跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2024/12/06 20:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃百胤
研究生(外文):Bae-Yinn Hwang
論文名稱:CuCr1-xFexO2奈米粉末在甲醇水蒸氣下的產氫以及還原行為之研究
論文名稱(外文):Reduction behavior and hydrogen production of CuCr1-xFexO2 nanopowder under methanol steam synthesized by self-combustion glycine nitrate process
指導教授:邱德威
指導教授(外文):Te-Wei Chiu
口試委員:雷健民吳玉娟
口試委員(外文):Chien-Ming LeiYu-Chuan Wu
口試日期:2017-06-27
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:材料科學與工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:67
中文關鍵詞:銅基觸媒蒸氣重組還原產氫
外文關鍵詞:CuCr1-xFexO2Cu-based catalyststeam reformingHydrogen Production
相關次數:
  • 被引用被引用:0
  • 點閱點閱:220
  • 評分評分:
  • 下載下載:23
  • 收藏至我的研究室書目清單書目收藏:0
本研究以甘胺酸燃燒法製備具有高表面積之多孔性赤銅鐵礦化合物CuCr1-xFexO2奈米粉末作為銅基觸媒的前驅物,探討CuCr1-xFexO2奈米粉末中的Fe含量多寡對於在甲醇水蒸氣下的還原行為以及產氫性能之影響。甲醇水蒸氣將Cu粒子在非還原氣氛下以低溫還原至氧化物擔體表面,甚至不需經過無須經過一般商用觸媒所需的活化過程即可使用。並經由控制Cu粒子尺寸在奈米等級來提升觸媒表面積與分散性。由XRD圖在200C時便可觀察到銅金屬相的繞射峰,以SEM觀察經過甲醇水蒸氣還原後的粉末,保持著多孔狀的結構並有極細微的銅粒子均勻分布在表面,其比表面積隨著鐵元素比例的下降由4.7 m2/g變化至28.56 m2/g,再由TEM觀察其微結構同時以EDX確認鐵的含量。產出之氣體則由配備TCD偵測器之GC分析後計算產率。 
The delafossite structure CuCr1-xFexO2 nanopowders (x = 0-1) was successfully synthesized by self-combustion glycine nitrate process (GNP) which has much higher surface area than bulk powder prepared by traditional solid state reaction. In this study, CuCr1-xFexO2 nanopowders as a precursor for copper based catalyst were applied to steam reforming of methanol (SRM) process for hydrogen production. Catalytic performance was enhanced with the nanoization of CuCr1-xFexO2 powders which leads to a higher surface area and the well dispersion of copper particles. Furthermore, CuCr1-xFexO2 nanopowders could be directly reduced by methanol steam without the typically activation process in hydrogen. Changes of CuCr1-xFexO2 nanopowders were determined by the X-ray diffraction (XRD) analysis. The cotton candy-like porous structure and the dispersion of Cu particles after the SRM process were revealed by scanning electron microscopy (SEM) together with the EDX elemental analysis. Microstructure of as-combusted nanopowders was determined by a transmission electron microscopy (TEM). The BET measurement showed the surface area of self-combusted CuCr1-xFexO2 nanopowders was over ten times larger than the powder prepared by traditional solid-state reaction and basically increased with the iron contents decreased. The production rate of hydrogen was analyzed with a gas chromatograph (GC) equipped with a thermal conductivity detector (TCD).
TABLE OF CONTENTS

摘 要 ii
ABSTRACT iii
誌 謝 v
TABLE OF CONTENTS vi
List of tables viii
List of figures ix
Chapter 1 Introduction 1
Chapter 2 Literature review 3
2.1 Delafossite structure 3
2.2 Self-combusted Glycine nitrate process 5
2.3 Copper based catalyst 9
2.4 Methanol reforming 11
Chapter 3 Experimental details 19
3.1 Experimental reagents 19
3.2 Experimental gases 19
3.3 Precursor preparation 20
3.4 Thermal treatment of CuCr1-xFexO2 nanopowder in nitrogen flow 22
3.5 Schematic diagram of the experiment system 24
3.6 Characteristic analysis 26
3.6.1 Crystalline determination 26
3.6.2 Scanning electron microscope image observation 27
3.6.3 Transmission electron microscopy 29
3.6.4 The specific surface area measurement 30
3.6.5 Gas chromatography 31
Chapter 4 Result and discussion 33
4.1 X-ray analysis of the as-combusted nanopowders 33
4.2 SEM images of as-combusted nanopowders 35
4.3 TEM analysis of as-combusted nanopowders 43
4.4 BET analysis of the as-combusted nanopowders 44
4.5 Characteristic of copper chromium iron oxide after steam reforming of methanol process 45
4.5.1 X-ray analysis of CuCr1-xFexO2 nanopowders after steam reforming of methanol process 45
4.5.2 SEM images of CuCr1-xFexO2 nanopowders after SRM process 51
4.5.3 Gas chromatograph analysis 57
Chapter 5 Conclusion 61
Reference 62
Paper Publication and Conference Presentations 66
Reference

[1]H. Ajamein, & M. Haghighi, On the microwave enhanced combustion synthesis of CuO – ZnO – Al 2O3 nanocatalyst used in methanol steam reforming for fuel cell grade hydrogen production : Effect of microwave irradiation and fuel ratio, ENERGY Convers. Manag. 118 (2016) 231–242.
[2]K. Gurunathan, et al., Visible light assisted highly efficient hydrogen production from H2S decomposition by CuGaO2 and CuGa1-xInxO2 delafossite oxides bearing nanostructured co-catalysts, Catal. Commun. 9 (2008) 395–402.
[3]C. Taddee, T. Kamwanna, & V. Amornkitbamrung, Characterization of transparent superconductivity Fe-doped CuCrO2 delafossite oxide, Appl. Surf. Sci. 380 (2016) 237–242.
[4]R. Nagarajan, A. D. Draeseke, A. W. Sleight, & J. Tate, p-type conductivity in CuCr1-xMgxO2 films and powders, J. Appl. Phys. 89 (2001) 8022–8025.
[5]T. W. Chiu, K. Tonooka, & N. Kikuchi, Fabrication of transparent CuCrO2:Mg/ZnO p-n junctions prepared by pulsed laser deposition on glass substrate, Vacuum. 83 (2008) 614–617.
[6]T. W. Chiu, S. W.Tsai, Y. P. Wang, & K. H. Hsu, Preparation of p-type conductive transparent CuCrO 2:Mg thin films by chemical solution deposition with two-step annealing, Ceram. Int. 38 (2012) S673–S676.
[7]M. Addamo, et al. Photocatalytic thin films of TiO2 formed by a sol-gel process using titanium tetraisopropoxide as the precursor, Thin Solid Films. 516 (2008) 3802–3807.
[8]M. A. Marquardt, N. A. Ashmore, & D. P. Cann, Crystal chemistry and electrical properties of the delafossite structure, Thin Solid Films. 496 (2006) 146–156.
[9]T. W. Chiu, B. S. Yu, Y. R. Wang, K. T. Chen, & Y.T. Lin, Synthesis of nanosized CuCrO2 porous powders via a self-combustion glycine nitrate process, J. Alloys Compd. 509 (2011) 2933–2935.
[10]T. W. Chiu, & P. S. Huang, Preparation of delafossite CuFeO2 coral-like powder using a self-combustion glycine nitrate process, Ceram. Int. 39 (2013) S575–S578.
[11]O. Yildiza, et al., Properties of ceria based novel anode nanopowders synthesized by glycine-nitrate process, Acta Phys. Pol. A. 123 (2013) 432–435.
[12]T. He, Q. He, & N. Wang, Synthesis of nano-sized YSZ powders from glycine-nitrate process and optimization of their properties, J. Alloys Compd. 396 (2005) 309–315.
[13]C.C. Hwang, T. Y. Wu, J. Wan, & J. S. Tsai, Development of a novel combustion synthesis method for synthesizing of ceramic oxide powders, Mater. Sci. Eng. B 111 (2004) 49–56.
[14]S. Lee, et al., Highly controlled thermal behavior of a conjugated gadolinia-doped ceria nanoparticles synthesized by particle-dispersed glycine-nitrate process, J. Eur. Ceram. Soc. 37 (2017) 2159–2168.
[15]S. Y. Park, C. W. Na, J. H. Ahn, R. H. Song, & J. H. Lee, Preparation of highly porous NiO–gadolinium-doped ceria nano-composite powders by one-pot glycine nitrate process for anode-supported tubular solid oxide fuel cells, J. Asian Ceram. Soc. 2 (2014) 339–346.
[16] C. W. Chang, Combustion Synthesis of Aluminum Nitride Powder : New Process Development, Master , National Cheng Kung University, (2003).
[17] Y. T. Lin, Synthesis of Novel Cathode Materials Ba0.5Sr0.5CuxFe1-xO3-δ for IT-SOFC by Solution Combustion Method, Master, National Taipei University of Technology, (2009).
[18] C. h. Luo, T. Hu, Y. Mao, L. He, SHS Technology and Application, Hans Publishers 2, 23 (2012) 12 -17.
[19]S.Kameoka, T. Tanabe, & A. P. Tsai, Self-assembled porous nano-composite with high catalytic performance by reduction of tetragonal spinel CuFe2O4, Appl. Catal. A Gen. 375 (2010) 163–171.
[20]T. W. Chiu, et al., Improving steam-reforming performance by nanopowdering CuCrO2, Int. J. Hydrogen Energy. 39 (2014) 14222–14226.
[21]Y. Huang, , S. Wang, , A. Tsai, & S. Kameoka, Reduction behaviors and catalytic properties for methanol steam reforming of Cu-based spinel compounds CuX2O4 ( X ¼ Fe , Mn , Al , La ), Ceram. Int. 40 (2014) 4541–4551.
[22]H. Mitani, Y. Xu, T. Hirano, M. Demura, & R. Tamura, Catalytic properties of Ni-Fe-Mg alloy nanoparticle catalysts for methanol decomposition, 281 (2017) 669–676.
[23] M. Michalska-Domańska, J. Bystrzycki, B. Jankiewicz, & Z. Bojar, Effect of the grain diameter of Ni-based catalysts on their catalytic properties in the thermocatalytic decomposition of methanol, Comptes Rendus Chim. 20 (2017) 156–163.
[24]N. Shimoda, et al., Methanol oxidative decomposition over zirconia supported silver catalyst and its reaction mechanism, Appl. Catal. A Gen. 507 (2015) 56–64.
[25]W. S. Chen, , F. W. Chang, L. S. Roselin, T. C. Ou, & S. C. Lai, Partial oxidation of methanol over copper catalysts supported on rice husk ash, J. Mol. Catal. A Chem. 318 (2010) 36–43.
[26]P. Reuse, A. Renken, K. Haas-Santo, O. Görke, & K. Schubert, Hydrogen production for fuel cell application in an autothermal micro-channel reactor, Chem. Eng. J. 101 (2004) 133–141.
[27]Y. Ando, & K. Matsuoka, ScienceDirect Role of Fe in Co Fe particle catalysts for suppressing CH4 production during ethanol steam reforming for hydrogen production, Int. J. Hydrogen Energy. 41 (2016) 12862–12868.
[28]J. Lu, X. Li, S. He, C. Han, & G. Wan, ScienceDirect Hydrogen production via methanol steam reforming over Ni-based catalysts : Influences of Lanthanum ( La ) addition and supports, Int. J. Hydrogen Energy. (2016) 1–11.
[29]F. Joensen, & J. R. Rostrup-Nielsen, Conversion of hydrocarbons and alcohols for fuel cells, J. Power Sources. 105 (2002) 195–201.
[30]B. Höhlein, et al., Hydrogen from Methanol for Fuel Cells in Mobile Systems: Development of a Compact Reformer, J. Power Sources. 61 (1996) 143–147.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top