跳到主要內容

臺灣博碩士論文加值系統

(2600:1f28:365:80b0:f3de:de2a:940c:ec8b) 您好!臺灣時間:2024/12/04 08:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳宥榞
研究生(外文):You Yuan Chen
論文名稱:結合氣動人工肌肉與伺服機致動之冗餘機械手臂設計與控制
論文名稱(外文):Design and Control for a Redundant Robot Actuated by PAMs and Servos
指導教授:林志哲林志哲引用關係
口試委員:林志哲陳介力吳建達
口試日期:2016-11-23
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:自動化科技研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
畢業學年度:105
語文別:中文
中文關鍵詞:反覆式學習控制冗餘機械手臂穿戴式機械臂氣動人工肌肉缸
外文關鍵詞:LMS-PIDILCRedundant RobotWearable Exoskeleton RobotPAMs
相關次數:
  • 被引用被引用:0
  • 點閱點閱:255
  • 評分評分:
  • 下載下載:38
  • 收藏至我的研究室書目清單書目收藏:0
本研究以發展多功能機械臂為目的,設計出以氣動人工肌肉缸為主要致動器之多自由度機械臂,具有穿戴功能;當穿戴機械臂時,其自由度為四,可作為上肢復健輔具,執行復健運動任務,各旋轉軸由氣動人工肌肉缸來驅動,可確保人機互動時之安全性及可撓性;當結合手端伺服機時,可作為七自由度之冗餘機械手臂,搭配夾爪可執行點到點之物件抓取動作。
系統整合方面,由myRIO整合多個氣壓控制閥與感測器執行氣動人工肌肉缸之控制,並透過LabVIEW程式,建構UI介面進行整體系統整合;撰寫控制器程式,透過機械臂之運動學規劃出復健軌跡命令,建立閉迴路控制系統使機械臂達到復健軌跡追蹤之任務。控制方面,首先以模擬和實驗證明PID控制氣動人工肌肉之可行性,為了增加機械臂於復健追跡任務之精確性,本研究導入反覆式學習控制來改善PID控制器於非線性補償與相位落後問題,使機械臂於往返之復健軌跡下都具有一定的追蹤精度。
The purpose of this study is based on Pneumatic Artificial Muscles (PAMs) to develop a robot for two purposes. The first type is a redundant robot, which has 4-DOFs actuated by PAMs and 3-DOFs actuated by servos. The second type is a wearable exoskeleton robot, which is used for upper limb rehabilitation and is only actuated by PAMs. The advantages of using PAMs are making the robot’s joints have flexibility and improving the safety for rehabilitation.
For real-time implementation, we used an embedded controller (myRIO, made by National Instruments) to integrate the robot with sensors. Because the dynamics of PAM is nonlinear and complicated due to the nonlinear friction, a Proportional-Integral-Derivative (PID), Least Mean Square (LMS)-PID and Iterative Learning Control (ILC) have studied for the specified trajectory tracking tasks. Compared from the other two controllers, ILC has the best performance for repetitive trajectory tracking tasks.
中文摘要 i
英文摘要 ii
誌 謝 iii
目 錄 iv
表目錄 vi
圖目錄 viii
第一章 緒論 1
1.1 前言 1
1.2 文獻回顧 2
1.2.1氣動人工肌肉缸之發展與應用 2
1.2.2氣動人工肌肉缸之控制文獻 5
1.2.3反覆式學習控制之發展與應用 6
1.3 論文架構 7
第二章 機械臂設計與系統架構 8
2.1 機構設計介紹 8
2.1.1 人體上肢介紹 8
2.1.2 機械臂設計 10
2.2機械臂之運動學 17
2.2.1 機械臂之順向運動學 18
2.2.2 冗餘機械臂之反向運動學 22
2.3 機電系統介紹 25
2.3.1 機電系統設計 25
2.3.2 硬體介紹 26
2.3.2.1 嵌入式控制器 26
2.3.2.2 氣動人工肌肉缸 27
2.3.2.3 比例式方向控制閥 27
2.3.2.4 比例式壓力調節閥 29
2.3.2.5 壓力感測器 29
2.3.2.6 旋轉編碼器 30
2.3.2.7伺服機 30
2.3.3 軟體介紹 32
2.4 機械臂旋轉軸驅動方式介紹與PAM選擇 33
第三章 單軸機械臂之動態模型與控制器設計 36
3.1 單軸機械臂之動態模型 36
3.2 機械臂之控制器設計 41
3.2.1 PID控制器 41
3.2.2 自適應PID控制器 43
3.2.3 反覆式學習控制系統 46
第四章 動態模型參數鑑別與PID控制模擬 49
4.1 單軸機械臂之開迴路實驗 49
4.2 單軸機械臂之模型參數鑑別 51
4.2.1 實數型基因演算法 51
4.2.2 單軸機械臂之模型參數鑑別結果 56
4.3 PID控制模擬與PID參數鑑別 59
第五章 單軸機械臂之控制器實驗與探討 62
5.1 PID控制器實驗 62
5.2 自適應PID控制器實驗 64
5.3 反覆式學習控制器實驗 68
5.4 機械臂各軸之平均速度實驗 72
第六章 多軸復健軌跡下機械臂之控制實驗 74
6.1 復健軌跡規劃 74
6.1.1 基於Labview程式下建立機械臂運動學 74
6.1.2 復健軌跡規劃 76
6.2 復健軌跡下之多軸機械臂追跡實驗 80
6.3 機械臂加入負載實驗 92
6.4 雙軸同動復健軌跡實驗 102
第七章 結論及未來展望 110
參考文獻 112
[1] 機器人發展簡史 at
http://tech.sina.com.cn/d/2007-01-30/07211359480.shtml
[2] “Global burden of stroke,” WHO, 2008
[3] T. Truelsen and R. Bonita, “The worldwide burden of stroke: current status and future projections,” Handbook of Clinical Neurology, Vol.92 (3rd series), Stroke, Part I, M. Fisher, Editor, 2009, pp.327-336.
[4] D. H. Plettenburg, “Pneumatic actuators: A comparison of energy-to-mass ratio’s,” In: Proceedings IEEE Int. Conf. Rehabil. Robot, 2005, pp.545-549.
[5] B. Tondu, “Modelling of the McKibben artificial muscle: A review,” Journal of Intelligent Material Systems and Structures, Vol.23, No.3, 2012, pp.225-253.
[6] X. C. Zhu, G. L. Tao, B. Yao, and J. Cao, “Adaptive robust posture control of parallel manipulator driven by pneumatic artificial muscles with redundancy,” IEEE/ASME Trans. Mechatronics, Vol.13, 2008, pp.441– 450.
[7] I. Boblan and A. Schulz, “A Humanoid Muscle Robot Torso with Biologically Inspired Construction,” ISR/Robotik, 2010, pp.934-940.
[8] B. Tondu, S. Ippolito and J. Guiochet, “A Seven-degrees-of freedom Robot-arm Driven by Pneumatic Artificial Muscles for Humanoid Robots,” The International Journal of Robotics Research, Vol.24, No.4, 2005, pp.257-274
[9] D. G. Caldwell and N. G. Tsagarakis, “Soft Exoskeletons for Upper and Lower Body Rehabilitation - Design, Control and Testing,” International Journal of Humanoid Robotics, Vol.4, No.3, 2007, pp.1-24
[10] T. V. Minh, T. Tjahjowidodo, H. Romon, and H. V. Brussel, “Cascade position control of a single pneumatic artificial muscle–mass system with hysteresis compensation,” Mechatronics, Vol.20, No.3, 2010, pp.402-414.
[11] X. Shen, “Nonlinear model-based control of pneumatic artificial muscle servo systems,” Control Engineering Practice, Vol.18, No.3, 2010, pp.311-317.
[12] G. Andrikopoulos, G. Nikolakopoulos and S. Manesis, “Non-linear Control of Pneumatic Artificial Muscles,” 2013 21st Mediterranean Conference on Control & Automation (MED) Platanias-Chania, Crete, Greece, 2013, pp.729-734
[13] 游勝凱,基於人工肌肉缸之復健機器人之設計建模與控制,博士論文,國立臺北科技大學機電整合研究所,臺北,2014。
[14] 丁致皓,應用高階順滑模態控制於雙氣動人工肌肉制動之機械臂,碩士論文,國立臺北科技大學自動化科技研究所,臺北,2015。
[15] M. Uchiyama, “Formation of High-speed Motion Pattern of a Mechanical Arm by Trial”, Trans. SICE(Society for Implementation and Control Engineers(in Japanese), Vol.14, 1978, pp.706-712.
[16] S. S. Arimoto, S. Kawamura and F. Miyazaki, “Bettering Operation of Robots by Learning”, J. of Robotic System, Vol. 1 No2, 1984, pp.123-140.
[17] K. L. Moore, “Iterative Learning Control for Deterministic System”, Advances in Industrial Control Series. Springer London.
[18] N. Amann, D. H. Owen and E. Roger, “Iterative Learning Control for Discrete-Time System with Exponential Rate of Convergence”, IEEE Proceeding on Control Theory Applications, Vol.143, No2, 1996, pp.217-224.
[19] J. E. Kurek and M. B. Zaremba, “Iterative Learning Control Synthesis Based on 2-D system Theory”, IEEE Trans. on Automatic Control, Vol.38, No.1, 1993, pp.121-125.
[20] Z. Geng, D. J. Lee, R. L. Carroll, and L. H. Haynes “Learning Control System Design Based on 2-D Theory-An Application to parallel Link Manipulator”, IEEE. J. of Robotics and Automation, Vol.6, No.2, 1991, pp.1510-1515.
[21] T. W. S. Chow and Y. Fang, “An Iterative Learning Control Method for Continuous-Time System Based on 2-D System Theory”, IEEE Trans. on. Circuits System, Vol.45, No.4, 1998 pp.683-689.
[22] T. W. S. Chow and Y. Fang, “Iterative Learning Control of Linear Discrete-Time Multivariable System”, Automatica, Vol.34, No.4, 1998, pp.1459-1462.
[23] D. H. Hwang, S. R. Oh and Z. Bien, “Iterative Learning Control Method for Discrete-Time Dynamic System”, IEEE Proceedings-D, Vol.138, No.2, 1991 , pp.134-144.
[24] D. W. Wang, “A Simple Iterative Learning Control for Manipulator with Flexible Joint”, Automatica, Vol.31, No.9, pp.1341-1344, 1995.
[25] S. R. Oh, Z. Bien and I. H. Suh, “An Iterative Learning Control Method with Application for the Robot Manipulator”, IEEE J. of Robotics and Automation, Vol.4, No.5, 1998, pp.508-514.
[26] 曾偉誠,反覆式學習控制於液壓缸位置控制系統之研究,碩士論文,大葉大學機械所,2001.
[27] 黃加恩,反覆式學習控制應用於氣壓X-Y平台之控制,碩士論文,大葉大學機械工程所,2004.
[28] 梁裕旼,應用反覆式學習控制於龍門平台之定位控制,碩士論文,大葉大學機電自動化所,2007.
[29] R. A. R. C. Gopura and K. Kiguchi, “Mechanical Designs of Active Upper-Limb Exoskeleton Robots State-of-the-Art and Design Difficulties,” IEEE 11th International Conference on Rehabilitation Robotics Kyoto International Conference Center, Japan, 2009, pp.178-187.
[30] M. Yalcin and V. Patoglu, “Kinematics and Design of ASSISTON-SE:A Self-Adjusting Shoulder-Elbow Exoskeleton,” The Fourth IEEE RAS/EMBS International Conference on Biomedical Robotics and Biomechatronics, Roma, Italy, 2012, pp.1579-1585.
[31] N. T. Roach and D. E. Lieberman, “Upper body contributions to power generation during rapid overhand throwing in humans,” The Journal of Experimental Biology, The Company of Biologists Ltd, 2014, pp.2139-2149.
[32] A. C. Reddy, “Difference between D-H classical and modified convention for forward kinematics of robots with case study,” International Conference on Advanced Materials and manufacturing Technologies, JNTUH College of Engineering Hyderabad, 2014, pp.267-286.
[33] C. P. Chou, and B. Hannaford, “Measurement and modeling of McKibben Pneumatic Artificial Muscles,” IEEE Transactions on Robotics and Automation, Vol.12, No.1, 1996, pp.90–102.
[34] V. P. Nunes, H. B. B. D. Farias, J. V. D. F. Neto and P. T. C. Filho, “Adaptive PID controllers tuning: LMS gain scheduling training and industrial programmable logic Controllers,” Simposio Brasileiro de Automacao Inteligente(SBAI), 2007
[35] B. Widrow and M. E. Hoff, “Adaptive switching circuits,” 1960 IRE WESCON Convention Record, 1960, pp.96-104
[36] “Rotator Cuff and Shoulder Conditioning Program,” American Academy of Orthopaedic Surgeons, pp.1-10.
[37] G. D. Giacomo and S. Bellachioma, “Shoulder Surgery Renabilitation,” pp.1-215.
[38] C. J. Lin,“ Motion planning of redundant robots by perturbation method,, Mechatronics, April 2004, Volume 14, Issue 3, Pages 281–297
[39] Shadow Robot Company at
https://www.shadowrobot.com/products/dexterous-hand
[40] Festo Taiwan at
https://www.festo.com/cms/zh-tw_tw/index.htm
[41]冰凍肩的運動治療 at
http://www.mmh.org.tw/taitam/rehea/Education/Frozen%20shoulder/edu_fs.htm
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊