(3.238.173.209) 您好!臺灣時間:2021/05/12 13:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:吳柏宏
研究生(外文):Wu Po Hung
論文名稱:磁控濺鍍參數與鉭薄膜之特性影響研究
論文名稱(外文):A Study of Relationship between Magnetron Sputtered Parameters and Characterization of Tantalum Thin Films
指導教授:陳適範陳適範引用關係
口試委員:林於隆魏肇男薄慧雲王錫九陳適範
口試日期:2016-06-27
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:材料科學與工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
畢業學年度:105
語文別:中文
中文關鍵詞:氬氣流量微結構磁控濺鍍鉭金屬
外文關鍵詞:Argon flowMicrostructureMagnetron sputteringTantalum
相關次數:
  • 被引用被引用:0
  • 點閱點閱:228
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本實驗以高純度鉭靶材(4N)利用射頻磁控濺鍍法,在設定的濺鍍時間下改變濺鍍功率與氬氣流量沉積鉭金屬薄膜,分析三種不同濺鍍參數所製備之薄膜表面特性與電性。藉由X光繞射儀分析薄膜微結構;以電子顯微鏡觀察鉭金屬薄膜表面形貌及厚度;利用四點探針測量薄膜電阻。X光繞射圖譜中,濺鍍功率100 W以上,都有較明顯的結晶峰值存在;而較低的濺鍍功率50 W製備薄膜,則有寬廣繞射峰出現。從各方實驗結果可證實,氬氣流量的改變與功率、時間一樣可對薄膜性質產生變化;薄膜電性測量方面,在濺鍍時間5分鐘及15分鐘、濺鍍功率50 W的條件下,都有非晶結構出現,故薄膜電阻較高。在固定濺鍍功率100 W及150 W的情況下,提高氬氣流量有助於提升薄膜結晶性及降低電阻的功用,150 W、15分鐘之條件下,能得到最低之片電阻值為1.04 Ω/Sq.。提升氬氣流量,也會使鍍率產生改變,影響薄膜厚度。經過XPS peak 4.1軟體分析,隨著各參數的提升,薄膜的α相結構含量開始增加,最高可達到75.4%的含量。
This study use high purity tantalum target(4N) to prepare thin films by magnetron sputtering. We use three different magnetron sputtering parameters (power , time and argon flow), and analyze thin films that prepared. The phase and crystal structure of the deposited films was examined by X-ray diffraction (XRD). The morphology of the surface and thinkness of the deposited films were examined by scanning electron microscope (SEM). The sheet resistance of films was evaluated by four-point probe instrument. Results show that the thin films deposited in power 100 W or more, the thin films structure are crystalline phase. In general , the increasing of argon flow can improve the crystallinity and resistivity when the other parameters were fixed. And with power of 150 W , the increasing of argon flow will make the main peak of XRD pattern shift to the right. The the lowest sheet resistanc of films which were sputtered in 15 mins is 1.04 Ω/Sq.
目錄
摘 要 ii
ABSTRACT iiiv
誌 謝 iv
圖目錄 vii
表目錄 ix
第一章 前言 1
1.1 序言 1
1.2 研究背景與目的 3
第二章 文獻回顧 4
2.1 鉭與各類難熔金屬簡述 4
2.1.1 鉭金屬 4
2.1.2 鉭薄膜之應用 6
2.1.3 鎢金屬 7
2.1.4 鎢薄膜之應用 7
2.1.5 鈮金屬 8
2.2 薄膜沉積理論 8
2.2.1 薄膜沉積及成長過程 8
2.2.2 薄膜成長模型 10
2.3 濺鍍基礎理論 11
2.3.1 濺鍍原理 11
2.3.2 濺鍍系統 12
2.3.3 輝光放電效應 15
2.3.4 級聯效應 16
2.4 濺鍍參數與薄膜之關係 17
2.4.1 基板選擇 17
2.4.2 基板溫度 19
2.4.3 濺鍍工作氣體 22
2.4.4 工作氣體流量 22
第三章 實驗流程與方法 23
3.1 實驗流程 23
3.2 基板清洗 24
3.3 實驗方法 24
3.3.1 濺鍍參數與薄膜特性關係 24
3.4 實驗器材與分析儀器 25
3.4.1 濺鍍設備 25
3.4.2 X光繞射儀(XRD) 28
3.4.3 掃描式電子顯微鏡(SEM) 28
3.4.4 四點探針 29
第四章 結果與討論 30
4.1 濺鍍參數變化對薄膜之影響 30
4.1.1 XRD 微結構分析 30
4.1.2 SEM 表面形貌觀察 32
4.1.3 SEM 斷面膜厚 34
4.1.4 四點探針 電性測量 36
4.1.5 分峰分析 39
第五章 結論 43
參考資料 44
[1] A.L.S Loke, J. T. Wezel, P. H. Townsend, “Kinetics of copper drift in low-κ polymer interlevel dielectrics.,” Transactions on Electron Devices,Vol.46, 1999, pp. 2178-2187.
[2] K Holloway, PM Fryer, C Cabral, “Tantalum as a diffusion barrier between copper and silicon: Failure mechanism and effect of nitrogen additions.,” Journal of Applied Physics, Vol.71, 1992, pp. 5433-5444.
[3] M. A. Nicolet, “Diffusion barriers in thin Films,” Thin Solid Films, 1978,
pp. 415.
[4] E. Weiss, “Preliminary ecological risk assessment to assess the implications of replacing chromium plating with tantalum coatings.,” MS thesis, 1999.
[5] R. Hoogeveen, M. Moske, “Texture and phase transformation of sputter-deposited metastable Ta films and Ta/Cu multilayers.,” Thin Solid Films, 1996.
[6] M.H Read, C. Altman, “A New Structure in Tantalum Thin Films.,” Applied Physics Letters, Vol.7, No.3, 1965, pp. 51-52.
[7] C.J. Chiu, S.P. Chang, W.Y. Weng, S.J. Chang, “Amorphous IGZO Nonvolatile Memory Thin Film Transistors Using Ta2O5 Gate Dielectric.,” Advanced Materials Research, Vol.486, 2012, pp. 233-238.
[8] Atanassova, E ., Paskaleva, A., Spassov, D., “Doping of Ta2O5 as a way to extend its potential for DRAM applications.,” International Conference on Microelectronics Proceedings (MIEL), 2010.
[9] HJKDJ Choi, “Nonvolatile memory characteristics of a multi-stacked MOS capacitor using Ta2O5 and TaAlO4 as the charge trap layer.,” Journal of Ceramic Processing Research Vol.12, 2011, pp. 555-560.
[10] Eishi Ibe, Kenichi Osada, “Reliable Memory Cell Design for Environmental Radiation-Induced Failures in SRAM.,” Low Power and Reliable SRAM Memory Cell and Array Design, Vol.31, 2011, pp. 89-124.
[11] Liann-Be Chang, Ming-Jer Jeng, Tsung-Wen Chang, Chun-Yi Tung, Chia-Ta Chen, and Wen-Jia Lee, “Optical Nanostructures for Photovoltaics.,” The Anti-Reflection Coating of Triple Junction (InGaP/InGaAs/Ge) Solar Cells, 2010, pp. 21-24.
[12] J Rao, S Varlamov, J Park, S Dligatch, A Chtanov, “Optimization of Dielectric-Coated Silver Nanoparticle Films for Plasmonic-Enhanced Light Trapping in Thin Film Silicon Solar Cells.,” Plasmonics Vol.8, 2013, pp. 785-791.
[13] K. Miura, T. Osawa, Y. Yokota, O. Hanaizumi, “Fabrication and evaluation of Ta2O5:Y2O3 co-sputtered thin films.,” Result in Physics 4, 2014,
pp. 185-186.
[14] J.Y. Chen, Y.X. Leng, X. Zhang, P. Yang, H. Sun, J. Wang,G.J. Wan, A.S. Zhao, N. Huang,* P.K. Chu, “Effect of tantalum content of titanium oxide film fabricated by magnetron sputtering on the behavior of cultured human umbilical vein endothelial cells (HUVEC).,” Nuclear Instruments and Methods in Physics Research Vol.242, 2006, pp. 26-29.
[15] Yajun Weng, Junying Chen, Qiufen Tu, Quanli Li, Manfred F. Maitz and Nan Huang, “Biomimetic modification of metallic cardiovascular biomaterials: from function mimicking to endothelialization in vivo.,” nterface Focus vol. 2 No. 3, 2012, pp. 356-365.
[16] Haidong He, Yongbin Zeng, Ningsong Qu, “An investigation into wire electrochemical micro machining of pure tungsten,” Precision Engineering, 2016.
[17] Phung Thi Hong Van, Do Duc Dai, Nguyen Van Duy, Nguyen Duc Hoa, Nguyen Van Hieu, “Ultrasensitive NO2 gas sensors using tungsten oxide nanowires with multiple junctions self-assembled on discrete catalyst islands via on-chip fabrication,” Sensors and Actuators B: Chemical, 2016.
[18] Victor Ioan Stanciu, Veronique Vitry, Fabienne Delaunois, “Tungsten carbide powder obtained by direct carburization of tungsten trioxide using mechanical alloying method,” Journal of Alloys and Compounds, 2016,
pp. 302-308.
[19] V. Madhavi, P.Kondaiah, O.M.Hussain, S.Uthanna, “Structural optical and electrochromic properties of RF magnetron sputtered WO3 thin films,” Physica B, 2014.
[20] Yoon-Tae Park, Young Kyu Hong, Ki-Tae Lee, “Characterization of electrochromic WO3 thin films fabricated by an RF sputtering,” Ceramic Processing Research, 2013, pp. 337~341.
[21] N. Mendoza-Agüero, Y.Kumar, S.F.Olive-Méndezc, J.Campos-Alvarez, V.Agarwal, “Optimization of tungsten oxide films electro-deposited on macroporous silicon for gas sensing applications: Effect of annealing temperature,” Ceramics International, 2014, pp. 16603-16610.
[22] I Petrov, PB Barna, Lars Hultman, JE Greene, “Microstructural evolution during film growth.,” Journal of Vacuum Science & Technology A,2003, pp. 117-128.
[23] J. Venables,, “Nucleation and growth of thin films.,” Rep. Phys., Vol.47, 2014, pp. 399-459..
[24] J. Venables, Introduction to Surface and Thin Film Processes, Cambridge University Press, 2000.
[25] W. R. Grove, “On Some Phenomena of the Voltaic Discharge.,” The Philosophical Magaznie 16, 1840, pp. 478-482.
[26] F. P. Michel, “Coating by cathode disintegration.”. US 專利: 2,146,025, 1935.
[27] Kiyotaka Wasa,Makoto Kitabatake,Hideaki Adachi, Thin film materials technology: sputtering of control compound materials., William Andre, Inc, 2004, pp. 139-147.
[28] W. K. 且 H. S..Japan 專利: 642,012, 1967.
[29] K. Wasa, Handbook of sputter deposition technology., 1992, p. 98.
[30] C. A. Bishop, Vacuum Deposition Onto Webs, Films and Foils(Third Edition), 2015, pp. 277–287.
[31] C. A. Michaluk, “Tantalum 101: Economics and Technology of Ta Materials,” SEMICONDUCTOR INTERNATIONAL, 2000, pp. 271-286.
[32] L.G. Feinstein, R.D. Huttemann,, “Factors controlling the structure of sputtered Ta films.,” Thin Solid Films, 1972, pp. 129-145.
[33] D. Mills, “The structure of sputtered tantalum.,” Journal of Canadian Ceramic Society, 1965, pp. 305-311.
[34]D. M. Mattox, G. J. Kominak, “ Structure modification by ion bombardment during.,” The Journal of Vacuum Science & Technology, Vol. 9, 1971, pp. 528-532.
[35] D. W. Matson, M. D. Mertz, E. D. McClanahan, “High rate sputter deposition of wear resistant tantalum coatings.,” Journal of Vacuum Science and Technology A, pp. 1791-1796.
[36] N. Schwartz, E.D. Feit, “Impurity effects in the nucleation of alpha (bcc)-tantalum or beta-tantalum films.,” Journal of The Eletrochemical Society, 1977.
[37] K. Heiber, E. Lautenbacher, “Stabilization of sputtered β-tantalum by a tantalum.,” Thin Solid Films, Vol, 66, 1980, pp. 191-196.
[38]D. Fischer, O. Meissner, B. Bendjus, J. Schreiber, M. Stavrev, C. Wenzel,, “AFM Characterization of Ta-based Diffusion Barriers for Use in Future Semiconductor Metallization.,” Surface and Interface Analysis, 1997.
[39]D.W. Matson, E.D. McClanahan, S. Lee, J.P. Rice, D Windover, “Effect of sputtering parameters on tantalum coatings for gun-bore applications.,” 2000.
[40] A. H. A.A. Navid, “Nanostructured alpha and beta tantalum formation—Relationship between plasma parameters and microstructure,” Materials Science and Engineering A, 2012, pp. 49-56.
[41]Sterling Myers, Jianliang Lin, Roberto Martins Souza, William D. Sproul, “The β to α phase transition of tantalum coatings deposited by modulated pulsed power magnetron sputtering,” Surface & Coatings Technology, 2013, pp.38-45.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔