跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2024/12/14 14:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林原正
研究生(外文):Yuan-Zheng,Lin
論文名稱:鎳金屬濾網去除懸浮微粒效率之評估
論文名稱(外文):The Removal Efficiency Evaluation of Particulate Matter by Nickel Filter
指導教授:曾昭衡曾昭衡引用關係
口試委員:曾昭衡邵文政洪明瑞
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:環境工程與管理研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:73
中文關鍵詞:靜電集塵鎳金屬濾網懸浮微粒
外文關鍵詞:Electrostatic dust collectionnickel metal filterparticulate matter
相關次數:
  • 被引用被引用:1
  • 點閱點閱:992
  • 評分評分:
  • 下載下載:10
  • 收藏至我的研究室書目清單書目收藏:0
本研究探討鎳金屬濾網於不同表面風速及懸浮微粒初始濃度以及濾網規格等參數下測試,去除懸浮微粒效率之差異且討論分析,再與其他空氣清淨機濾網比較分析。本研究測試參數控制:初始濃度(PM2.5:75 ± 7 μg/m3、100 ± 10 μg/m3、150 ± 15 μg/m3、
PM10:100 ± 10 μg/m3、130 ± 13 μg/m3、200 ± 20μg/m3)、表面風速(0.13 m/s、0.2 m/s、0.25 m/s)、濾網PPI(35 PPI、50 PPI)、濾網厚度(3 mm、7 mm)、濾網間距(0 cm、3 cm、6 cm)、電壓(6 kV、12 kV) 、溫度(25 ± 1oC)及相對溼度(30 ± 10 %) 。
實驗結果進一步分析鎳金屬濾網對懸浮微粒(PM2.5、PM10)去除之效率並推算各實驗參數對懸浮微粒(PM2.5、PM10)去除效率的相對關係。分析鎳金屬濾網跟其他市售濾網之壓損跟去除效率差異。求出懸浮微粒(PM2.5、PM10)去除效率與其他參數之關係式,於測試系統利用鎳金屬濾網在不同電壓下測試靜電集塵去除懸浮微粒。
由於鎳金屬濾網99%是鎳金屬製造,可完全回收利用,實驗結果顯示鎳金屬濾網懸浮微粒去除率(PM2.5、PM10)大於不織布濾網:小於HEPA。但濾網壓力損耗遠小於不織布濾網以及HEPA濾網,濾網過濾品質(%/Pa)為鎳金屬濾網>HEPA濾網>不織布濾網。在鎳金屬濾網測試系統下,最高PM2.5平均去除效率為55.45%,最高PM10平均去除效率為64.51%。在靜電集塵系統中,最高PM2.5平均去除效率為71.42%,最高PM10平均去除效率為80.31%。鎳金屬濾網優點在於壓損低,提升取代其他濾網的可能性。
In this study, the effects of nickel metal filter on the surface temperature and the initial concentration of suspended particulates and filter specifications were investigated. The differences in the efficiency of suspended particulates were discussed and analyzed, and then compared with other air cleaners. In this study, the parameters were controlled: initial concentration (PM2.5:75±7 μg/m3, 100±10 μg/m3, 150±15 μg/m3, PM10:100± 10 μg/m3, 130±13 μg/m3,200±20 μg/m3 (0.13m/s, 0.2m/s, 0.25m/s), filter PPI (35PPI, 50PPI), filter thickness (3 mm, 7 mm), filter spacing (0cm, 3cm, 6cm) Voltage (6 kV, 12 kV),temperature (25 ± 1 oC) and relative humidity (30 ± 10%).
The experimental results further analyzed the removal efficiency of suspended particulates (PM2.5, PM10) by nickel metal filters and the relative relationship between the experimental parameters and the removal efficiency of suspended particulates (PM2.5, PM10). Analyze the difference between the pressure drop and the removal efficiency of the nickel metal filter and other commercially available screens. The relationship between the removal efficiency of suspended particulates (PM2.5, PM10) and other parameters was determined. The electrostatic precipitates were used to remove suspended particulates at different voltages using a nickel metal filter.
The results show that the removal rate of suspended particulates (PM2.5, PM10) in nickel metal filter is larger than that of nonwoven fabric: less than HEPA. But the pressure loss of the filter is much smaller than that of the non-woven filter and the HEPA filter. The maximum PM2.5 removal efficiency is 55.45% and the maximum PM10 removal efficiency is 64.51% under the nickel metal mesh test system. In the electrostatic dust collection system, the maximum PM2.5 removal efficiency is 71.42%, and the maximum PM10 removal efficiency is 80.31%. Nickel metal filter has the advantage of low pressure loss and suspended particulate removal rate in specific features also reached more than 50%. As the nickel metal filter 99% is made of nickel metal, can be fully recycled to enhance the possibility of replacing other filters.
摘 要 i
Abstract ii
目錄 iv
表目錄 vi
圖目錄 viii
第一章緒論 1
1.1研究背景與動機 1
1.2 研究目的 2
1.3 研究流程 3
第二章文獻回顧 4
2.1 室內空氣品質 4
2.1.2 室內空氣品質法規 4
2.1.2 懸浮微粒(PM10& PM2.5) 6
2.2 過濾理論 8
2.2.1 機械性過濾機制 10
2.2.2 靜電過濾理論 11
2.3靜電集塵空氣污染控制技術 11
第三章研究方法 15
3.1 研究流程與規劃 15
3.2 實驗濾網及儀器設備 15
3.2.1 實驗濾網 15
3.2.2 實驗儀器設備及配製 16
3.3 實驗系統及操作流程 21
3.4 測試參數之設計 28
第四章結果與討論 29
4.1 測試表面風速對於懸浮微粒去除效率之評估 29
4.2 測試鎳金屬濾網厚度對於懸浮微粒去除效率之評估 32
4.3 測試鎳金屬濾網PPI值對於去除懸浮微粒效率之評估 36
4.4 測試鎳金屬濾網片數對於懸浮微粒去除校率之評估 39
4.5 測試鎳金屬濾網間距對於懸浮微粒去除效率之評估 49
4.6 鎳金屬濾網去除懸浮微粒效率之關係式 56
4.7 測試靜電集塵系統去除懸浮微粒效率之評估 57
4.8 濾網之過濾品質(去除率/壓損)分析 59
第五章結論與建議 61
5.1結論 61
5.2建議 62
參考文獻 63
附錄 68
1.A.Adhikari,T.Reponen, S. A. Grinshpun, D. Martuzevicius and G. LeMasters,"Correlation of ambient inhalable bioaerosols with particulate matterand ozone: a two-yearstudy,"Environmental Pollution,vol. 140, 2006, pp.16-28.
2.Barrett, L.W., and Rousseau, A. D. (1998). Aerosol Loading Performance of Electret Filter Media, Am. Ind. Hyg. Assoc. J. 59:532-539.
3.Baumgartner, H. P., and Löffler, F. (1986). The Collection Performance of Electret Filters in the Particle Size Range of 10 nm-10 μm, J. Aerosol Sci. 17:438-445.
4.Brown, R. C. (1993). Aerosol Filtration: An Integrated Approach to the Theory and Applications of Fibrous Filters, Pergammon Press, Oxford, pp. 120-177.
5.Brown, R. C. (1981). Capture of Dust Particles in Filters by Line-Dipole Charged Fibres, J. Aerosol Sci. 12:349-356.
6.Cooper, C. D. and Alley, F. C. "Air Pollution Control: A Design Approach."Waveland Press.
7.Chen, C. C., and Huang, S. H. (1998). The Effects of particle Charge on the Performance of a Filtering Facepiece,Am. Ind. Hyg. Assoc. J. 59:227-233.
8.Donham F. Palmgren, P. Wåhlin, J. Kildesø, A. Afshari, C. L. Fogh, "Characterisation of particle emissions from the driving car fleet and the contribution to ambient and indoor particle concentrations,"Physics and Chemistry of the Earth, Parts A/B/C, 2008, 28:327-334.
9.Daniell, W., Camp, J., and Horstman, S. (1991). Trial of a negative ion generator device in remediating problems related to indoor air quality, Journal of Occupation Medicine. 33(6):681-687.
10.Fjeld, R. A., and Owens, T. M. (1988). The Effect of Particle Charge on Penetration in the Electret Filter, IEEE Transactions on Industry Applications. 24:725-731.
11.E.Melbostad,W. Eduard,A. Skogstad,P. Sandven,J. Lassen,P. Sostrand, and K. Heldal, "Exposure to Bacterial Aerosols and Work-Related Symptoms in Sewage Workers,"J. Ind. Med., vol.25, 1994, pp. 59-63.
12.Esswein, E. J., and M. F. Boeniger, "Effect of an Ozone-Generating Air-Purifying Device on Reducing Concentrations of Formaldehyde in Air,"Applied Occupational and Environmental Hygiene, vol. 9, no. 2, pp. 139-146, 1994
13.H. A.Burge, J. A.Otten,"Bioaerosols:Assessment and Control,"American Conference ofGovernmental Industrial Hygienists (ACGIH), 1999, 19:1-13
14.Hines, A.L., Ghosh T.K.,Loya S.K. and Warder R.C.,"Indoor Air-Quality and Control, "Prentice-Hall,1993, pp. 340.
15.Hedge, A., and Collis, M. D. (1987). Do negative air ions affect human mood and performance, Ann. Occup. Hyg. 31:285-290.
16.Hind, W. C. (1982). Aerosol Technology, John Wiley and Son, New York.
17.J.Lacey and J. Dutkiewicz.,"Bioaerosols and occupational lung disease, "Journal of Aerosol Science, vol.25, 1994, pp. 1371-1404.
18.Jones, A. P. (1999). Indoor Air Quality and Health, Atmospheric Environment. 33:4535-4564.
19.Kanaoka, C., Emi, H., and Otani, Y., and Iiyama, T. (1987). Effect of Charging State of Particles on Electret Filtration, Aerosol Sci. Technol. 7:1-13.
20.Kanazawa, S., J. S. Chang, G. F. Round, G. Sheng, T. Ohkubo, Y. Nomoto, and T. Adachi, "Removal of NOx from Flue Gas by Conora Discharge Activated Methane Radical Showers, "Journal of Electrostatics , vol. 40, pp. 651-656, 1997.
21.Kim, S., Stioutas, C., and Chang, M. (2000). Electrostatic Enhancement of the Collection Efficiency of Stainless Steel Fiber Filters, Aerosol Sci. Technol. 32:197-213.
22.Latrache, R., and Fissan, H. J. (1987). Enhancement of Particle Deposition in Filters due to Electrostatic Effects, Proc. Filtration. Soc. 418-422. 71
23.Lance, W. (1996). Indoor Particles: A Review, Air and Waste Manage. Assoc. 46:98-126.
24.Li, C. S., and Lin, C. H. (2003). Carbon Profile of Residential Indoor PM1 and PM2.5 in the Subtropical Region, Atmospheric Environment. 37:881-888.
25.Lehtimäki, M., and Heononen, K. (1994). Reliability of Electret Filters, Building and Environment. 29:353-355.
26.Lin, C. Y., and Li, C. S. (2001). Control Effectiveness of Bioaerosols Using Titanium Dioxide Photocatalyst, the Proceeding of 2001 Conference on Aerosol Science and Technology. 257-260.
27.M.Holmstrom, B. Wilhelmsson, H. Hellquist, G. Rosen, "Histological, changes in the nasal mucosa in persons occupationally exposed to formaldehyde alone and in combination with wood dust.,"Acta Otolaryngol, Vol. 107, pp. 120–129, 1989.
28.M. S. Waring, J. A. Siegel,"The effect of an ion generator on indoor air quality in a residential room,"indoor air,Volume 21,Issue 4,pages 267–276,August 2011.
29.Maloney, M., Wray, B., DuRant, R., and Smith, L. (1987). Effects of an electronic air cleaner and negative ionizer on the population of indoor mold spores, Annals of Allergy. 192-194.
30.Mermelstein, J., Kim, S., and Stioutas, C. (2001). Electrostatically Enhanced Stainless Steel Filters: Effect of Filter Structure and Pore Size on Particle Removal, Aerosol Sci. Technol. 36:62-75.
31.Niu, J. L., T. C.W. Tung, and V. W. Y. Chui, "Using Large Environmental Chamber Technique for Gaseous Contaminant Removal Equipment Test, " ASHRAE Transactions, vol. 104, no. 2, pp. 1289-1296, 1998.
32.Nelson, H., Hirsch, S., Ohman, J., Platts, M. T., Reed, C., and Solomon, W. (1988). Recommendations for the use of residential air-cleaning device in the treatment of allergic respiratory diseases, J. Allergy Clin. Immunol. 82(4):661-669.
33.P. Wolkoff, "How to measure and evaluate volatile organic compound emissions from building products. A perspective,"The Science of the Total Environment, vol. 227, 1999, pp. 197–213.
34.Pich, J., and Emi, H., and Kanaoka, C. (1987). Coulombic Deposition Mechanism in Electret Filters, J. Aerosol Sci. 17:29-35.
35.R.De Winter-Sorkina, "Impact of Ozone Layer Depletion I: Ozone Depletion Climatology, "Atmosphe eric Environment, Vol.35, 2001, pp.1609-1614
36.Romay, F. J., Liu, B. Y. H., and Chae, S. J. (1998). Experimental Study of Electrostatic Capture Mechanisms in Commercial Electret Filters, Aerosol Sci. Technol. 28:224-234.
37.S. C. Lee, Sanches Lam, H. K. Fai, "Characterization of VOCs, ozone and PM10 emissions from office equipment in an environmental chamber,"Building and Environment, 2001, pp.837-842.
38.Shi, L., Chen, B., and Wang, Y. (1988). Electret Air Filter Used for Getting Rid of Bacteria, Electrets, (ISE 6) Proceedings, 6th International Symposium on. 549-552.
39.Su, W. H. (1996). Indoor air pollution, Resource, Conservation and Recycling. 16: 77-91.
40.Seongheon Kim, Constantinos Sioutas, and Mingchih Chang. (2017). Electrostatic Enhancement of the Collection Effciency of Stainless Steel Fiber Filters, Description, Calibration, and Use, Aerosol Sci. Technol
41.T. Godish and C. Guindon,"Toluene and Xylene Emissions from Varnish Coatings Applied to Wood Materials, "84th Annual Meeting, Air and Waste Management Association, Vancouver, B.C., June., 1991.
42.Tennal, K. B., Mazumder, M. K., and Slag, A. (1991). Effect of Loading with 72 an Oil Aerosol on the Collection Efficiency of an Electret Filter, Particulate Sci. Technol. 9:19-29.
43.Trottier, R. A., and Brown, R. C. (1990). The Effect of Aerosol charge and filter charge on the Filtration of Submicrometer Aerosols, J. Aerosol Sci. 21(1):S689-S692.
44.W. C. Hinds, Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles (Wiley-Interscience), 1999.
45.Walsh, D., and Stenhouse, I. (1996). Experimental Studies of Electrically Active Fibrous Filter Loaging, Part. Part. Syst. Charact. 13:47-53.
46.Walsh, D., and Stenhouse, I. (1997). The Effect of Particle Size, Charge, and Composition on the Loading Characteristics of an Electrically Active Fibrous Filter Material, J. Aerosol Sci. 28(2):307-321.
47.Walsh, D., and Stenhouse, I. (1997). Clogging of an electrically active fibrous filter material:experimental results and two-dimensional simulations, Powder Technology. 93:63-75.
48.Walsh, D.,and Stenhouse, I.(1998). Parameters Affecting the loading Behavior and Degradation of Electrically Active Filter Materials, Aerosol Sci. Technol. 29:419-432.
49.Wang, C. S. (2001). Electrostatic Forces in Fibrous Filters-A Review, Powder Technology. 118:166-170.
50.Y.Cormier, L.P. Boulet, G. Bedard, and G. Tremblay, "Respiratory Health of Workers Exposed to Swine Confinement Buildings Only or to Both Swine Confinement Buildings and Dairy Barns Scand, "J. Work Environ. Health, 17, 1991, pp. 269-275.
51.Yang, S. H., and Lee, W. H. G. (2002), Filtration Efficiency of Filter Pretreated with Surfactants, 6th International Aerosol Conference, 1281-1282.
52.黃倩芸、洪劍長、陳幸婷,「辦公建築室內裝修建材逸散物質對室內空氣品質影響之調查研究」,內政部建築研究所研究報告,1997。
53.黃盛修,小型靜電集塵器之過濾及負載特性之研究,博士論文,國立臺灣大學職業醫學與工業衛生研究所,台北,2001。
54.黃雅琪,以靜電集塵技術為原理的生物氣膠採樣器之效能評估研究,碩士論文,國立成功大學環境醫學研究所,台南,2009。
55.張文旭、許安佩、蔡宗佑、林浚強、張靜宜、陳俞蓁,「臺中市政府環境保護局 102 年度計畫」,台中市環境保護局,台中,2013,第28-29頁。
56.蘇慧貞、江哲銘,「室內空氣污染物健康風險評估與管制成本效益分析」,行政院環保署專題委託研究計畫期末報告(修正版),EPA-93-FA11-03-A118,2004。
57.石濤,環境微生物,台北:鼎茂圖書出版有限公司,1999,第2-6頁。
58.趙怡璇,光觸媒鎳金屬濾網對空氣中甲醛及總揮發性有機物之淨化效能評估,碩士論文,國立臺北科技大學環境工程與管理研究所,台北,2011。
59.周伯丞,以生活行為模式為變因探討住宅室內空氣環境之研究,碩士論文,國立成功大學建築研究所,台南,1994。
60.行政院環境保護署,室內空氣品質標準值 2012。
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊