|
1.Maroń, A.; Szlapa, A.; Klemens, T.; Kula, S.; Machura, B.; Krompiec, S.; Małecki, J.; Świtlicka-Olszewska, A.; Erfurt, K.; Chrobok, A. Tuning the Photophysical Properties of 4′-substituted Terpyridines – an Experimental and Theoretical Study. Org. Biomol. Chem. 2016, 14, 3793-3808. 2.Klemens, T.; Świtlicka-Olszewska, A.; Machura, B.; Grucela, M.; Schab-Balcerzak, E.; Smolarek, K.; Mackowski, S.; Szlapa, A.; Kula, S.; Krompiec, S.; Lodowski, P.; Chrobok, A. Rhenium(I) Terpyridine Complexes – Synthesis, Photophysical Properties and Application in Organic Light Emitting Devices. Dalton Trans. 2016, 45, 1746-1762. 3.Tanaka, H.; Shizu, K.; Nakanotani, H.; Adachi, C. Twisted Intramolecular Charge Transfer State for Long-Wavelength Thermally Activated Delayed Fluorescence. Chem. Mater. 2013, 25, 3766-3771. 4.Haberhauer, G. Planarized and Twisted Intramolecular Charge Transfer: A Concept for Fluorophores Showing Two Independent Rotations in Excited State. Chem. Eur. J. 2017, 23, 9288-9296. 5.Sumalekshmy, S.; Gopidas, K. Photoinduced Intramolecular Charge Transfer in Donor−Acceptor Substituted Tetrahydropyrenes. J. Phys. Chem. B 2004, 108, 3705-3712. 6.Pitoňák, M.; Neogrády, P.; R̆ezáč, J.; Jurečka, P.; Urban, M.; Hobza, P. Benzene Dimer: High-Level Wave Function and Density Functional Theory Calculations. J. Chem. Theor. Comput. 2008, 4, 1829-1834. 7.Seiji, T.; Tadafumi. U.; Kazunari, M.; Masuhiro, M.; Kazutoshi, T. Effects of the Higher Electron Correlation Correctin on the Calculated Intermolecular Intermolecular Interaction Energies of Benzene and Naphthalene Dimers: Comparison between MP2 and CCSD(T) Calculations. Chem. Phys. Lett. 2000, 319, 547-554. 8.Sinnokrot, M.; Valeev, E.; Sherrill, C. Estimates of the Ab Initio Limit for π−π Interactions: The Benzene Dimer. J. Amer. Chem. Soc. 2002, 124, 10887-10893. 9.Sinnokrot, M.; Sherrill, C. Substituent Effects in π−π Interactions: Sandwich and T-Shaped Configurations. J. Amer. Chem. Soc. 2004, 126, 7690-7697. 10.Richard L. J.; Grant D. S. A Quantum Chemistry Study of Benzene Dimer. J. Phys. Chem. 1996, 105. 11.Pavel H.; Heinrich L.; Selzle.; Edward. S. Potentical Energy Surface for the Benzene Dimer. Results of ab Initio CCSD(T) Calculations Show Two Nearly Isoenergetic Structures: T-Sharped and Parallel-Displaced. J. Phys. Chem. 1996, 100, 48. 12. Sinnokrot, M.; Sherrill, C. Highly Accurate Coupled Cluster Potential Energy Curves for the Benzene Dimer: Sandwich, T-Shaped, and Parallel-Displaced Configurations. J. Phys. Chem. A. 2004, 108, 10200-10207. 13. Sinnokrot, M.; Sherrill, C. High-Accuracy Quantum Mechanical Studies of π−π Interactions in Benzene Dimers. J. Phys. Chem. A. 2006, 110, 10656-10668. 14. Arnstein, S.; Sherrill, C. Substituent Effects in Parallel-Displaced π–π Interactions. PCCP. 2008, 10, 2646. 15. Andreev, Y.; MacGlashan, G.; Bruce, P. Ab Initio Solution of A Complex Crystal Structure from Powder-Diffraction Data Using Simulated-Annealing Method and a High Degree of Molecular Flexibility. Phys. Rev. B. 1997, 55, 12011-12017. 16. Gütlich, P.Goodwin, H. Spin Crossover—an Overall Perspective. Top. Curr. Chem. 1-47. 17. Hauser, A. Light-Induced Spin Crossover and the High-Spin→Low-Spin Relaxation. Top. Curr. Chem. 155-198. 18. Gutlich, P.; Ksenofontov, V.; Gaspar, A. Pressure Effect Studies On Spin Crossover Systems. Coord. Chem. Rev. 2005, 249, 1811-1829. 19. Real, J.; Gaspar, A.; Muñoz, M. Thermal, Pressure and Light Switchable Spin-Crossover Materials. Dalton Trans. 2005, 2062. 20. Richter, B.; Kirste, A.; Hansel, S.; von Ortenberg, M.; Absmeier, A.; Linert, W.; Groessinger, R., Field Induced Low-Spin High-Spin Transition, J. Magn. Magn. Mater. 2007, 310, 2731-2733. 21. Martínez, V.; Arcís Castillo, Z.; Muñoz, M.; Gaspar, A.; Etrillard, C.; Létard, J.; Terekhov, S.; Bukin, G.; Levchenko, G.; Real, J. Thermal-, Pressure- and Light-Induced Spin-Crossover Behaviour in the Two-Dimensional Hofmann-Like Coordination Polymer [Fe(3-Clpy)2 Pd(CN)4 ]. Eur. J. Inorg. Chem. 2013, 813-818. 22. Habib, F.; Luca, O.; Vieru, V.; Shiddiq, M.; Korobkov, I.; Gorelsky, S.; Takase, M.; Chibotaru, L.; Hill, S.; Crabtree, R.; Murugesu, M. Influence of the Ligand Field on Slow Magnetization Relaxation Versus Spin Crossover in Mononuclear Cobalt Complexes. Angew. Chem. Int. Ed. 2013, 52, 11290-11293. 23. Cullity, B. D.; Stock, S. R., Elements of X-Ray Diffraction, 3rd ed., Prentice Hall, Upper saddle River, NJ. 2001. 24. Yi-wei. T.; Ying-Yi. C.; Yu-Hsin W.; Kun-Yuan L.; Shih-Lun L.; Shih-Lin. C. High-Resolution Interference-Monochromator for Hard X-Rays. Opt. soc. Amer. 2016, 24, 26. 25. De Wolff, P. The Definition of the Indexing Figure of Merit M20. J. Appl. Crystallogr. 1972, 5, 243-243. 26. Smith, G.; Snyder, R. F. N. A Criterion for Rating Powder Diffraction Patterns and Evaluating the Reliability of Powder-Pattern Indexing. J. Appl. Crystallogr. 1979, 12, 60-65. 27. Yano, J.; Yachandra, V. X-Ray Absorption Spectroscopy. Photosynth. Res. 2009, 102, 241-254. 28. Abbate, M.; Fuggle, J.; Fujimori, A.; Tjeng, L.; Chen, C.; Potze, R.; Sawatzky, G.; Eisaki, H.; Uchida, S. Electronic Structure and Spin-State Transition Oflacoo3. Phys. Rev. B. 1993, 47, 16124-16130. 29. Collison, D.; Garner, C.; McGrath, C.; Mosselmans, J.; Roper, M.; Seddon, J.; Sinn, E.; Young, N. Soft X-Ray Induced Excited Spin State Trapping and Soft X-Ray Photochemistry at the Iron LII,III Edge In [Fe(Phen)2(NCS)2] and [Fe(Phen)2(Ncse)2] (Phen=1,10-Phenanthroline). J. Chem. Soc., Dalton Trans. 1997, 4371-4376. 30. Koningsberger, D.; Prins, R. X-Ray Absorption; 1st ed.; Wiley: New York, 1987. 31. Penner-hahn, J. E. X-Ray Absorption Spectroscopy, University of Michigan, Ann Arbor, MI, USA. 32. Frenkel, A.; Stern, E.; Voronel, A.; Qian, M.; Newville, M. Solving the Structure of Disordered Mixed Salts. Phys. Rev. B. 1994, 49, 11662-11674. 33. Ravel, B.; Newville, M. ATHENA and ARTEMIS Interactive Graphical Data Analysisusing IFEFFIT. Phys. Scr. 2005, 1007. 34. Brouwer, A. Standards for Photoluminescence Quantum Yield Measurements in Solution. Pure. Appl. Chem. 2011, 83. 35. David, L.; Williams, Adam H. Intramolecular Proton Transfer Reaction in Excited Fluorescent Compounds. J. Phys. Chem. 1970, 74, 26. 36. Wei, Y.; Li, H.; Hao, H.; Chen, Y.; Dong, C.; Wang, G. β-Cyclodextrin Functionalized Mn-Doped ZnS Quantum Dots for the Chiral Sensing of Tryptophan Enantiomers. Polym. Chem. 2015, 6, 591-598. 37. He, Q.; Shi, J.; Cui, X.; Zhao, J.; Chen, Y.; Zhou, J. Rhodamine B-co-Condensed Spherical SBA-15 Nanoparticles: Facile co-Condensation Synthesis and Excellent Fluorescence Features. J. Mater. Chem. 2009, 19, 3395. 38. A. T. R. Williams.; S. A. Winfield.; J. N. Miller. Relative Fluorescence Quantum Yields Using a Computer-Controlled Luminescence Spectrometer. The Analyst, 1983, 108, 1067–1071. 39. Dhami, S.; A. J. DeMello G.; Rumbles, S. M.; Bishop, D. Phillips A. Beeby Phthalocyanine Fluorescence at High Concentration: Dimers or Reabsorption Effect Photochem. Photobiol. 1995, 61, 341–346. 40. Yuan S. L.; Paul de M.; William R. W. Photophysics of Polycyclic Aromatic Hydrocarbons Adsorbed on Silica Gel Surfaces. 3. Fluorescence Quantum Yield and Radiative Decay Rate Constants Derived from Lifetime Distributions. J. Phys. Chem. 1993, 97, 22. 41. Gütlich, P.; Gaspar, A.; Garcia, Y. Spin State Switching in Iron Coordination Compounds. Beilstein J. Org. Chem. 2013, 9, 342-391. 42. Leita, B.; Moubaraki, B.; Murray, K.; Smith, J.; Cashion, J. Structure and Magnetism of a New Pyrazolate Bridged Iron(II) Spin Crossover Complex Displaying a Single HS–HS to LS–LS transition. Chem. Commun. 2004, 156-157. 43. Ksenofontov, V.; Gaspar, A.; Real, J.; Gütlich, P. Pressure-Induced Spin State Conversion in Antiferromagnetically Coupled Fe(II) Dinuclear Complexes. J. Phys. Chem. B. 2001, 105, 12266-12271.
|