|
Reference
[1]H. Ajamein, & M. Haghighi, On the microwave enhanced combustion synthesis of CuO – ZnO – Al 2O3 nanocatalyst used in methanol steam reforming for fuel cell grade hydrogen production : Effect of microwave irradiation and fuel ratio, ENERGY Convers. Manag. 118 (2016) 231–242. [2]K. Gurunathan, et al., Visible light assisted highly efficient hydrogen production from H2S decomposition by CuGaO2 and CuGa1-xInxO2 delafossite oxides bearing nanostructured co-catalysts, Catal. Commun. 9 (2008) 395–402. [3]C. Taddee, T. Kamwanna, & V. Amornkitbamrung, Characterization of transparent superconductivity Fe-doped CuCrO2 delafossite oxide, Appl. Surf. Sci. 380 (2016) 237–242. [4]R. Nagarajan, A. D. Draeseke, A. W. Sleight, & J. Tate, p-type conductivity in CuCr1-xMgxO2 films and powders, J. Appl. Phys. 89 (2001) 8022–8025. [5]T. W. Chiu, K. Tonooka, & N. Kikuchi, Fabrication of transparent CuCrO2:Mg/ZnO p-n junctions prepared by pulsed laser deposition on glass substrate, Vacuum. 83 (2008) 614–617. [6]T. W. Chiu, S. W.Tsai, Y. P. Wang, & K. H. Hsu, Preparation of p-type conductive transparent CuCrO 2:Mg thin films by chemical solution deposition with two-step annealing, Ceram. Int. 38 (2012) S673–S676. [7]M. Addamo, et al. Photocatalytic thin films of TiO2 formed by a sol-gel process using titanium tetraisopropoxide as the precursor, Thin Solid Films. 516 (2008) 3802–3807. [8]M. A. Marquardt, N. A. Ashmore, & D. P. Cann, Crystal chemistry and electrical properties of the delafossite structure, Thin Solid Films. 496 (2006) 146–156. [9]T. W. Chiu, B. S. Yu, Y. R. Wang, K. T. Chen, & Y.T. Lin, Synthesis of nanosized CuCrO2 porous powders via a self-combustion glycine nitrate process, J. Alloys Compd. 509 (2011) 2933–2935. [10]T. W. Chiu, & P. S. Huang, Preparation of delafossite CuFeO2 coral-like powder using a self-combustion glycine nitrate process, Ceram. Int. 39 (2013) S575–S578. [11]O. Yildiza, et al., Properties of ceria based novel anode nanopowders synthesized by glycine-nitrate process, Acta Phys. Pol. A. 123 (2013) 432–435. [12]T. He, Q. He, & N. Wang, Synthesis of nano-sized YSZ powders from glycine-nitrate process and optimization of their properties, J. Alloys Compd. 396 (2005) 309–315. [13]C.C. Hwang, T. Y. Wu, J. Wan, & J. S. Tsai, Development of a novel combustion synthesis method for synthesizing of ceramic oxide powders, Mater. Sci. Eng. B 111 (2004) 49–56. [14]S. Lee, et al., Highly controlled thermal behavior of a conjugated gadolinia-doped ceria nanoparticles synthesized by particle-dispersed glycine-nitrate process, J. Eur. Ceram. Soc. 37 (2017) 2159–2168. [15]S. Y. Park, C. W. Na, J. H. Ahn, R. H. Song, & J. H. Lee, Preparation of highly porous NiO–gadolinium-doped ceria nano-composite powders by one-pot glycine nitrate process for anode-supported tubular solid oxide fuel cells, J. Asian Ceram. Soc. 2 (2014) 339–346. [16] C. W. Chang, Combustion Synthesis of Aluminum Nitride Powder : New Process Development, Master , National Cheng Kung University, (2003). [17] Y. T. Lin, Synthesis of Novel Cathode Materials Ba0.5Sr0.5CuxFe1-xO3-δ for IT-SOFC by Solution Combustion Method, Master, National Taipei University of Technology, (2009). [18] C. h. Luo, T. Hu, Y. Mao, L. He, SHS Technology and Application, Hans Publishers 2, 23 (2012) 12 -17. [19]S.Kameoka, T. Tanabe, & A. P. Tsai, Self-assembled porous nano-composite with high catalytic performance by reduction of tetragonal spinel CuFe2O4, Appl. Catal. A Gen. 375 (2010) 163–171. [20]T. W. Chiu, et al., Improving steam-reforming performance by nanopowdering CuCrO2, Int. J. Hydrogen Energy. 39 (2014) 14222–14226. [21]Y. Huang, , S. Wang, , A. Tsai, & S. Kameoka, Reduction behaviors and catalytic properties for methanol steam reforming of Cu-based spinel compounds CuX2O4 ( X ¼ Fe , Mn , Al , La ), Ceram. Int. 40 (2014) 4541–4551. [22]H. Mitani, Y. Xu, T. Hirano, M. Demura, & R. Tamura, Catalytic properties of Ni-Fe-Mg alloy nanoparticle catalysts for methanol decomposition, 281 (2017) 669–676. [23] M. Michalska-Domańska, J. Bystrzycki, B. Jankiewicz, & Z. Bojar, Effect of the grain diameter of Ni-based catalysts on their catalytic properties in the thermocatalytic decomposition of methanol, Comptes Rendus Chim. 20 (2017) 156–163. [24]N. Shimoda, et al., Methanol oxidative decomposition over zirconia supported silver catalyst and its reaction mechanism, Appl. Catal. A Gen. 507 (2015) 56–64. [25]W. S. Chen, , F. W. Chang, L. S. Roselin, T. C. Ou, & S. C. Lai, Partial oxidation of methanol over copper catalysts supported on rice husk ash, J. Mol. Catal. A Chem. 318 (2010) 36–43. [26]P. Reuse, A. Renken, K. Haas-Santo, O. Görke, & K. Schubert, Hydrogen production for fuel cell application in an autothermal micro-channel reactor, Chem. Eng. J. 101 (2004) 133–141. [27]Y. Ando, & K. Matsuoka, ScienceDirect Role of Fe in Co Fe particle catalysts for suppressing CH4 production during ethanol steam reforming for hydrogen production, Int. J. Hydrogen Energy. 41 (2016) 12862–12868. [28]J. Lu, X. Li, S. He, C. Han, & G. Wan, ScienceDirect Hydrogen production via methanol steam reforming over Ni-based catalysts : Influences of Lanthanum ( La ) addition and supports, Int. J. Hydrogen Energy. (2016) 1–11. [29]F. Joensen, & J. R. Rostrup-Nielsen, Conversion of hydrocarbons and alcohols for fuel cells, J. Power Sources. 105 (2002) 195–201. [30]B. Höhlein, et al., Hydrogen from Methanol for Fuel Cells in Mobile Systems: Development of a Compact Reformer, J. Power Sources. 61 (1996) 143–147.
|