跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.89) 您好!臺灣時間:2024/12/13 13:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林維朋
研究生(外文):Wei-Peng Lin
論文名稱:聚(己二酸/聚乙二醇/對苯二甲酸乙二酯)合成及其纖維物性研究
論文名稱(外文):Synthesis and Characterization of AA/PEG/ET Co-polyester Fiber
指導教授:芮祥鵬芮祥鵬引用關係
指導教授(外文):Syang-Peng Rwei
口試委員:魏騰芳戴子安蘇淵源程耀毅芮祥鵬
口試日期:2016-12-22
學位類別:博士
校院名稱:國立臺北科技大學
系所名稱:有機高分子研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
畢業學年度:105
論文頁數:78
中文關鍵詞:纖維聚乙二醇己二酸脂肪族/芳香族共聚酯聚對苯二甲酸乙二酯
外文關鍵詞:FibersPolyethylene glycolAdipic acidAliphatic/aromatic copolyesterPoly(ethylene terephthalate)
相關次數:
  • 被引用被引用:1
  • 點閱點閱:671
  • 評分評分:
  • 下載下載:90
  • 收藏至我的研究室書目清單書目收藏:0
本研究分兩個部分,有兩個系列的共聚酯被合成出來。其中一系列有不同脂肪族鏈段含量,固定之聚氧乙烯(poly(ethylene oxide), PEO)鏈段含量的脂肪族/芳香族共聚酯被合成出來,而其肪族鏈段是由己二酸(Adipic acid, AA, 莫爾比0~0.117)所構成,在此稱為AA系列共聚酯。另一系列則是不同PEO鏈段含量,固定脂肪族鏈段含量的脂肪族/芳香族共聚酯,而PEO鏈段是由聚乙二醇(Polyethylene glycol, PEG, 莫爾比0.003~0.019, 重量百分率4~20%)參與反應而成,在此稱為PEG系列共聚酯。每系列共聚酯的結構由1H核磁共振(1H Nuclear magnetic resonance, 1H-NMR)來加以確認。分子量則以凝膠滲透層析儀(GPC)及極限黏度(Intrinsic viscosity, IV)來加以分析。而熱分析的結果顯示共聚酯的熔點(Tm)及結晶溫度(Tc)隨脂肪族鏈段及PEO鏈段含量的增加而降低。玻璃轉移溫度(Tg)則由動態機械分析(Dynamic mechanical analysis, DMA)所測得,它的趨勢和Tm 是相同的。此外、共聚酯之熱穩定性則由熱重分析(Thermogravimetric analysis, TGA)來進行評估。在本研究中所合成的共聚酯被進一步紡成纖維,並評估其物性。纖維的抗張強度隨脂肪族鏈段及PEO鏈段含量的增加而降低。共聚酯纖維的結晶結構則藉由廣角X射線掃描(Wide-angle X-ray scattering, WAXS)來分析,結果顯示共聚酯結晶性隨AA 及PEG添加量的增加而降低。本研究所製成的纖維被織成織物,並評估其吸濕性和接觸涼感(Cool feeling , Qmax),所獲得的結果皆優於一般的PET。最後,共聚酯纖維織物也呈現出比一般PET更優的水解及酵素分解特性。
There are two series of copolyesters were synthesized individually in this study. One series of aliphatic/aromatic copolyester was that contained different amounts of aliphatic segments, constructed from adipic acid (AA, 0~0.117 mole ratios), and fixed amount of poly(ethylene oxide) (PEO) segments. The other series was aliphatic/aromatic copolyester that contained different amounts of PEO segments, constructed from polyethylene glycol (PEG, 0.003~0.019 mole ratios, 4~20wt%). The structures of each series of copolymers were confirmed by 1H nuclear magnetic resonance (1H-NMR). The molecular weights were determined directly by gel permeation chromatography (GPC) and indirectly by the intrinsic viscosity (IV). The results of thermal tests revealed that both melting temperature (Tm) and crystallization temperature (Tc) decreased as the aliphatic segment and PEO segment contents increased. The glass transition temperatures (Tg) that were determined by DMA followed the same trend as did Tm. Moreover, the thermal stability, determined from TGA declined as AA and PEG were incorporated into the PET main-chains. All of the copolymers that were synthesized herein were spun into fibers and then physically characterized. The tenacity of the fibers decreased as the aliphatic segment and PEO segment contents increased. The crystalline structures, revealed by wide-angle X-ray scattering (WAXS), indicated that the crystallinity decreased with increasing AA and PEG contents because of the reduction of regularity of the PET chains. Most importantly, the tests that were carried out on the knitted fabric demonstrated that the Moisture absorptivity and cool feeling (Qmax) of the copolymer fabrics were better than those of fabrics that comprised neat PET chains owing to the incorporation of PEO segments. Finally, the copolymer fabric exhibited better hydrolysis and enzymatic degradation than did neat PET fabric.
中文摘要 i
英文摘要 iii
誌謝 v
目錄 vi
表目錄 viii
圖目錄 ix

第1章 研究背景及研究動機 1
1.1 研究背景 1
1.2 研究動機 2
1.3 文獻回顧 3

第2章 實驗部分 4
2.1 實驗原料 4
2.2 實驗設備及儀器 5
2.2.1 共聚酯合成 5
2.2.2 共聚酯分析 5
2.2.3 纖維紡絲 6
2.2.4 纖維分析 6
2.2.5 編織 7
2.2.6 織物分析 7
2.3 實驗方法 8
2.3.1 共聚酯合成 8
2.3.2 共聚酯分析 10
2.3.3 纖維紡絲 11
2.3.4 纖維分析 12
2.3.5 編織 12
2.3.6 織物分析 13

第3章 以己二酸含量變化為主之己二酸/聚乙二醇/對苯二甲酸乙二酯共聚酯的合成、紡絲及其物性探討 14
3.1 前言 14
3.2 結果與討論 15
3.2.1 核磁共振氫譜分析 15
3.2.2 極限黏度及凝膠滲透層析 17
3.2.3 示差掃描熱分析 18
3.2.4 動態機械分析 40
3.2.5 熱重分析 22
3.2.6 廣角X射線掃描 24
3.2.7 動態頻率掃描 25
3.2.8 Cole-Cole Plot 30
3.2.9 纖維機械性質 34
3.2.10 吸濕性 36
3.2.11 熱流密度峰值 37
3.2.12 水解及酵素分解 38
3.3 結論 41

第4章 以聚乙二醇含量變化為主之己二酸/聚乙二醇/對苯二甲酸乙二酯共聚酯的合成、紡絲及其物性探討 42
4.1 前言 42
4.2 結果與討論 43
4.2.1 核磁共振氫譜分析 43
4.2.2 極限黏度及凝膠滲透層析 45
4.2.3 示差掃描熱分析 45
4.2.4 動態機械分析 48
4.2.5 熱重分析 49
4.2.6 廣角X射線掃描 51
4.2.7 動態頻率掃描 52
4.2.8 Cole-Cole Plot 58
4.2.9 纖維機械性質 62
4.2.10 吸濕性 64
4.2.11 熱流密度峰值 65
4.2.12 水解及酵素分解 66
4.3 結論 69
參考文獻 70
附錄 A 符號彙編 78
1.http://nicecasio.pixnet.net/blog/post/374793179-2014%E4%B8%96%E7%95%8C%E7%9B%83%E8%B6%B3%E7%90%83%E8%B3%BD%E6%B3%95%E5%9C%8B%E5%AA%92%E9%AB%94%E5%8F%B0%E7%81%A3%E8%A3%BD%E9%80%A0%E5%87%BA%E7%9A%84%E7%92%B0%E4%BF%9D
2.http://www.setn.com/e/News.aspx?NewsID=171780
3.http://www2.itis.org.tw/NetReport/NetReport_Detail.aspx?rpno=679686492&industry=3&ctgy=18&free=
4.李信宏,「全球招商創新計畫」紡織產業報告,經濟部投資業務處,2011,p.7。
5.Aamer Ali Shah, Tomoaki Eguchi, Daisuke Mayumi, Satoshi Kato, Noboru Shintani, Numbi Ramudu Kamini, Toshiaki Nakajima-Kambe, Purification and properties of novel aliphatic-aromatic co-polyesters degrading enzymes from newly isolated Roseateles depolymerans strain TB-87. Polym Deg Stab 2013; 98: 609-618.
6.J. Li, Z.Q. Jiang, Z.B. Wang, P. Chen, Y. Li, J. Zhou, J. Liu, Y.Z. Wang, Q. Gu, Synthesis, crystallization and hydrolysis of aromatic-aliphatic copolyester: Poly(trimethylene terephthalate)-co-poly(L-lactic acid). Polym Deg Stab 2011; 96: 991-999.
7.C. Berti, A. Celli, P. Marchese, G. Barbiroli, F.D. Credico, V. Verney, S. Commereuc, Novel copolyester based on poly(alkylene dicarboxylate)s: 1. Thermal behavior and biodegradation of aliphatic-aromatic random copolymers. Euro Polym J 2008; 44: 3650-3661.
8.X. Chen, W. Chen, G. Zhu, F. Huang, J. Zhang, Synthesis, 1H-NMR characterization, and biodegradation behavior of aliphatic-aromatic random copolyester. J Appl Polym Sci 2007; 104: 2643-2649.
9.L. Han, G. Zhu, W. Zhang, W. Chen, Composition, thermal properties, and biodegradability of a new biodegradable aliphatic/aromatic copolyester. J Appl Polym Sci 2009; 113: 1298-1306.
10.Pathavuth Monvisade, Pittaya Loungvanidprapa, Synthesis of poly(ethylene adipate) and poly(ethylene adipate-co-terephthalate) via ring-opening polymerization. Euro Polym J 2007; 43: 3408-3414.
11.J. Du, Y. Zheng, L. Xu, Biodegradable liquid crystalline aromatic/aliphatic copolyesters. Part Ⅰ: Synthesis, characterization, and hydrolytic degradation of poly(butylenes succinate-co-butylene terephthaloyldioxy dibenzoates). Polym Deg Stab 2006; 91: 3281-3288.
12.Alessandra F. Baldissera, Carlos E. S. Valerio, Nara. R. de S. Basso, Fernando Guaragna e Sandra Einloft. Synthesis and NMR characterization of aliphatic-aromatic copolyesters by reaction of poly(ethylene terephthalate) post-consumer and poly(ethylene adipate). Quim Nova 2005; 28(2): 188-191.
13.Pengju Pan, Yoshio Inoue, Polymorphism and isomorphism in biodegradable polyesters. Prog Polym Sci 2009; 34: 605-640.
14.U. Witt, T. Einig, M. Yamamoto, I. Kleeberg, W. D. Deckwer, R. J. Muller, Biodegradation of aliphatic-aromatic copolyesters: evaluation of the final biodegradability and ecotoxicological impact of degradation intermediates. Chemosphere 2001; 44: 289-299.
15.K. I. Kasuya, N. Ishii, Y. Inoue, K. Yazawa, T. Tagaya, T. Yotsumoto, J. I. Kazahaya, D. Nagai, Charaterization of a mesophilic aliphatic-aromatic copolyester-degrading fungus. Polym Deg Stab 2009; 94: 1190-1196.
16.Anna Szymczyk. Structure and properties of new polyester elastomers composed of poly(trimethylene terphthalate) and poly(ethylene oxide). Euro Polym J 2009; 45: 2653-2664.
17.M. Bounekhel, I.C. McNeill, Thermal degradation studies of terephthalate polyester: 2. Poly(ether-esters). Polym Deg Stab 1995; 49: 347-352.
18.F.T. Wallenberger, The effect of absorbed water on the properties of cotton and fibers from hydrophilic polyester block copolymers. Textile Res J 1978; 48(10): 577-581.
19.Saint-Loup R., Robin J.J., Boutevin B., Synthesis of poly(ethylene terephthalate)-block-poly(tetramethylene oxide) copolymer by direct polyesterification of reactive oligomers. Macromole Chem Phys 2003; 204(7): 970-982.
20.S. Fakirov, T. Gogeva, Poly(ether/ester)s based on poly(butylene terephthalate) and poly(ethylene glycol), 2. Effect of polyether segment length. Makromol Chem 1990; 191: 615-624.
21.X. Li, R. Liu, L. Zhong, L. Gu, Antielectrostatic poly(ether ester) block copolymer of poly(ehtylene terephthalate-co-isophthalate)-poly(ethylene glycol). J Appl Polym Sci 2003; 89: 1696-1701.
22.Takashi Fujimaki, Processability and properties of aliphatic polyester, “BIONOLLE”, synthesized by polycondensation reaction. Polym Degrad Stab 1998; 59: 209-214.
23.http://www.degradable.org.cn/exhibition/exhibition/Showa%20Highpolymer%20Bionolle.pdf
24.Marina Sokolsy-Papkov, Robert Langer, Abraham J. Domb, Synthesis of aliphatic polyesters by polycondensation using inorganic acid as catalyst. Polym Adv Technol 2011; 22: 502-511.
25.Hyung-seok Park, Jung-a Seo, Hye-Young Lee, Hae-Won Kim, Ivan B. Wall, Myoung-Seon Gong, Jonathan C. Knowles, Synthesis of elastic biodegradable polyester of ethylene glycol and butylenes glycol from sebacic acid. Acta Biomaterialia 2012; 8: 2911-2918.
26.K. YILDIRIM, A. M. KOSTEM, N. AYDIN, H. TUNA, A. CENAN, Twist Setting Temperature and Time Effects on Morphology of Polyethylene Terephthalate Yarn, Tekstil ve Konfeksiyon, 2014; 24(2): 186-194.
27.A.A. Minakov, D.A. Mordvintsev and C. Schick, Melting and reorganization of poly(ethylene terephthalate) on fast heating (1000 K/s). Polymer 2004; 45: 3755-3763.
28.Serpil Koral Koc, Sebnem Duzyer, Rudiger Berger, Asli Sengonul Hockenberger, Effect of cross-sectional shape on the behavior of cationic dyeable poly(ethylene terephthalate) fibers. Textile Res J 2012; 82(13): 1355-1362.
29.C. D. Han, J. Kim and J. K. Kim, Determination of the Order-Disorder Transition Temperature of Block Copolymers, Macromolecules 1989; 22: 383-394.
30.S. Salhi, M. Tessier, J.-C.Blais, R.E. Gharbi, A. Fradet, Synthesis of aliphatic-aromatic copolyesters by a high temperature bulk reaction between poly(ethylene terephthalate) and cycloid(ethylene succinate). Macromol Chem Phys 2004; 205: 2391-2397.
31.J. Gong, X. J. Lou, W. D. Li, W. X.K. Jing, H.B. Chen, J.B. Zeng, X.L. Wang, Y.Z. Wang, A novel aromatic-aliphatic copolyester consisting of poly(1,4-dioxan-2-one) and poly(ethylene-co-1,6-hexene terephthalate): preparation, thermal, and mechanical properties. J Polym Sci Part A Polym Chem 2010; 48: 2828-2837.
32.F. Li, X. Xu, Q. Li, Y. Li, H. Zhang, J. Yu, A. Cao, Thermal degradation and their kinetics of biodegradable poly(butylenes succinate-co-butylene terephthalate)s under nitrogen and air atmospheres. Polym Degrad Stab 2006; 91: 1685-1693.
33.http://www.natureworksllc.com/~/media/Technical_Resources/Fact_Sheets/Fibers/FactSheet_Dyeing_Finishing_KnittedGoodsfromFilamentYarns_pdf.pdf
34.D. Pepic, E. Zagar, M. Zigon, A. Krzan, M.Kunaver, J. Djonlagic, Synthesis and characterization of biodegradable aliphatic copolyesters with poly(ethylene oxide) soft segments. Euro Polym J 2008; 44: 904-917.
35.Minoru Nagata, Hirokazu Goto, Wataru Sakai, Naoto Tsutsumi, Hideki Yamane, Enzymatic Degradation of melt-spun fibers from poly(butylenes succinate) copolyesters with terephthatic acid. Journal of the Society of Fiber Science and Technology, Japan 2001; 56(6).
36.Jit Pal, Nimesh Kankariya, Sunita Sanwaria, Bhanu Nandan, Rajiv K. Srivastava, Control on molecular weight reduction of poly(ε-carprolactone) during melt spinning – A way to produce high strength biodegradable fibers. Material Science and Engineering C 2013; 33: 4213-4220.
37.Kenan Yildirim, Yusuf Ulcay, An experimental study and model development of poly(ethylene terephtalate) yarn morphology. e-Polymer 2014; 14(2): 121-131.
38.David A. Schiraldi, Denise L. Martin, A combinatorial method for developing deep dye polyesters. Textile Res J 2002; 72(2): 153-155.
39.Kazuya Sawada, Masakatsu Sugimoto, Mitsuo Ueda, Hydrophilic treatment of polyester surface using TiO2 photocatalytic reactions. Textile Res J 2003; 73(9): 819-822.
40.Emiko Uchida, Yoshikimi Uyama, Yoshito Ikada, Antistatic properties of surface-modified polyester fabrics. Textile Res J 1991; 61(8): 483-488.
41.A.M. Schneider, B.V. Holcombe, L.G. Stephens, Enhancement of coolness to the touch by hygroscopic fibers. Part Ⅰ: Subjective Trials. Textile Res J 1996; 66(8): 515-520.
42.Ahmed El-Salmawy, Masatoshi Miyamoto, Yoshiharu Kimura, Preparing a core-sheath bicomponent fiber of poly(butylene terephthalate)/poly(butylene succinate-co-L-lactate). Textile Res J 2000; 70(11): 1011-1018.
43.Rolf-Joachim Mueller, Biological degradation of synthetic polyester – Enzymers as potential catalysis for polyester recycling. Process Biochem 2006; 41: 2124-2128.
44.D.K. Gilding, A.M. Reed, Biodegradable polymers for use in surgery—poly(ethylene oxide) poly(ethylene terephthalate) (PEO/PET) copolymers: 1, Polymer 1979; 20: 1454-1458.
45.Y. M. Zhao, H. Q. Zhuang, Z. G. Huang, Y. Kimura, Antistatic modification of polyester fiber with polyester-ether as blending agent. Journal of the Society of Fiber Science & Technology 1988; 44: 613.
46.Z.X. Zhu, C.D. Xiong, L.L. Zhang and X.M. Deng, Synthesis and characterization of poly(ϵ-caprolactone)-poly(ethylene glycol) block copolymer., J. Polym. Sci., Part A: Polym. Chem. 1997; 35: 709-714.
47.M. Wang, L. Zhang, Recovery as a Measure of Oriented Crystalline Structure in Poly(ether ester)s Based on Poly(ethylene oxide) and Poly(ethylene terephthalate) Used as Shape Memory Polymers. J Polym Sci Part A Polym Physics 1999; 37: 101-112
48.Q. Cai, J.H. Bei, S.G. Wang, Synthesis and properties of ABA-type triblock copolymers of poly(glycolide-co-caprolactone) (A) and poly(ethylene glycol) (B), Polymer 2002; 43: 3585-3591.
49.L. H. Lin, H. J. Liu, J. J. Hwang, Preparation and dispersion properties of water-soluble polyethylene glycol-dimethyl 5-sulfoisophthalate sodium salt polyester surfactants. Colloids and Surfaces A: Physicochem Eng 2002; 211: 173-178.
50.J. Malda, T.B.F. Woodfield, F. van der Vloodt, F.K. Kooy, D.E Martens, J. Tramper, C.A.van Blitterswijk, J. Riesle, The effect of PEGT/PBT scaffold architecture on oxygen gradients in tissue engineered cartilaginous constructs, Biomateriais 2004; 25: 5773-5780.
51.Z. Zhang, J. Ni, L. Chen, L. Yu, J. Xu, J. Ding, Biodegradable and thermoreversible PCLA-PEG-PCLA hydrogel as a barrier for prevention of post-operative adhesion. Biomaterials 2011; 32: 4725-4736.
52.M. Ignatova, N. Manolova, I. Rashkov, Preparation, properties and complex formation ability of poly(ether-ester)s of poly(ethylene glycol)s and 2,6-pyridinedicarboxylic acid. Macromol. Chem. Phys. 1995;196: 2695-2708.
53.S. Fakirov, T. Gogeva, poly(ether/ester)s based on poly(tetramethylene terephthalate) and poly(ethylene glycol), 3 Effect of thermal treatment and drawing on the structure of the poly(ether/ester)s, Makromol Chem 1990; 191: 2341-2354.
54.RYSZARD UKIELSKI, FILIP LUKASZ KONDRATOWICZ, Fibre-grade coply(oxyethylene-b-ethylene terephthalate)s with improved optical properties, POLIMERY 2008; 53:224-227.
55.N. X. Huang, X. J. Zhou J. Wang, X. O. Wang, Z. L. Tang, Structure and Properties of the PET-PEG Block Coplymer Applicable to Textile Fiber., Journal of Federation of Professional Associations 1998; 5: 11
56.E. S. Ahemd, K. Yoshiharu, Structure and Properties of Bicomponent Core-Sheath Fibers from Poly(ethylene Terephthalate) and Biodegradable Aliphatic Polyesters. Textile Res J 2001; 71(2): 145-152.
57.B. Younes, A. Fotheringham, Factorial optimisation of the effects of extursion temperature profile and polymer grade on as-spun aliphtic-aromatic co-polyester fibers Ⅲ: mechanical properties. The Journal of the Textile Institute 2012; 103: 139-153.
58.Shinjung Yoo and Roger L. Barker, Moisture Management Properties of Heat-Resistant Workwear Fabrics-Effects of Hydrophilic Finish and Hygroscopic Fiber Blends, Textile Res. J., 2004, 74: 995-1000.
59.R. van Dijkhuizen-Radersma, J.R. Roosma, P. Kaim, S. Metairie, F.L.A.M.A. Peters, J. de Wijn, P.G. Zijlstra, K.de Groot, J.M. Bezemer, Biodegradable poly(ether-ester) multiblock copolymers for controlled release applications., Journal of Biomedical Materials Research Part A 2003; 67A: 1294-1304.
60.T. Kijchavengkul, R. Auras, M. Rubino, S. Selke, M. Ngouajio, R. T. Fernandez, Biodegradation and hydrolysis rate of aliphatic aromatic polyester, Polym Degrad Stab 2010; 95: 2641-2647.
61.Farah Kanwal, Richard A. Pethrick, Ultrasonic degradation studies of poly(ethylene oxide), poly(ethylene adipate) and poly(dimethylsiloxane), Polym Degrad Stab 2004; 84: 1-6.
62.J. Chen, L. Engelen, Food Oral Processing: Fundamentals of Eating and Sensory Perception, John Wiley & Sons Ltd., 2012: p235.
63. 彭貞如,芮祥鵬,聚對苯二甲酸乙二酯/己二酸/聚乙二醇(0.009莫耳比)三組份共聚合體物性之研究,臺北科技大學有機高分子研究所碩士論文,2012。
64. 楊沛萁,芮祥鵬,聚對苯二甲酸乙二酯/己二酸(0.075莫耳比)/聚乙二醇三組份共聚合體物性之研究,臺北科技大學有機高分子研究所碩士論文,2012 。
65. C. D. Han, “ Chapter 6 Rheology of Flexible Homopolymers “, Rheology and Processing of Polymeric Materials, 2007.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊