跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.173) 您好!臺灣時間:2024/12/02 02:13
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:易秉君
研究生(外文):Chung-Ping Yi
論文名稱:水資源稀缺性對水足跡評估影響之研究-以高聚光型太陽能為案例
論文名稱(外文):A Study on the Effects of Water Scarcity to the Water Foorprint Assessment- Case of High Concentration Photovoltaic (HCPV) System
指導教授:胡憲倫胡憲倫引用關係
指導教授(外文):Allen H. Hu
口試委員:胡憲倫李育明馬鴻文張四立
口試委員(外文):Allen H. Hu
口試日期:2017-06-27
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:環境工程與管理研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:61
中文關鍵詞:生命週期評估水資源使用水資源稀缺指數水資源稀缺性水足跡
外文關鍵詞:Life cycle assessmentWater useWater scarcity indexWater scarcityWater footprint
相關次數:
  • 被引用被引用:2
  • 點閱點閱:564
  • 評分評分:
  • 下載下載:78
  • 收藏至我的研究室書目清單書目收藏:1
水足跡旨在衡量人類用水需求對環境造成的負荷,藉由分析與量化水資源之使用,瞭解水資源使用造成之環境衝擊,此概念可用於評估供應鏈的用水情況、流域內水資源永續評估等。水資源議題具有區域性及空間性差異之特性,生命週期學者將水足跡的概念整合至生命週期評估,並針對所在區域之缺水程度進行加權,從而反映出區域水資源使用對環境造成之潛在影響。國際標準組織的ISO14046水足跡評估標準,因其國際性質及國際接受度較高亦可視為目前水足跡執行依據之最高準則。
本研究透過Boulay、Pfister以及AWARE三種不同之水資源稀缺指數,利用台灣主要水庫之供水資訊,建立了全台主要水庫之本土水資源稀缺指數並將此指標作為評估水資源使用影響之特徵因子,結果顯示AWARE為最適用於評估台灣區域水資源稀缺程度之方法。本研究將所建立之水資源稀缺指數應用於高聚光型太陽能系統案例中,結果顯示高聚光型太陽能系統若安裝於寶山水庫水,將造成最高之水資源使用衝擊(341.88 m3H2O eq);反之,若安裝於日月潭水庫,則水資源衝擊為最低(24.42 m3H2O eq)。本研究探討不同水資源稀缺指數計算方法之差異性,以台灣主要水庫供水資料建立本土水資源使用特徵因子,討論台灣不同水庫間水資源稀缺程度,並套用於實際案例中,瞭解水資源稀缺指數對於水足跡評估結果之影響,可供相關研究及產業參考,以降低水資源使用對環境造成之衝擊。
The water footprint is designed to measure the environmental impact of human water use by analyzing and quantifying. This concept can be use to assess the water supply in the supply chains. Water resource issues are regional and spatial differences. Life cycle scholars have integrated the concept of water footprint into life cycle assessment and used water scarcity in specific areas, reflecting regional water usage of environmental impact potential. The current water footprint assessment standards in accordance with ISO14046.
This study used the water scarcity methods proposed by three different scholars, namely Boulay, Pfister and AWARE, and Taiwan’s reservoirs supply data to calculate regional water scarcity indexes and then used these indexes as characterization factors to assess the impact of water use of each reservoir. The results show that AWARE method is the most suitable for assessing the water scarcity. The indexes calculated for reservoirs were then applied to the case of high-concentration photovoltaic (HCPV) system. The results showed that the maximum impact of water use for the HCPV was 341.88(m3H2O eq) and the minimum impact was 24.42(m3H2O eq), which were located within Bosan and Sun Moon Lake reservoir, respecitively. This studies can be used as a reference for industries and government agencies for further research on reducing the impact of water use on the environment.
摘 要 I
ABSTRACT III
目 錄 VI
表目錄 VIII
圖目錄 IX
第一章 緒論 1
1.1 研究背景與動機 1
1.2 研究目的 2
1.3 研究架構 3
第二章 文獻回顧 6
2.1 水足跡發展 6
2.1.1 水足跡網絡(Water Footprint Network, WFN) 6
2.1.2 ISO 14046水足跡 11
2.1.3 WFN與ISO14046水足跡差異 16
2.2 水資源稀缺指數 18
2.2.1 水資源使用因果關係鏈 18
2.2.2 水資源稀缺指數 20
2.3 太陽能發電系統 23
2.3.1 太陽能發電系統簡介 23
2.3.2 高聚光型太陽能發電系統 25
2.4 台灣水資源概況 26
第三章 研究方法 29
3.1 研究流程 29
3.2 研究目標與範疇 30
3.3 水資源稀缺指數計算方法 30
3.4 高聚光型太陽能案例說明 33
3.4.1 研究範疇與邊界 33
3.4.2 高聚光型太陽能盤查分析 34
3.4.3 高聚光型太陽能研究限制 35
第四章 結果與討論 37
4.1 水資源稀缺指數評估結果 37
4.1.1 Pfister et al. (2009) 37
4.1.2 Boulay et al. (2011) 40
4.1.3 Boulay et al. -AWARE (2016) 42
4.1.4 水資源稀缺指數結果比較 44
4.2 高聚光型太陽能案例水資源衝擊 47
4.2.1 高聚光型太陽能水資源使用 47
4.2.2 高聚光型太陽能水資源使用衝擊 48
4.2.3 水資源稀缺指數對案例水足跡影響 50
第五章 結論與建議 52
5.1 結論 52
5.2 建議 53
參考文獻 55
英文文獻
1.Alcamo, J., Flörke, M., & Märker, M. (2007). Future long-term changes in global water resources driven by socio-economic and climatic changes. Hydrological Sciences Journal, 52(2), 247-275.
2.Aldaya, M. M., Chapagain, A. K., Hoekstra, A. Y., & Mekonnen, M. M. (2012). The water footprint assessment manual: Setting the global standard. Routledge.
3.Bayart, J. B., Bulle, C., Deschênes, L., Margni, M., Pfister, S., Vince, F., & Koehler, A. (2010). A framework for assessing off-stream freshwater use in LCA. The International Journal of Life Cycle Assessment, 15(5), 439-453.
4.Bayart, J.B., Worbe, S., Grimaud, J., Aoustin, E. (2014). The Water Impact Index: a simplified single-indicator approach for water footprinting. The International Journal of Life Cycle Assessment, 19(6), pp.1336–1344.
5.Berger, M. and Finkbeiner, M., Water footprinting-How to address water use in life cycle assessment?, Sustainability, Volume 2, Issue 4, 2010, Page 919-944.
6.Berger, M., van der Ent, R., Eisner, S., Bach, V., & Finkbeiner, M. (2014). Water accounting and vulnerability evaluation (WAVE): considering atmospheric evaporation recycling and the risk of freshwater depletion in water footprinting. Environmental science & technology, 48(8), 4521-4528.
7.Boulay, A. M., Bayart, J. B., Bulle, C., Franceschini, H., Motoshita, M., Muñoz, I., ... & Margni, M. (2015). Analysis of water use impact assessment methods (part B): applicability for water footprinting and decision making with a laundry case study. The International Journal of Life Cycle Assessment, 20(6), 865-879.
8.Boulay, A. M., Bulle, C., Bayart, J. B., Deschênes, L., & Margni, M. (2011). Regional characterization of freshwater use in LCA: modeling direct impacts on human health. Environmental science & technology, 45(20), 8948-8957.
9.Boulay, A. M., Motoshita, M., Pfister, S., Bulle, C., Muñoz, I., Franceschini, H., & Margni, M. (2015). Analysis of water use impact assessment methods (part A): evaluation of modeling choices based on a quantitative comparison of scarcity and human health indicators. The International Journal of Life Cycle Assessment, 20(1), 139-160.
10.Boulay, A.M., Bouchard, C., Bulle, C., Deschênes, L., Margni, M. (2011a). Categorizing water for LCA inventory. Int J Life Cycle Assess 16 (7):639–651
11.Boulay, A.-M., J. Bare, L. Benini, M. Berger, M. J. Lathuillière, A. Manzardo, M. Margni, M. Motoshita, M. Núñez, A. V. Pastor, B. Ridoutt, T. Oki, S. Worbe and S. Pfister (2017). "The WULCA consensus characterization model for water scarcity footprints: assessing impacts of water consumption based on available water remaining (AWARE)." The International Journal of Life Cycle Assessment: 1-11.
12.EEA. (2015). European environment — state and outlook 2015: Assessment of global megatrends, European Environment Agency, Copenhagen.
13.Finkbeiner, M., Inaba, A., Tan, R., Christiansen, K., & Klüppel, H. J. (2006). The new international standards for life cycle assessment: ISO 14040 and ISO 14044. The international journal of life cycle assessment, 11(2), 80-85.
14.Flury K., Frischknecht R., Muñoz I., Jungbluth N. (2012). Recommendation for Life cycle inventory analysis for water use and consumption. ESU-services Ltd., treeze Ltd., Unilever, Zürich, Uster, London.
15.Gerten, D., Heinke, J., Hoff, H., Biemans, H., Fader, M., & Waha, K. (2011). Global water availability and requirements for future food production. Journal of Hydrometeorology, 12(5), 885-899.
16.Guinée, J. B. (2002). Handbook on life cycle assessment operational guide to the ISO standards. The international journal of life cycle assessment, 7(5), 311-313.
17.Hoekstra, A. Y. (2016). A critique on the water-scarcity weighted water footprint in LCA. Ecological Indicators, 66, 564-573.
18.Hoekstra, A. Y., Gerbens-Leenes, W., & van der Meer, T. H. (2009). Reply to Pfister and Hellweg: Water footprint accounting, impact assessment, and life-cycle assessment. Proceedings of the National Academy of Sciences, 106(40), E114-E114.
19.Hoekstra, A. Y., & Mekonnen, M. M. (2012). Reply to Ridoutt and Huang: From water footprint assessment to policy. Proceedings of the National Academy of Sciences, 109(22), E1425-E1425.
20.Hoekstra, A. Y., Mekonnen, M. M., Chapagain, A. K., Mathews, R. E., & Richter, B. D. (2012). Global monthly water scarcity: blue water footprints versus blue water availability. PLoS One, 7(2), e32688.
21.Hoekstra, A.Y. and Mekonnen, M.M., Global water scarcity : monthly blue water footprint compared to blue water availability for the world major river basins, Value of Water Research Report Series No. 53, UNESCO-IHE, 2011.
22.ISO 14044-Environmental management-Life cycle assessment-Requirements and guidelines, International Organization for Standardization, ISO, 2006.
23.ISO, I. (2014). 14046: Environmental Management–Water Footprint–Principles, Requirements and Guidelines. International Organization for Standardization, Geneva, Switzerland.
24.Jolliet, O., Müller-Wenk, R., Bare, J., Brent, A., Goedkoop, M., Heijungs, R., ... & Rebitzer, G. (2004). The LCIA midpoint-damage framework of the UNEP/SETAC life cycle initiative. The International Journal of Life Cycle Assessment, 9(6), 394-404.
25.Loubet, P., Roux, P., Núñez, M., Belaud, G., & Bellon-Maurel, V. (2013). Assessing water deprivation at the sub-river basin scale in LCA integrating downstream cascade effects. Environmental science & technology, 47(24), 14242-14249.
26.Kounina, A., Margni, M., Bayart, J. B., Boulay, A. M., Berger, M., Bulle, C., ... & Núñez, M. (2013). Review of methods addressing freshwater use in life cycle inventory and impact assessment. The International Journal of Life Cycle Assessment, 18(3), 707-721.
27.Manzardo, A., Mazzi, A., Loss, A., Butler, M., Williamson, A., & Scipioni, A. (2016). Lessons learned from the application of different water footprint approaches to compare different food packaging alternatives. Journal of Cleaner Production, 112, 4657-4666.
28.Milà i Canals, L., Chenoweth, J., Chapagain, A., Orr, S., Antón, A., Cliftm R. (2009). Assessing freshwater use impacts in LCA: part I—inventory modelling and characterisation factors for the main impact pathways. Int J Life Cycle Assess 14(1):28–42.
29.Motoshita, M., Ono, Y., Pfister, S., Boulay, A. M., Berger, M., Nansai, K., ... & Inaba, A. (2014). Consistent characterisation factors at midpoint and endpoint relevant to agricultural water scarcity arising from freshwater consumption. The International Journal of Life Cycle Assessment, 1-12.
30.OECD. (2003). Environmental Performance Reviews: Water; Performance and Challenges in OECD Countries. Organisation for Economic Cooperation and Development, OECD, Paris.
31.Pfister, S., & Bayer, P. (2014). Monthly water stress: spatially and temporally explicit consumptive water footprint of global crop production. Journal of Cleaner Production, 73, 52-62.
32.Pfister, S., Boulay, A. M., Berger, M., Hadjikakou, M., Motoshita, M., Hess, T., ... & Manzardo, A. (2017). Understanding the LCA and ISO water footprint: A response to Hoekstra (2016)“A critique on the water-scarcity weighted water footprint in LCA”. Ecological Indicators, 72, 352-359.
33.Pfister, S., Koehler, A., & Hellweg, S. (2009). Assessing the environmental impacts of freshwater consumption in LCA. Environmental science & technology, 43(11), 4098-4104.
34.Pfister, S., Vionnet, S., Levova, T., & Humbert, S. (2015). Ecoinvent 3: assessing water use in LCA and facilitating water footprinting. The International Journal of Life Cycle Assessment, 1-12.
35.Rebitzer, G., Ekvall, T., Frischknecht, R., Hunkeler, D., Norris, G., Rydberg, T., ... & Pennington, D. W. (2004). Life cycle assessment: Part 1: Framework, goal and scope definition, inventory analysis, and applications. Environment international, 30(5), 701-720.
36.Ridoutt, B. G., & Huang, J. (2012). Environmental relevance—the key to understanding water footprints. Proceedings of the National Academy of Sciences, 109(22), E1424-E1424
37.Ridoutt, B. G., & Pfister, S. (2013). A new water footprint calculation method integrating consumptive and degradative water use into a single stand-alone weighted indicator. The International Journal of Life Cycle Assessment, 18(1), 204-207.
38.Rosenbaum, R. K., Bachmann, T. M., Gold, L. S., Huijbregts, M. A., Jolliet, O., Juraske, R., ... & McKone, T. E. (2008). USEtox—the UNEP-SETAC toxicity model: recommended characterisation factors for human toxicity and freshwater ecotoxicity in life cycle impact assessment. The International Journal of Life Cycle Assessment, 13(7), 532.
39.Sala, S., Benini, L., Castellani, V., Vidal-Legaz, B., & Pant, R. (2016). Environmental footprint—update of life cycle impact assessment methods; DRAFT for TAB (status: 2 May 2016)-Resources, water, land.

中文文獻
1.水利署,水利統計年報,經濟部水利署編印,2015。
2.水利署,水庫營運概況,經濟部水利署編印,2006~2016。
3.水利署,水資源開發綱領計畫,經濟部水利署,2009。
4.周嫦娥,企業水足跡盤查機制建立及推動策略之研究(1/2),經濟部水利署委託計畫,2014。
5.周嫦娥,企業水足跡盤查機制建立及推動策略之研究(2/2),經濟部水利署委託計畫,2015。
6.周嫦娥、李繼宇、朱美琴、楊浩彥,水足跡概念推廣與先期研究,經濟部水利署委託計畫,2011。
7.林文華,ISO 14046:2014水足跡國際標準簡介,BSI英國標準協會太平洋有限公司台灣分公司,2015。
8.林佳玉,淡水資源耗用與使用生命週期評估衝擊的建立,國立臺灣大學,環境工程學研究所,2014。
9.張倚銘,產品水足跡量化方法差異性研究,國立臺北科技大學,環境工程與管理研究所,2016。
10.許素圓,臺灣水資源永續發展之研究,東海大學,公共事務碩士學程在職進修專班,2006。
11.郭成聰,台灣太陽能蘊藏量之計算與評估,核能研究所,2014。
12.楊偉甫,台灣地區水資源利用現況與未來發展問題,台灣水環境再生協會,用水合理化與新生水水源開發論壇,2009。
13.蔣在文,區域性水資源耗用之生命週期衝擊評估,國立臺灣大學,環境工程學研究所,2012。
14.羅心慈,高聚光型(HCPV)太陽能發電系統之碳足跡評估與能源回收期,國立台北科技大學,環境工程與管理研究所,2015。
網路資訊
1.International Organization for Standardization, ISO
http://www.iso.org/iso/home.html
2.Water Use of Life Cycle Assessment, WULCA
http://www.wulca-waterlca.org/index.html
3.Water Footprint Network, WFN
http://waterfootprint.org/en/
4.World Water Council, WWC
http://www.worldwatercouncil.org
5.台北自來水事業處
http://www.water.gov.taipei/
6.經濟部水利署
http://www.wra.gov.tw/
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊