跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2024/12/05 22:13
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林柏瑋
研究生(外文):Lin,Po-Wei
論文名稱:粉末冶金鈦鎳鉬合金之組成與性質研究
論文名稱(外文):Compositions and characteristics of the Ti-Ni-Mo alloy by the powder metallurgy
指導教授:楊永欽楊永欽引用關係
指導教授(外文):Yang,Yung-Chin
口試委員:李志偉吳明偉陳貞光
口試日期:2017-06-29
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:材料科學與工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:79
中文關鍵詞:橫向破裂強度鈦鎳鉬合金真空燒結粉末冶金
外文關鍵詞:Transverse rupture strengthTi-Ni-Mo alloyVacuum sinteringPowder metallurgy
相關次數:
  • 被引用被引用:0
  • 點閱點閱:184
  • 評分評分:
  • 下載下載:12
  • 收藏至我的研究室書目清單書目收藏:0
鈦合金的發展歷史相當悠久,而降低製程成本和擁有優異性質是鈦合金發展的兩個主要因素,利用粉末冶金之鈦合金,雖然成本低廉、開發流程短,但通常會造成相對密度和強度較其他製造方式來得低,而添加鎳、鉬不僅能降低材料成本,減少孔隙率並能提升機械性質。本實驗針對Ti-xNi-6Mo (x:1~9 wt.%) 之鈦合金,分析經由粉末冶金及真空燒結製程鈦鎳鉬合金之顯微組織與機械性質,期望得到高硬度、高強度、耐蝕性佳之鈦合金。
實驗結果發現,於1200°C真空燒結下,Ti-9Ni-6Mo合金可得到較高之洛氏硬度(67.15 HRA)及最大之極化阻抗值(18896 Ω/cm2),但因晶粒粗大且有硬脆鈦鎳金屬間化合物生成,橫向破裂強度則大幅下降;而Ti-4Ni-6Mo合金因微結構呈現以α相在晶粒內析出達到強化之效果,及破斷面呈現韌窩狀破壞為主的特徵,且晶粒不至於過度粗大,故具有最高之橫向破裂強度達(1116.8 MPa)。
There is a very long history of the development of titanium alloy, and the two main reasons for developing titanium alloy are low manufacturing cost and its excellent mechanical properties. Although the manufacturing cost can be lower through powder metallurgy, the relative density and strength will also be lower than the titanium alloy manufactured by other methods. However, adding nickel and molybdenum can improve the mechanical properties and lower the porosity of titanium alloy while maintaining the low cost. In this experiment, we adjust the weight percent of Ti, Ni and Mo powder of Ti-xNi-6Mo (x:1~9) and analyze the microstructure and the mechanical properties of the Ti-Ni-Mo alloy prepared by powder metallurgy and vacuum sintering.
3
The results show that after vacuum sintering at 1200°C, Ti-9Ni-6Mo alloy has higher Rockwell hardness (67.15 HRA) and corrosion resistance (18896 Ω/cm2) among all but the formation of brittle Ti-Ni intermetallic compound with large grain size will let the transverse rupture strength drop sharply. However, Ti-4Ni-6Mo alloy has highest transverse rupture strength (1116.8 MPa) because the structure is strengthened by α phase precipitating in the grain, and fracture surface has the feature of dimple fracture.
中文摘要 i
英文摘要 ii
誌謝 iv
目錄 v
表目錄 viii
圖目錄 x
第一章 緒論 1
1.1 前言 1
1.2 研究動機與目的 2
第二章 基礎理論與文獻回顧 3
2.1 金屬鈦 3
2.2 鈦合金 5
2.2.1 α型鈦合金 6
2.2.2 α + β型鈦合金 7
2.2.3 β型鈦合金 7
2.3 強化機制 9
2.3.1 固溶強化 9
2.3.2 散佈強化 11
2.3.3 細晶強化 12
2.4 元素添加 12
2.4.1 鉬元素 15
2.4.2 鎳元素 15
2.4.3 鈦鎳與鈦鉬合金 15
2.5 破斷面分析 20
2.5.1 韌窩破壞 20
2.5.2 劈裂 20
2.5.3 沿晶破壞 21
2.5.4 穿晶破壞 21
2.6 鈦合金腐蝕行為 22
2.6.1 腐蝕的形式 22
2.7 腐蝕特性 23
2.8 粉末冶金簡介 23
2.8.1 基本製程 24
2.8.2 粉末冶金特性 25
2.8.3 燒結原理 26
第三章 實驗流程與方法 27
3.1 實驗流程 27
3.1.1 原始粉末 28
3.1.2 粉末混合 29
3.1.3 成形 29
3.1.4 真空燒結 30
3.2 分析方法 31
3.2.1 X-ray繞射 31
3.2.2 金相與顯微組織 31
3.2.3 定量金相 32
3.2.4 體積收縮率 32
3.2.5 密度量測 32
3.2.6 洛氏硬度試驗 33
3.2.7 奈米壓痕 33
3.2.8 三點抗彎試驗 34
3.2.9 動態電位極化腐蝕試驗 35
第四章 結果與討論 36
4.1 原始粉末 36
4.2 實驗參數設計 38
4.3 粉末混合 40
4.4 鈦鎳鉬合金性質 42
4.4.1 X-ray繞射分析 42
4.4.2 體積收縮率 45
4.4.3 相對密度 46
4.4.4 顯微組織 47
4.4.5 平均晶粒尺寸 52
4.4.6 定量金相 56
4.4.7 洛氏硬度 58
4.4.8 奈米壓痕硬度 59
4.4.9 橫向破裂強度 60
4.4.10 彈性模數 61
4.4.11 破斷面觀察 65
4.4.12 動態電位極化腐蝕 69
4.4.13 各性質影響因素 70
4.4.14 綜合統整及比較 71
第五章 結論 73
參考文獻 74
[1] Margam Chandrasekaran, Zhang Su Xia, “Effect of alloying time and composition on the mechanical properties of Ti alloy,” Materials Science and Engineering:A, vol. 394, 2005, pp. 220-228.
[2] Kazuhiko Majima, “A study on sintered titanium alloy produced by blended elemental process,” Journal of the Japan Society of Powder and Powder Metallurgy, vol. 36(8), 1989, pp. 917-925.
[3] Vladimir Moxson, Oleg Senkov, Francis Herbert Froes, “Innovations in titanium powder processing,” JOM, 2000, vol. 52, pp. 12.
[4] Yoshimitsu Okazaki, Yoshimasa Ito, Kenj Kyo, Tetsuya Tateishi, “Corrosion resistance and corrosion fatigue strength of new titanium alloys for medical implants without V and Al,” Materials Science Engineering:A, vol. 213, 1996, pp. 138-147.
[5] Mathew Kuttolamadom, “Investigation of the Machining of Titanium Components for Lightweight Vehicles,” SAE Technical Paper, 2010.
[6] Sethumadhvan Rao, Takashi Ushida, Tetsuya Tateishi, Yoshimitsu Okazaki, “Effect of Ti, Al, and V ions on the relative growth rate of fibroblasts (L929) and osteoblasts (MC3T3-E1) cells,” Bio-Medical Materials Engineering, vol. 6(2), 1996, pp. 79-86.
[7] Yoshimitsu Okazaki, Kenj Kyo, Yoshimasa Ito, Tetsuya Tateishi, “Effect of Mo and Pd on corrosion resistance of V–free titanium alloys for medical implants,” Materials Transactions, JIM, vol. 38(4), 1997, pp. 344-352.
[8] Steven G. Keener, “Advanced Low-cost Titanium-alloy Materials for Aerospace Fastener Applications,” SAE Technical Paper, 2007.
[9] B. Ralph, “Titanium alloys: an atlas of structures and fracture features,” Crc Press, 2006.
[10] Christoph Leyens, Manfred Peters, “Titanium and titanium alloys: fundamentals and applications,” 2003.
87
[11] 洪胤庭,「純鈦及鈦合金特性及製程介紹」,中工高雄會刊,第21卷,第1期,高雄,2013,第12-22頁
[12] M.J. Donachie, “Titanium: A Technical Guide,” ASM International, 2000, pp. 22.
[13] 林殿傑,鑄造鈦-鉬-鐵及鈦-鉬-鉻合金性質研究,國立成功大學,博士論文材料科 國立成功大學,博士論文材料科 國立成功大學,博士論文材料科 國立成功大學,博士論文材料科 國立成功大學,博士論文材料科 國立成功大學,博士論文材料科 國立成功大學,博士論文材料科 國立成功大學,博士論文材料科 學及工程系, 1992
[14] R. Abbaschian, R.E. Reed-Hill, “Physical metallurgy principles,” Cengage Learning, 2015, pp. 218.
[15] Kazuhiko Majima, Yoshihito Yoshimura, Keiichiro Shoji, “Effect of Eutectoid Beta Stabilizing Elements on the Densification and Tensile Properties of Titanium Powder Compacts,” Journal of the Japan Society of Powder and Powder Metallurgy, vol. 34, 1987, pp. 205-210.
[16] Yuanqing Liu, L.F. Chen, H. P. Tang, C.T. Liu, B. Liu, B.Y. Huang, “Design of powder metallurgy titanium alloys and composites,” Materials Science and Engineering:A, vol. 418, 2006, pp. 25-35.
[17] Pablo Garcia Esteban, Elisa M. Ruiz-Navas, Elena Gordo, “Influence of Fe content and particle size the on the processing and mechanical properties of low-cost Ti–xFe alloys,” Materials Science and Engineering:A, vol. 527, 2010, pp. 5664-5669
[18] Francis Herbert Froes, Daniel Eylon, “Titanium Net Shape Technologies,” JOM, vol. 361, 1984, pp. 36-41.
[19] C. Suryanarayana, “Development of light alloys by rapid solidification processing,” International Journal of Powder Metallurgy, vol. 26, 1990, pp. 117-129.
[20] Chunxiang Cui, Baomin Hu, Lichen Zhao, Shuangjin Liu, “Titanium alloy production technology, market prospects and industry development,” Materials and Design, vol. 32, 2011, pp. 1684-1691
[21] Francis Herbert Froes, S.J. Mashl, V.S. Moxson, J.C. Hebeisen, Vladimir Duz, “The
88
Technologies of Titanium Powder Metallurgy,” JOM, vol. 56, 2004, pp. 46-48.
[22] Boxinyue Liu, Y. Liu, X.Y. He, H.P. Tang, L.F. Chen, B. Y. Huang, “Preparation and Mechanical Properties of Particulate Reinforced Powder Metallurgy Titanium Matrix Composites,” Metallurgical and Materials Transactions A, vol. 38, pp. 2825-2831.
[23] J. Park, M.W. Toaz, D. H. Ro, E.N. Aqua, “Blended Elemental Powder Metallurgy of Titanium Alloys,” Titanium Net Shape Technologies, 1984, pp. 95-105.
[24] Francis Herbert Froes, “Titanium products and applications,” Journal of the Minerals, Metals and Materials Society, vol. 39, 1987, pp. 12-14.
[25] Steven Cook, Kevin A. Thomas, John F. Kay, Michael Jarcho, “Hydroxyapatite-coated titanium for orthopedic implant applications,” Clinical Orthopedic and related research, vol. 232, 1998, pp. 225-243.
[26] Takahiro Fujita, Atsushi Ogawa, Chiaki Ouchi, Hidenori Tajima, “Microstructure and properties of titanium alloy produced in the newly developed blended elemental powder metallurgy process,” Materials Science and Engineering A, vol. 213, 1996, pp. 148-153.
[27] Ying Long Zhou, Mitsuo Niinomi, Toshikazu Akahori, Hisao Fukui, Hiroyuki Toda, “Corrosion resistance and biocompatibility of Ti–Ta alloys for biomedical applications,” Materials Science and Engineering: A, vol. 398, 2005, pp. 28-36.
[28] M. Abdel-Hady, H. Fuwa, K. Hinoshita, H. Kimura, Y. Shinzato, M. Morinaga, “Phase stability change with Zr content in β–type Ti–Nb alloys,” Scripta Materialia, vol. 57, 2007, pp. 1000-1003.
[29] J.B. Lambert, J.J. Rausch, “Non-Ferrous Alloys and Special-Purpose Materials,” ASM International, 1992, pp. 57-62.
[30] Jose Roberto Severino Martins, Carlos Roberto Grandini, “Structural characterization of Ti–15Mo alloy used as biomaterial by Rietveld method,” Journal of Applied Physics, vol. 111(8), 2012.
89
[31] Wen-Fu Ho, Wei-Kai Chen, Shih-Ching Wu, Hsueh-Chuan Hsu, “Structure, mechanical properties, and grindability of dental Ti–Zr alloys,” Journal of materials science: Materials in medicine, vol. 19, 2008, pp. 3179-3186.
[32] Abdul Wadood, T. Inamura, H. Hosoda, Shuichi Miyazaki, “Ageing behavior of Ti–6Cr–3Sn β titanium alloy,” Materials Science and Engineering: A, vol. 530, 2011, pp. 504-510.
[33] Xingfeng Zhao, Mitsuo Niinomi, Masaaki Nakai, Junko Hieda, T. Ishimoto, Takayoshi Nakano, “Optimization of Cr content of metastable β–type Ti–Cr alloys with changeable Young’s modulus for spinal fixation applications,” Acta biomaterialia, vol. 8, 2012, pp. 2392-2400.
[34] Leandro Bolzoni, Pablo Garcia Esteban, Elisa M. Ruiz-Navas, Elena Gordo, “Mechanical behavior of pressed and sintered titanium alloys obtained from master alloy addition powders,” Journal of the mechanical behavior of biomedical materials, vol. 15, 2012, pp. 33-45.
[35] Jaroslav Malek, Frantisek Hnilica, Jaroslav Vesely, Bohumil Smola, Jiri Vanek, “The influence of chemical composition and thermo-mechanical treatment on Ti–Nb–Ta–Zr alloys,” Materials and Design, vol. 35, 2012, pp. 731-740.
[36] Dongyang Qin, Yafeng Lu, Qian Liu, Lian Zhou, “Effects of Si addition on mechanical properties of Ti–5Al–5V–5Mo–3Cr alloy,” Materials Science and Engineerin A, vol.561, 2013, pp. 460-467.
[37] Yang Xia, S.D. Luo, X. Wu, Graham Schaffer, Ma Qian, “The sintering densification, microstructure and mechanical properties of gamma Ti–48Al–2Cr–2Nb alloy with a small addition of copper,” Materials Science and Engineering A, vol. 559, 2013, pp. 293-300.
[38] F.F. Cardoso, A. Cremasco, Rodrigo Contieri, Eder Socrates Najar Lopes, Rubens Caram, “Hexagonal martensite decomposition and phase precipitation in Ti–Cu alloys,” Materials and Design, vol. 32, 2011, pp. 4608-4613.
90
[39] Yong Liu, Wei-Feng Wei, Ke-Chao Zhou, Li-Fang Chen, Hui-Pin Tang, “Microstructures and mechanical behavior of PM Ti–Mo alloy,” Journal of Central South University of Technology, vol. 10, 2003, pp. 81-86.
[40] Brundaban Panigrahi, “Sintering behavior of Ti–2Ni and Ti–5Ni elemental powders,” Materials Letters, vol. 61, 2007, pp. 152-155.
[41] I.M. Robertson, Graham Schaffer, “Swelling during liquid phase sintering of Ti–Ni alloys,” Powder Metallurgy, vol. 52, 2009, pp. 213-224.
[42] Hung-Wei Liu, D. P. Bishop, Kevin Paul. Plucknett, “A comparison of Ti–Ni and Ti–Sn binary alloys processed using powder metallurgy,” Materials Science and Engineering A, vol. 644, 2015, pp. 392-404. [43] V.A. Joshi,. Titanium alloys: an atlas of structures and fracture features. Crc Press, 2006.
[44] William. D. Callister Jr, “Fundamentals of materials science and engineering: an integrated approach,” 2012, pp. 619-626.
[45] W. Chen, Yukinori Yamamoto, W.H. Peter, Sarma Gorti, “Cold compaction study of Armstrong Process Ti–6Al–4V powders,” Powder technology, vol. 214, 2011, pp. 194-199. [46] J.M. Torralba, “Improvement of Mechanical and Physical Properties in Powder Metallurgy. ” Comprehensive Materials Processing, vol. 3, 2014, pp. 281-294.
[47] 黃坤祥,粉末冶金學第三版,新竹:中華民國粉末冶金協會,2014年,第7-11頁
[48] I.M. Robertson, Graham Schaffer, “Review of densification of titanium based powder systems in press and sinter processing,” Powder metallurgy, vol. 53, 2010, pp. 146-162. [49] 劉承維、林健正, 劉承維、林健正, 劉承維、林健正, 劉承維、林健正, 劉承維、林健正, 劉承維、林健正, 劉承維、林健正, 鈦-鎳-鈦箔片接合碳化矽與 鈦箔片接合碳化矽與 鈦箔片接合碳化矽與 鈦箔片接合碳化矽與 鈦箔片接合碳化矽與 鈦箔片接合碳化矽與 Kovar 之介面反應 ,國立交通大學 ,國立交通大學 ,國立交通大學 ,國立交通大學 ,國立交通大學 ,國立交通大學 , 碩士論文, 材料科學與工程系2010.
[50] 王光榮、劉繼雄、楊奇、王鼎春、姚銳,「β鈦合金成分設計:理論、方法、實踐」,材料導報,第三十一卷,第二期,2017年,第44-51頁
91
[51] C.J. Wang. “Youngs modulus of porous materials. Journal of materials science, ” vol. 19, 1984, pp. 801-808. [52] P.F. Knudsen, “Effect of porosity on Youngs Modulus of Alumina.” Journal of the American Ceramic Society, vol. 45, 1962, pp. 94-95. [53] M. Asmani, C. Kermel, A. Leriche, M. Ourak, “Influence of porosity on Youngs modulus and Poissons ratio in alumina ceramics. ” Journal of the European ceramic society, vol. 21, 2001, pp. 1081-1086.
[54] K.D. Ralston, N. Birbilis, “Effect of grain size on corrosion: a review,” Corrosion, vol. 66, 2010.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊