跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.171) 您好!臺灣時間:2024/12/09 09:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林宏勳
研究生(外文):Hong-Syun Lin
論文名稱:增強可見光吸收與導電度的氧化鎢/還原氧化石墨烯/硫化銻異質接面光陽極光電化學效能探討
論文名稱(外文):Investigation of the Photoelectrochemical Performance for the WO3/reduced graphene oxide/Sb2S3 Heterojunction Photoanode with Enhanced Visible-light Absorption and Conductivity
指導教授:林律吟
指導教授(外文):Lu-Yin Lin
口試委員:郭聰榮陳浩銘林正裕何國川
口試日期:2017-06-28
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:化學工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:64
中文關鍵詞:水氧化反應氧化鎢還原氧化石墨烯異質接面人工光合作用化銻
外文關鍵詞:Water oxidationTungsten dioxideReduced graphene oxideHeterojunctionArtificial photosynthesisAntimony sulfide
相關次數:
  • 被引用被引用:0
  • 點閱點閱:174
  • 評分評分:
  • 下載下載:32
  • 收藏至我的研究室書目清單書目收藏:0
本論文通過化學浴沉積與熱處理方法,在透明導電氧化物(TCO)玻璃上合成氧化鎢奈米板狀陣列、還原石墨烯氧化物和硫化銻奈米顆粒的奈米複合材料,以製備Z-scheme水分解系統之人工光合作用光催化劑。以硫化銻當作吸收可見光的材料,來改善氧化鎢本身較差的可見光吸收,並使用還原氧化石墨烯當作導電層,來改善氧化鎢與硫化銻之間的電子傳導。在光強度1.5 AM下,使用0.5 M 硫代硫酸鈉當作電解液來做測試,氧化鎢、氧化鎢/硫化銻、氧化鎢/還原氧化石墨烯/硫化銻電極的電流密度分別為1.20 mA/cm2、0.27 mA/cm2、0.05 mA/cm2 (1.23 V vs. RHE)。而氧化鎢、氧化鎢/硫化銻、氧化鎢/還原氧化石墨烯/硫化銻電極的起始電位分別為1.08 V、0.96 V、0.94 V (vs. RHE),可發現硫化銻與還原氧化石墨烯摻入氧化鎢電極中,能夠使起始電位往負的方向偏移,推測硫化銻與還原氧化石墨烯可以增加氧化鎢電極的動力學表現。透過紫外光-可見光光譜與電化學阻抗分析而得知,氧化鎢/還原氧化石墨烯/硫化銻電極的光電流密度及起始電位的改善,主要是由於其增加了可見光吸收波長的極限,並且降低了電荷轉移阻抗來改善整個電極的導電度。
The WO3 nanoplate, reduced graphene oxide (rGO), and the Sb2S3 nanoparticle nanocomposite is firstly synthesized on a transparent conducting oxide (TCO) glass by using a chemical bath deposition coupled with a post-thermal treatment as the photocatalyst for the artificial photosynthesis under the framework of Z–scheme water splitting. The Sb2S3 acts as the light absorber to mitigate the poor visible light absorption of WO3, and the rGO serves as a conductive layer to enhance the low quantum efficiency of the intrinsic WO3. An improved photocurrent density of 1.20 mA/cm2 (measured at 1.23 V vs. RHE) is obtained for the WO3/rGO/Sb2S3 electrode in a 0.5 M Na2SO4 aqueous solution under AM 1.5G illumination, as compared with those for the WO3/Sb2S3 (0.27 mA/cm2) and WO3 (0.05 mA/cm2) electrodes measured under the same condition. The negatively shifted onset potential of 0.12 V vs. RHE is also obtained when Sb2S3 and rGO are participated in the WO3 electrode, as compared with those of 0.96 and 1.08 V vs. RHE for the WO3/Sb2S3 and WO3 electrodes, suggesting the enhancement on the kinetic behavior of the WO3/rGO/Sb2S3 system. The improvements on the photocurrent density and onset potential for the WO3/rGO/Sb2S3 electrode is primarily due to the broader light absorption as well as the reduced charge-transfer resistance and the enhanced conductivity, as respectively investigated by using the ultraviolet-visible spectra and the electrochemical impedance spectroscopy (EIS) technique. The results suggest that a more efficient photocatalyst for water oxidation can be achieved by carefully designing the composition of the nanocomposite with complementary optical and electrical properties.
目錄

摘 要 i
ABSTRACT iii
致 謝 v
目錄 vi
圖目錄 ix
表目錄 xi
第一章 緒論 1
1.1 前言 1
第二章 文獻回顧 3
2.1 水分解 (Water Splitting) 3
2.1.1 水分解系統 (Water-Splitting System) 4
2.1.2 光催化水分解反應機制 (Mechanism of Photocatalytic Water Splitting) 5
2.1.3 異質接面 (Heterojunction) 6
2.2 氧化鎢 (Tungsten Oxide, WO3) 7
2.3 硫化銻 (Antimony Sulfide, Sb2S3) 9
2.4 還原氧化石墨烯 (Reduced Graphene Oxide, rGO) 10
第三章 實驗方法與儀器分析 12
3.1 實驗流程 12
3.1.1 製備氧化鎢奈米板狀陣列 12
3.1.2 石墨烯氧化物(Graphene Oxide, GO)的製備與其在氧化鎢奈米板狀陣列上的沉積、還原 14
3.1.3 硫化銻之生成與其在氧化鎢奈米板狀陣列/還原石墨烯氧化物上的沉積 16
3.2 實驗藥品 18
3.3 實驗儀器與原理 20
3.3.1 X光繞射儀 (X-ray Diffraction, XRD) 23
3.3.2 掃描式電子顯微鏡 (Scanning Electron Microscope, SEM) 24
3.3.3 拉曼散射光譜 (Raman Scattering Spectrometer) 26
3.3.4 紫外光/可見光光譜儀(UV-Vis Spectrophotometer) 27
3.3.5 恆電位儀 (Potentiostat) 29
第四章 結果與討論 34
4.1 氧化鎢/還原氧化石墨烯/硫化銻光電極製備參數探討 34
4.2 硫化銻的沉積對氧化鎢電極的影響 35
4.2.1 表面結構分析 36
4.2.2 晶相與元素分析 37
4.2.3 光學性質與能階分析 38
4.2.4 電化學交流阻抗分析 40
4.2.5 光電流密度測量 41
4.3 氧化石墨烯溶液的濃度調整影響 42
4.3.1 表面分析 43
4.3.2 晶相與元素分析 45
4.3.3 光學性質分析 47
4.3.4 電化學交流阻抗分析 48
4.3.5 光電流密度測量 49
4.4 氧化鎢、氧化鎢/硫化銻、氧化鎢/還原氧化石墨烯/硫化銻電極物性與電化學性質比較 50
4.4.1 表面分析 50
4.4.2 光學性質與能階分析 51
4.4.3 電化學交流阻抗分析 53
4.4.4 光電流密度測試 54
4.4.5 穩定度測試 56
第五章 結論與建議 58
5.1 結論 58
5.2 建議 58
參 考 文 獻 59


圖目錄

圖 1.1 1 (a) 風力; (b) 水力; (c) 潮汐; (d) 地熱; (e) 太陽能發電[2-6] 2
圖 2.1 1 二氧化鈦光電極Honda和Fujishima的水分解效應[8] 3
圖 2.1 2 植物行光合作用與光催化觸媒行水分解反應示意圖[8] 4
圖 2.1 3 水分解系統 (a) 懸浮微粒法 (b) 光電化學電池 [9] 4
圖 2.1 4 電子電洞對的產生與再結合示意圖[10] 5
圖 2.1 5 光電催化水分解反應機制[8] (a) 水分解反應機制 (b) 電子電洞對在半導體內的遷移示意圖 5
圖 2.1 6 氧化鎢與硫化銻異質接面與電子電洞躍遷方向示意圖[11] 6
圖 2.1 7 半導體異質接面的三種型式[13] 7
圖 2.2 1 氧化鎢在不同退火溫度下的晶相 (a) 斜方晶 (Orthorhombic)、(b) 六角晶 (Hexagonal)與(c) 單斜晶 (Monoclinic)[14] 8
圖 2.4 1 石墨烯二維結構圖[41] 11
圖 2.4 2 石墨烯(Graphene)與氧化石墨烯(Graphene oxide)之結構[43] 11
圖 3.1 1 氧化鎢奈米板狀陣列的實驗流程圖 13
圖 3.1 2 氧化石墨烯製備流程圖 14
圖 3.1 3 石墨烯氧化物的塗佈與還原流程 15
圖 3.1 4 氧化鎢/還原氧化石墨烯/硫化銻電極的製備實驗流程 17
圖 3.3 1 晶格繞射與示意圖[42] 23
圖 3.3 2 掃描式電子顯微鏡基本構造圖[43] 25
圖 3.3 3 拉曼散射光譜儀基本設置[45] 26
圖 3.3 4 紫外光/可見光光譜儀 28
圖 3.3 5 (a) 不同樣品的吸收光譜 (b) (a) 圖經由轉換製成Tauc’s plot 28
圖 3.3 6 恆電位儀 (Potentiostat) 29
圖 3.3 7 LSV示意圖 30
圖 3.3 8 V(t)與I(t)之間的相位差 [52] 31
圖 3.3 9 EIS阻抗與相位差之向量示意圖[52] 31
圖 3.3 10 標準Nyquist與其所代表之物理量[50] 33
圖 4.1 1 氧化鎢/還原氧化石墨烯/硫化銻電極之參數探討流程圖 34
圖 4.2 1 (a) 氧化鎢及 (b) 氧化鎢/硫化銻電極之SEM圖 35
圖 4.2 2 氧化鎢及氧化鎢/硫化銻電極之XRD圖 37
圖 4.2 3 (a) 氧化鎢及(b) 氧化鎢/硫化銻之EDX圖 37
圖 4.2 4 氧化鎢與氧化鎢/硫化銻電極之吸收光譜圖 38
圖 4.2 5 (a) 氧化鎢/硫化銻電極之異質接面能階示意圖及(b) 氧化鎢及氧化鎢/硫化銻電極之Mott-Schottky圖 39
圖 4.2 6 氧化鎢與氧化鎢/硫化銻電極之Nyquist 圖 40
圖 4.2 7 氧化鎢與氧化鎢/硫化銻電極之LSV圖 41
圖 4.3 1 氧化石墨烯 (GO)與還原氧化石墨烯 (rGO)之拉曼散射光譜 43
圖 4.3 2 利用氧化石墨烯溶液濃度為 (a) 0.2 mg/mL,(b) 0.5 mg/mL,(c) 1.0 mg/mL,(d) 1.5 mg/mL製備的氧化鎢/還原氧化石墨烯/硫化銻電極之SEM圖 44
圖 4.3 3 使用不同氧化石墨烯溶液濃度製備氧化鎢/還原氧化石墨烯/硫化銻電極之XRD圖 45
圖 4.3 4 利用氧化石墨烯溶液濃度為 (a) 0.2 mg/mL,(b) 0.5 mg/mL,(c) 1.0 mg/mL,(d) 1.5 mg/mL製備的氧化鎢/還原氧化石墨烯/硫化銻電極之EDX圖 46
圖 4.3 5 不同氧化石墨烯溶液濃度下製備的氧化鎢/還原氧化石墨烯/硫化銻電極之吸收光譜 47
圖 4.3 6 使用不同氧化石墨烯溶液濃度製備之氧化鎢/還原氧化石墨烯/硫化銻電極之Nyquist圖 48
圖4.3 7 使用不同氧化石墨烯溶液濃度製備之氧化鎢/還原氧化石墨烯/硫化銻電極之LSV圖 49
圖 4.4 1 (a) 氧化鎢 (b) 氧化鎢/硫化銻及(c) 氧化鎢/還原氧化石墨烯/硫化銻電極之SEM圖 50
圖 4.4 2 氧化鎢、氧化鎢/硫化銻、氧化鎢/還原氧化石墨烯/硫化銻電極之(a) 吸收光譜 (b) 塔克圖 51
圖 4.4 3 氧化鎢、還原氧化石墨烯、硫化銻電極之(a) 異質接面能階示意圖與(b) Mott-Schottky圖 52
圖 4.4 4 氧化鎢、氧化鎢/硫化銻、氧化鎢/還原氧化石墨烯/硫化銻之Nyquist Plot與等效電路圖 53
圖 4.4 5 氧化鎢、氧化鎢/硫化銻、氧化鎢/還原氧化石墨烯/硫化銻之LSV圖 55
圖 4.4 6 氧化鎢、氧化鎢/硫化銻、氧化鎢/還原氧化石墨烯/硫化銻之瞬間照光下電流密度對時間關係圖 57
圖 4.4 7 氧化鎢、氧化鎢/硫化銻、氧化鎢/還原氧化石墨烯/硫化銻之持續500 s照光下電流密度對時間關係圖 57
表目錄

表 3.2 1 實驗藥品 18
表 3.3 1 實驗儀器 20
表 3.3 2 阻抗參數之定義與其物理意義[50] 32
1.謝惠紅, 林朝清, 鄭士仁, and 蔡易縉, The Air Pollutant Emissions from Fire-Powered Power Plants. 2011:97-106.
2.http://www.solar2money.com/index/solarpower_good_bad/wind_power.html
3.http://www.slcss.edu.hk/eca/scisoc/water.html
4.http://scmc0828.pixnet.net/blog/post/83144439
5.https://zh.wikipedia.org/wiki/%E5%9C%B0%E7%86%B1%E8%83%BD
6.http://e-info.org.tw/node/107386
7.林欣瑜, 氫新光綠能-水分解光觸媒技術. 科學發展, 2015. 508:18-23.
8.Kudo, A. and Y. Miseki, Heterogeneous Photocatalyst Materials for Water Splitting. Chem. Soc. Rev., 2009. 38:253-278.
9.Tachibana, Y., L. Vayssieres, and J.R. Durrant, Artificial Photosynthesis for Solar Water Splitting. Nat. Photonics, 2012. 6(8):511-518.
10.孫允武, 半導體物理簡介.
11.Zhang, J., Z. Liu, and Z. Liu, Novel WO3/Sb2S3 Heterojunction Photocatalyst Based on WO3 of Different Morphologies for Enhanced Efficiency in Photoelectrochemical Water Splitting. ACS Appl. Mater. Inter., 2016. 8(15):9684-91.
12.Li, H., W. Tu, Y. Zhou, and Z. Zou, Z-Scheme Photocatalytic Systems for Promoting Photocatalytic Performance: Recent Progress and Future Challenges. Adv. Sci. , 2016. 3(11):1500389.
13.https://en.wikipedia.org/wiki/Heterojunction
14.Kalanur, S.S., Y.J. Hwang, S.Y. Chae, and O.S. Joo, Facile Growth of Aligned WO3 Nanorods on FTO Substrate for Enhanced Photoanodic Water Oxidation Activity. J. Mater. Chem. A, 2013. 1(10):3479-3488.
15.Solarska, R., R. Jurczakowski, and J. Augustynski, a Highly Stable, Efficient Visible-light Driven Water Photoelectrolysis System Using a Nanocrystalline WO3 Photoanode and A Methane Sulfonic Acid Electrolyte. Nanoscale, 2012. 4(5):1553-1556.
16.Yang, J., X. Zhang, H. Liu, C. Wang, S. Liu, P. Sun, L. Wang, and Y. Liu, Heterostructured TiO2/WO3 Porous Microspheres: Preparation, Characterization and Photocatalytic Properties. Catal. Today, 2013. 201:195-202.
17.Hernández-Alonso, M.D., F. Fresno, S. Suárez, and J.M. Coronado, Development of Alternative Photocatalysts to TiO2: Challenges and Opportunities. Energy Environ. Sci., 2009. 2(12):1231-1257.
18.Zeng, Q., J. Li, J. Bai, X. Li, L. Xia, and B. Zhou, Preparation of Vertically Aligned WO3 Nanoplate Array Films Based on Peroxotungstate Reduction Reaction and Their Rxcellent Photoelectrocatalytic Performance. Appl. Catal. B- Environ., 2017. 202:388-396.
19.Zhang, H., G. Chen, and D.W. Bahnemann, Photoelectrocatalytic Materials for Environmental Applications. J. Mater. Chem., 2009. 19(29):5089.
20.Yu, Y., R.H. Wang, Q. Chen, and L.-M. Peng, High-Quality Ultralong Sb2S3 Nanoribbons on Large Scale. J. Phys. Chem. B, 2005. 109:23312-23315.
21.Hu, H., Z. Liu, B. Yang, M. Mo, Q. Li, W. Yu, and Y. Qian, Solvothermal Growth of Sb2S3 Microcrystallites with Novel Morphologies. J. Cryst. Growth, 2004. 262(1-4):375-382.
22.Senthil, T.S., N. Muthukumarasamy, and M. Kang, Study of Various Sb2S3 Nanostructures Synthesized by Simple Solvothermal and Hydrothermal Methods. Mater. Charact., 2014. 95:164-170.
23.Maghraoui-Meherzi, H., T. Ben Nasr, N. Kamoun, and M. Dachraoui, Structural, Morphology and Optical Properties of Chemically Deposited Sb2S3 Thin Films. Physica B, 2010. 405(15):3101-3105.
24.Avilez Garcia, R.G., C.A. Meza Avendaño, M. Pal, F. Paraguay Delgado, and N.R. Mathews, Antimony sulfide (Sb2S3) Thin films by Pulse Electrodeposition: Effect of Thermal Treatment on Structural, Optical and Electrical Properties. Mat. Sci. Semicon. Proc., 2016. 44:91-100.
25.Cao, F., W. Liu, L. Zhou, R. Deng, S. Song, S. Wang, S. Su, and H. Zhang, Well-defined Sb2S3 Microspheres: High-yield Synthesis, Characterization, Their Optical and Electrochemical Hydrogen Storage Properties. Solid State Sci., 2011. 13(6):1226-1231.
26.Chao, J., S. Xing, J. Zhang, C. Qin, D. Duan, X. Wu, and Q. Shen, Synthesis of Sb2S3 Nanowall Arrays for High Performance Visible-light Photodetectors. Materials Res. Bull., 2014. 57:300-305.
27.Karade, S.S., K. Banerjee, S. Majumder, and B.R. Sankapal, Novel Application of Non-aqueous Chemical Bath Deposited Sb2S3 Thin Films as Supercapacitive Electrode. Int. J. Hydrogen Energ., 2016. 41(46):21278-21285.
28.Krishnan, B., A. Arato, E. Cardenas, T.K.D. Roy, and G.A. Castillo, On The Structure, Morphology, and Optical Properties of Chemical Bath Deposited Sb2S3 Thin Films. Appl. Surf. Sci., 2008. 254(10):3200-3206.
29.Maiti, N., S.H. Im, Y.H. Lee, and S.I. Seok, Urchinlike Nanostructure of Single-crystalline Nanorods of Sb2S3 Formed at Mild Reaction Condition. ACS. Appl. Mater. Inter., 2012. 4(9):4787-91.
30.Messina, S., M.T.S. Nair, and P.K. Nair, Antimony Sulfide Thin Films in Chemically Deposited Thin Film Photovoltaic Cells. Thin Solid Films, 2007. 515(15):5777-5782.
31.Shaji, S., L.V. Garcia, S.L. Loredo, B. Krishnan, J.A. Aguilar Martinez, T.K. Das Roy, and D.A. Avellaneda, Antimony Sulfide Thin Films Prepared by Laser Assisted Chemical Bath Deposition. Appl. Surf. Sci., 2017. 393:369-376.
32.Tao, W., J. Chang, D. Wu, Z. Gao, X. Duan, F. Xu, and K. Jiang, Solvothermal Synthesis of Graphene-Sb2S3 Composite and The Degradation Activity Under Visible-light. Mater. Res. Bull., 2013. 48(2):538-543.
33.Validžić, I.L., N.D. Abazović, and M. Mitrić, Growth of Sb2S3 Nanowires Synthesized by Colloidal Process and Self-assembly of Amorphous Spherical Sb2S3 Nanoparticles in Wires Formation. Met. Mater. Int., 2012. 18(6):989-995.
34.Zhu, Y., P. Nie, L. Shen, S. Dong, Q. Sheng, H. Li, H. Luo, and X. Zhang, High Rate Capability and Superior Cycle Stability of a Flower-like Sb2S3 Anode for High-capacity Sodium Ion Batteries. Nanoscale, 2015. 7(7):3309-15.
35.Zimmermann, E., T. Pfadler, J. Kalb, J.A. Dorman, D. Sommer, G. Hahn, J. Weickert, and L. Schmidt-Mende, Toward High-Efficiency Solution-Processed Planar Heterojunction Sb2S3 Solar Cells. Adv. Sci. (Weinh), 2015. 2(5):1500059.
36.洪偉修, 世界上最薄的材料-石墨烯. 康熹化學報報, 2009. 11.
37.Lee, C., X. Wei, J.W. Kysar, and J. Hone, Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene. Science, 2008. 321:385-387.
38.https://zh.wikipedia.org/wiki/石墨烯
39.Compton, O.C. and S.T. Nguyen, Graphene Oxide, Highly Reduced Graphene Oxide, and Graphene: Versatile Building Blocks for Carbon-based Materials. Small, 2010. 6(6):711-23.
40.Becerril, H.A., J. Mao, Z. Liu, R.M. Stoltenberg, Z. Bao, and Y. Chen, Evaluation of Solution-Processed Reduced Graphene Oxide Films as Transparent Conductors. ACS. Nano, 2008. 2:463-470.
41.Chen, J., B. Yao, C. Li, and G. Shi, An Improved Hummers Method for Eco-friendly Synthesis of Graphene Oxide. Carbon, 2013. 64:225-229.
42. https://zh.wikipedia.org/wiki/威廉∙倫琴
43.林麗娟, X光繞射原理及其應用. 工業材料, 1994. 86:100-109.
44.羅聖全, 科學基礎研究之重要利器─掃描式電子顯微鏡(SEM). 科學研習, 2013. 52:2-4.
45.林宣鳴 and 洪連輝, 拉曼 Chandrasekhara Venkata Raman. 科技部高瞻自然科學教學資源平台, 2017:1-2.
46.http://rndcic.ntut.edu.tw/files/11-1150-9114.php
47.http://www.cc.ntut.edu.tw/~wwwemo/instrument_manual/ultraviolet.htm
48.Turło., J. and K. Rozwadowska-Jaśniewska, Optical and Electrical Energy Gap Investigations in Low-temperature Glassy Carbon Layers. J. Non-Cryst. Solids, 1987. 90(1-3):641-644.
49. https://www.researchgate.net/post/What_is_the_common_way_to_define _the_onset_potential_from_linear_sweep_voltammogram_LSV_of_PEC_measurement
50.Lisdat, F. and D. Schafer, The Use of Electrochemical Impedance Spectroscopy for Biosensing. Anal. Bioanal. Chem., 2008. 391(5):1555-67.
51.李子正, 生物高感度偵測技術快速鑑別人類血紅素結合蛋白之表現型 Rapid Phenotypes Determination of Human Haptoglobin by a Homemade Bio-Electrochemical Analyzer, in 生物醫學研究所 2009, 國立交通大學 新竹. p. 107.
52.A. Ganjoo. and R. Golovchak, Computer Program PARAV for Calculating Optical Constants of Thin Films and Bulk Materials Case Study of Amorphous Semiconductors. J. Optoelectron. Adv. M., 2008. 10:1328-1332.
53.Zoski, C.G., Handbook of Electrochemistry 1st ed. 2007, Oxford , UK: Elsevier.
54.Gelderman, K., L. Lee, and S.W. Donne, Flat-Band Potential of a Semiconductor: Using the Mott–Schottky Equation. J. Chem. Educ., 2007. 84:685-688.
55.Pei, Songfeng, Cheng, and Hui-Ming, The Reduction of Graphene Oxide. Carbon, 2012. 50(9):3210-3228.
56.Stobinski, L., B. Lesiak, A. Malolepszy, M. Mazurkiewicz, B. Mierzwa, J. Zemek, P. Jiricek, and I. Bieloshapka, Graphene Oxide and Reduced Graphene Oxide Studied by the XRD, TEM and Electron Spectroscopy Methods. J. Electron Spectrosc., 2014. 195:145-154.
57. 王瑞良, 石墨烯:異軍突起的新材料. 科技報導, 2016. 72.
58. https://zh.wikipedia.org/wiki/能带理論
59.Hernández-Ramírez, A. and I. Medina-Ramirez, Photocatalytic Semicon- ductors Synthesis, Characterization, and Environmental Application. 2015.
60.Seabold, J.A. and K.-S. Choi, Effect of a Cobalt-Based Oxygen Evolution Catalyst on the Stability and the Selectivity of Photo-Oxidation Reactions of a WO3 Photoanode. Chem. Mater., 2011. 23(5):1105-1112.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top