiconductors. J. Optoelectron. Adv. M., 2008. 10:1328-1332.
53.Zoski, C.G., Handbook of Electrochemistry 1st ed. 2007, Oxford , UK: Elsevier.
54.Gelderman, K., L. Lee, and S.W. Donne, Flat-Band Potential of a Semiconductor: Using the Mott–Schottky Equation. J. Chem. Educ., 2007. 84:685-688.
55.Pei, Songfeng, Cheng, and Hui-Ming, The Reduction of Graphene Oxide. Carbon, 2012. 50(9):3210-3228.
56.Stobinski, L., B. Lesiak, A. Malolepszy, M. Mazurkiewicz, B. Mierzwa, J. Zemek, P. Jiricek, and I. Bieloshapka, Graphene Oxide and Reduced Graphene Oxide Studied by the XRD, TEM and Electron Spectroscopy Methods. J. Electron Spectrosc., 2014. 195:145-154.
57. 王瑞良, 石墨烯:異軍突起的新材料. 科技報導, 2016. 72.
58. https://zh.wikipedia.org/wiki/能带理論
59.Hernández-Ramírez, A. and I. Medina-Ramirez, Photocatalytic Semicon- ductors Synthesis, Characterization, and Environmental Application. 2015.
60.Seabold, J.A. and K.-S. Choi, Effect of a Cobalt-Based Oxygen Evolution Catalyst on the Stability and the Selectivity of Photo-Oxidation Reactions of a WO3 Photoanode. Chem. Mater., 2011. 23(5):1105-1112.