[1] Margam Chandrasekaran, Zhang Su Xia, “Effect of alloying time and composition on the mechanical properties of Ti alloy,” Materials Science and Engineering:A, vol. 394, 2005, pp. 220-228.
[2] Kazuhiko Majima, “A study on sintered titanium alloy produced by blended elemental process,” Journal of the Japan Society of Powder and Powder Metallurgy, vol. 36(8), 1989, pp. 917-925.
[3] Vladimir Moxson, Oleg Senkov, Francis Herbert Froes, “Innovations in titanium powder processing,” JOM, 2000, vol. 52, pp. 12.
[4] Yoshimitsu Okazaki, Yoshimasa Ito, Kenj Kyo, Tetsuya Tateishi, “Corrosion resistance and corrosion fatigue strength of new titanium alloys for medical implants without V and Al,” Materials Science Engineering:A, vol. 213, 1996, pp. 138-147.
[5] Mathew Kuttolamadom, “Investigation of the Machining of Titanium Components for Lightweight Vehicles,” SAE Technical Paper, 2010.
[6] Sethumadhvan Rao, Takashi Ushida, Tetsuya Tateishi, Yoshimitsu Okazaki, “Effect of Ti, Al, and V ions on the relative growth rate of fibroblasts (L929) and osteoblasts (MC3T3-E1) cells,” Bio-Medical Materials Engineering, vol. 6(2), 1996, pp. 79-86.
[7] Yoshimitsu Okazaki, Kenj Kyo, Yoshimasa Ito, Tetsuya Tateishi, “Effect of Mo and Pd on corrosion resistance of V–free titanium alloys for medical implants,” Materials Transactions, JIM, vol. 38(4), 1997, pp. 344-352.
[8] Steven G. Keener, “Advanced Low-cost Titanium-alloy Materials for Aerospace Fastener Applications,” SAE Technical Paper, 2007.
[9] B. Ralph, “Titanium alloys: an atlas of structures and fracture features,” Crc Press, 2006.
[10] Christoph Leyens, Manfred Peters, “Titanium and titanium alloys: fundamentals and applications,” 2003.
87
[11] 洪胤庭,「純鈦及鈦合金特性及製程介紹」,中工高雄會刊,第21卷,第1期,高雄,2013,第12-22頁
[12] M.J. Donachie, “Titanium: A Technical Guide,” ASM International, 2000, pp. 22.
[13] 林殿傑,鑄造鈦-鉬-鐵及鈦-鉬-鉻合金性質研究,國立成功大學,博士論文材料科 國立成功大學,博士論文材料科 國立成功大學,博士論文材料科 國立成功大學,博士論文材料科 國立成功大學,博士論文材料科 國立成功大學,博士論文材料科 國立成功大學,博士論文材料科 國立成功大學,博士論文材料科 學及工程系, 1992[14] R. Abbaschian, R.E. Reed-Hill, “Physical metallurgy principles,” Cengage Learning, 2015, pp. 218.
[15] Kazuhiko Majima, Yoshihito Yoshimura, Keiichiro Shoji, “Effect of Eutectoid Beta Stabilizing Elements on the Densification and Tensile Properties of Titanium Powder Compacts,” Journal of the Japan Society of Powder and Powder Metallurgy, vol. 34, 1987, pp. 205-210.
[16] Yuanqing Liu, L.F. Chen, H. P. Tang, C.T. Liu, B. Liu, B.Y. Huang, “Design of powder metallurgy titanium alloys and composites,” Materials Science and Engineering:A, vol. 418, 2006, pp. 25-35.
[17] Pablo Garcia Esteban, Elisa M. Ruiz-Navas, Elena Gordo, “Influence of Fe content and particle size the on the processing and mechanical properties of low-cost Ti–xFe alloys,” Materials Science and Engineering:A, vol. 527, 2010, pp. 5664-5669
[18] Francis Herbert Froes, Daniel Eylon, “Titanium Net Shape Technologies,” JOM, vol. 361, 1984, pp. 36-41.
[19] C. Suryanarayana, “Development of light alloys by rapid solidification processing,” International Journal of Powder Metallurgy, vol. 26, 1990, pp. 117-129.
[20] Chunxiang Cui, Baomin Hu, Lichen Zhao, Shuangjin Liu, “Titanium alloy production technology, market prospects and industry development,” Materials and Design, vol. 32, 2011, pp. 1684-1691
[21] Francis Herbert Froes, S.J. Mashl, V.S. Moxson, J.C. Hebeisen, Vladimir Duz, “The
88
Technologies of Titanium Powder Metallurgy,” JOM, vol. 56, 2004, pp. 46-48.
[22] Boxinyue Liu, Y. Liu, X.Y. He, H.P. Tang, L.F. Chen, B. Y. Huang, “Preparation and Mechanical Properties of Particulate Reinforced Powder Metallurgy Titanium Matrix Composites,” Metallurgical and Materials Transactions A, vol. 38, pp. 2825-2831.
[23] J. Park, M.W. Toaz, D. H. Ro, E.N. Aqua, “Blended Elemental Powder Metallurgy of Titanium Alloys,” Titanium Net Shape Technologies, 1984, pp. 95-105.
[24] Francis Herbert Froes, “Titanium products and applications,” Journal of the Minerals, Metals and Materials Society, vol. 39, 1987, pp. 12-14.
[25] Steven Cook, Kevin A. Thomas, John F. Kay, Michael Jarcho, “Hydroxyapatite-coated titanium for orthopedic implant applications,” Clinical Orthopedic and related research, vol. 232, 1998, pp. 225-243.
[26] Takahiro Fujita, Atsushi Ogawa, Chiaki Ouchi, Hidenori Tajima, “Microstructure and properties of titanium alloy produced in the newly developed blended elemental powder metallurgy process,” Materials Science and Engineering A, vol. 213, 1996, pp. 148-153.
[27] Ying Long Zhou, Mitsuo Niinomi, Toshikazu Akahori, Hisao Fukui, Hiroyuki Toda, “Corrosion resistance and biocompatibility of Ti–Ta alloys for biomedical applications,” Materials Science and Engineering: A, vol. 398, 2005, pp. 28-36.
[28] M. Abdel-Hady, H. Fuwa, K. Hinoshita, H. Kimura, Y. Shinzato, M. Morinaga, “Phase stability change with Zr content in β–type Ti–Nb alloys,” Scripta Materialia, vol. 57, 2007, pp. 1000-1003.
[29] J.B. Lambert, J.J. Rausch, “Non-Ferrous Alloys and Special-Purpose Materials,” ASM International, 1992, pp. 57-62.
[30] Jose Roberto Severino Martins, Carlos Roberto Grandini, “Structural characterization of Ti–15Mo alloy used as biomaterial by Rietveld method,” Journal of Applied Physics, vol. 111(8), 2012.
89
[31] Wen-Fu Ho, Wei-Kai Chen, Shih-Ching Wu, Hsueh-Chuan Hsu, “Structure, mechanical properties, and grindability of dental Ti–Zr alloys,” Journal of materials science: Materials in medicine, vol. 19, 2008, pp. 3179-3186.
[32] Abdul Wadood, T. Inamura, H. Hosoda, Shuichi Miyazaki, “Ageing behavior of Ti–6Cr–3Sn β titanium alloy,” Materials Science and Engineering: A, vol. 530, 2011, pp. 504-510.
[33] Xingfeng Zhao, Mitsuo Niinomi, Masaaki Nakai, Junko Hieda, T. Ishimoto, Takayoshi Nakano, “Optimization of Cr content of metastable β–type Ti–Cr alloys with changeable Young’s modulus for spinal fixation applications,” Acta biomaterialia, vol. 8, 2012, pp. 2392-2400.
[34] Leandro Bolzoni, Pablo Garcia Esteban, Elisa M. Ruiz-Navas, Elena Gordo, “Mechanical behavior of pressed and sintered titanium alloys obtained from master alloy addition powders,” Journal of the mechanical behavior of biomedical materials, vol. 15, 2012, pp. 33-45.
[35] Jaroslav Malek, Frantisek Hnilica, Jaroslav Vesely, Bohumil Smola, Jiri Vanek, “The influence of chemical composition and thermo-mechanical treatment on Ti–Nb–Ta–Zr alloys,” Materials and Design, vol. 35, 2012, pp. 731-740.
[36] Dongyang Qin, Yafeng Lu, Qian Liu, Lian Zhou, “Effects of Si addition on mechanical properties of Ti–5Al–5V–5Mo–3Cr alloy,” Materials Science and Engineerin A, vol.561, 2013, pp. 460-467.
[37] Yang Xia, S.D. Luo, X. Wu, Graham Schaffer, Ma Qian, “The sintering densification, microstructure and mechanical properties of gamma Ti–48Al–2Cr–2Nb alloy with a small addition of copper,” Materials Science and Engineering A, vol. 559, 2013, pp. 293-300.
[38] F.F. Cardoso, A. Cremasco, Rodrigo Contieri, Eder Socrates Najar Lopes, Rubens Caram, “Hexagonal martensite decomposition and phase precipitation in Ti–Cu alloys,” Materials and Design, vol. 32, 2011, pp. 4608-4613.
90
[39] Yong Liu, Wei-Feng Wei, Ke-Chao Zhou, Li-Fang Chen, Hui-Pin Tang, “Microstructures and mechanical behavior of PM Ti–Mo alloy,” Journal of Central South University of Technology, vol. 10, 2003, pp. 81-86.
[40] Brundaban Panigrahi, “Sintering behavior of Ti–2Ni and Ti–5Ni elemental powders,” Materials Letters, vol. 61, 2007, pp. 152-155.
[41] I.M. Robertson, Graham Schaffer, “Swelling during liquid phase sintering of Ti–Ni alloys,” Powder Metallurgy, vol. 52, 2009, pp. 213-224.
[42] Hung-Wei Liu, D. P. Bishop, Kevin Paul. Plucknett, “A comparison of Ti–Ni and Ti–Sn binary alloys processed using powder metallurgy,” Materials Science and Engineering A, vol. 644, 2015, pp. 392-404. [43] V.A. Joshi,. Titanium alloys: an atlas of structures and fracture features. Crc Press, 2006.
[44] William. D. Callister Jr, “Fundamentals of materials science and engineering: an integrated approach,” 2012, pp. 619-626.
[45] W. Chen, Yukinori Yamamoto, W.H. Peter, Sarma Gorti, “Cold compaction study of Armstrong Process Ti–6Al–4V powders,” Powder technology, vol. 214, 2011, pp. 194-199. [46] J.M. Torralba, “Improvement of Mechanical and Physical Properties in Powder Metallurgy. ” Comprehensive Materials Processing, vol. 3, 2014, pp. 281-294.
[47] 黃坤祥,粉末冶金學第三版,新竹:中華民國粉末冶金協會,2014年,第7-11頁
[48] I.M. Robertson, Graham Schaffer, “Review of densification of titanium based powder systems in press and sinter processing,” Powder metallurgy, vol. 53, 2010, pp. 146-162. [49] 劉承維、林健正, 劉承維、林健正, 劉承維、林健正, 劉承維、林健正, 劉承維、林健正, 劉承維、林健正, 劉承維、林健正, 鈦-鎳-鈦箔片接合碳化矽與 鈦箔片接合碳化矽與 鈦箔片接合碳化矽與 鈦箔片接合碳化矽與 鈦箔片接合碳化矽與 鈦箔片接合碳化矽與 Kovar 之介面反應 ,國立交通大學 ,國立交通大學 ,國立交通大學 ,國立交通大學 ,國立交通大學 ,國立交通大學 , 碩士論文, 材料科學與工程系2010.
[50] 王光榮、劉繼雄、楊奇、王鼎春、姚銳,「β鈦合金成分設計:理論、方法、實踐」,材料導報,第三十一卷,第二期,2017年,第44-51頁
91
[51] C.J. Wang. “Youngs modulus of porous materials. Journal of materials science, ” vol. 19, 1984, pp. 801-808. [52] P.F. Knudsen, “Effect of porosity on Youngs Modulus of Alumina.” Journal of the American Ceramic Society, vol. 45, 1962, pp. 94-95. [53] M. Asmani, C. Kermel, A. Leriche, M. Ourak, “Influence of porosity on Youngs modulus and Poissons ratio in alumina ceramics. ” Journal of the European ceramic society, vol. 21, 2001, pp. 1081-1086.
[54] K.D. Ralston, N. Birbilis, “Effect of grain size on corrosion: a review,” Corrosion, vol. 66, 2010.