跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.170) 您好!臺灣時間:2024/12/07 20:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王浩駿
研究生(外文):Hao-Chun Wang
論文名稱:基於稀疏逼近與自適修復圖像的數位影像浮水印保護技術
論文名稱(外文):A Novel Method for Digital Image Watermark Protection Based on Self-Recovery Image and Sparse Approximation
指導教授:陳英一陳英一引用關係
指導教授(外文):Ing-Yi Chen
口試委員:陳彥文陳偉銘陳俊良郭斯彥陳英一
口試委員(外文):Yen-Wen ChenWei-Ming ChenJiann-Liang ChenSy-Yen KuoIng-Yi Chen
口試日期:2017-01-11
學位類別:博士
校院名稱:國立臺北科技大學
系所名稱:資訊工程系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:87
中文關鍵詞:影像破壞與修復稀疏逼近正交匹配追蹤資料保護數位浮水印
外文關鍵詞:Tamper RecoverySparse ApproximationData ProtectionDigital Watermark
相關次數:
  • 被引用被引用:0
  • 點閱點閱:367
  • 評分評分:
  • 下載下載:54
  • 收藏至我的研究室書目清單書目收藏:0
本研究提出一種新型的資訊加密技術並應用於數位影像浮水印上,在目標影像遭受破壞或是竄改時,影像能先判斷受破壞或是遭竄改的區域,並嘗試從有限的資訊中修復影像,提供數位影像第一層的保護,之後經由稀疏逼近演算法分析修復後的影像資訊,並以分析結果做為解密浮水印資訊的依據。經實驗結果證明,受損區域高達90%的數位影像經修復後,與原影像的峰值訊號雜訊比約20dB,經解密後的浮水印資訊正確率約70%。 在流程上,本研究可分成影像資訊保護技術與浮水印加密技術兩大部分。在影像資訊保護技術上,採用隱像術的方法做處理,目的是將一張解析度較低的數位影像資訊以最低有效位元的方式藏入其中,確保日後影像遭受竄改破壞時能利用此低解析度資訊還原影像。偽造影像與原數位影像的峰值訊號雜訊比皆能維持在40dB以上,無法單純使用肉眼察覺兩者差異。另外於浮水印加密技術上,將藏有低解析度影像資訊的偽造影像分成大小相同且不重複的數個區塊,並使用編碼簿做對每個區塊執行稀疏逼近的運算,記錄運算結果中擁有最大係數的向量索引值,以此索引值的二進制格雷碼對數位浮水印資訊做加密。 本研究所提出的浮水印資訊保護技術,能有效解決數位浮水印於應用上所產生的資訊損失與浮水印關連兩項問題,提供數位浮水印資訊更強健的保護,在數位影像受到大範圍的資訊竄改與破壞下,皆能有效還原數位浮水印資訊。
This paper provides a novel method for data protection to resolve the issue of mass-tampered regions of watermarks. Our approach involves sparse approximation and follows the frequency domain technique, where a trained codebook exists as a dictionary and a region of image exists as a sparse approximation vector. There are two major components to our study: tamper recovery and watermark encryption. Specifically, we generate self-recovery images by Steganography technique on the basis of our previous research, and to generate encryption information, we mark data with the maximum coefficient resulting from the sparse approximation and weighted with Hamming Code approach. The results demonstrate that each block of image processed by the sparse approximation algorithm has its main texture feature associated with a codeword, it has a higher sparse coefficient value than the other codeword. This provides a robust method to protect data via digital watermarking and to verify the copyright of the image. Our proposed method efficiently resists common image attack, such as image tampering, blurring and compression for transmission via popular communication applications. Under common conditions, our method confirmed an outstanding unit correction rate of approximately 90%, especially for tampered images.
摘 要 i ABSTRACT ii 誌 謝 iii 目 錄 iv 圖目錄 vii 表目錄 x 第一章 緒 論 1 1.1 研究背景 1 1.2 研究動機與目的 4 1.2.1 研究動機 4 1.2.2 研究目的 5 1.3 研究特色與貢獻 7 1.4 論文結構 8 第二章 相關研究 10 2.1 數位浮水印技術 10 2.1.1 空間域 11 2.1.2 頻率域 12 2.2 影像竄改與破壞偵測技術 16 2.3 影像修補技術 19 2.4 稀疏逼近演算法 22 第三章 研究方法 28 3.1 數位影像資訊保護技術 28 3.1.1 產生嵌入資訊 29 3.1.2 資訊嵌入於原影像 31 3.1.3 偽造影像的破壞檢測與修復 34 3.1.4 小結 35 3.2 數位影像浮水印加密技術 36 3.2.1 稀疏逼近演算法 37 3.2.2 數位浮水印加密 43 3.2.3 小結 46 3.3 遭遇困難與解決途徑 47 3.3.1 編碼字典集涵蓋範圍問題 47 3.3.2 影像受破壞區域過大問題 50 3.3.3 稀疏逼近演算法選擇問題 52 3.3.4 影像中目標區域大小選擇問題 55 3.4 總結 58 第四章 實驗結果 59 4.1 實驗環境 59 4.2 影像竄改檢測與修補 61 4.3 數位浮水印資訊保護 64 4.3.1 區域竄改破壞攻擊 65 4.3.2 JPEG壓縮攻擊 70 4.3.3 其他類型的數位影像攻擊 75 第五章 結論與未來展望 80 5.1 結論 80 5.2 未來展望 82 參考文獻 83
[1] M. M. Yeung, F. C. Mintzer, G. W. Braudaway and A. R. Rao, “Digital Watermarking for High-quality Imaging,” Multimedia Signal Processing, 1997, IEEE First Workshop on, pp. 357-362, Jun., 1997. [2] Y. Ren, Y. Cheng, J. Wang and L. Fang, "Data Protection Based on Multifunction Digital Watermark in Wireless Sensor Network," 2015 International Carnahan Conference on Security Technology (ICCST), pp. 37-41, Sep., 2015. [3] W.-M. Chen, H.-C. Wang, C.-L. Wu and P.-C. Lee, ”Image Watermarking Processes on Cloud For Physical Object Technology Research,” Annual Conference on Engineering and Information Technology (ACEAIT), Mar. 29, 2014. [4] H.-C. Wang, I.-Y. Chen and W.-M. Chen, "Image Watermark Protection Based on Self-recovery Images and Sparse Approximation," Multimedia Tools and Applications, pp. 1-13, May. 6, 2016. (doi: 10.1007/s11042-016-3588-7) [5] P. Parashar and R. K. Singh, “A Survey: Digital Image Watermarking Techniques,” International Journal of Signal Processing, Image Processing and Pattern Recognition, Vol. 7, No. 6, pp. 111-124, 2014. [6] A. Bamatraf, R. Ibrahim and M. Salleh, “A New Digital Watermarking Algorithm Using Combination of Least Significant Bit (LSB) and Inverse Bit,” Journal of Computing, Vol. 3, Iss. 4, pp. 1-8, Apr., 2011. [7] D. Arya, “A Survey of Frequency and Wavelet Domain Digital Watermarking Techniques,” International Journal of Scientific & Engineering Research, Vol. 1, Iss. 2, Nov., 2010. [8] C.-T. Hsu and J.-L. Wu, “Hidden Digital Watermarks in Images, ”IEEE Transactions on Image Processing, Vol. 8, pp. 58-68, Jan. 1999. [9] H. Inoue, A. Miyazaki, A. Yamsmoto and T. Katsura, “A Digital Watermark Technique Based on The Wavelet Transform and Its Robustness on Image Compression and Transformation,” IEICE Transactions on Fundamentals of Electronics, Communications, and Computer Sciences, Vol. E82-A, pp. 2-10, Jan. 1999. [10] 陳偉銘, 王浩駿, 吳伯諺, 李秉奕, 尤靜宜, ”Mobile Visual Computing 基於人眼容錯功能的立體浮水印技術研究,” The Fourth National Conference on Web Intelligence and Applications (NCWIA 2014), 台灣澎湖縣, pp. 72, May. 2, 2014. [11] C.-C. Chang and H.-W. Tseng, “VQ-Based Image Watermarking Using Anti-Gray Coding,” Institute of Mathematics and Informatics, Vilnius, Vol. 15, No. 2, pp. 147–160, 2004 [12] X. Zhang and S. Wang, “Statistical Fragile Watermarking Capable of Locating Individual Tampered Pixels,” in IEEE Signal Processing Letters, Vol. 14, pp. 727–730, Oct., 2007. [13] P.-L. Lin, C.-K. Hsieh and P.-W. Huang, “A Hierarchical Digital Watermarking Method for Image Tamper Detection and Recovery,” in Pattern Recognition, Vol. 38, no. 12, pp. 2519-2529, 2005. [14] T.-Y. Lee and S.-D. Lin, “Dual Watermark for Image Tamper Detection and Recovery, in Pattern Recognition,” Vol. 14, No. 11, pp. 3497-3506, 2008. [15] H.-C. Wang, W.-M. Chen and P.-Y. Lee, ”Image Detection and Recovery based on Dilation and Chaotic Mixing,” Asian Conference on Engineering and Natural Sciences (ACENS 2015), Feb. 3, 2015. [16] C. Qin, C.-C. Chang and P.-Y. Chen, “Self-embedding Fragile Watermarking with Restoration Capability Based on Adaptive Bit Allocation Mechanism,” Signal Processing, Vol. 92, issue 4, pp. 1137–1150. Apr., 2012. [17] C. Qin, C.-C. Chang and T.-J. Hsu, “Reversible Data Hiding Scheme Based on Exploiting Modification Direction with Two Steganographic Images,” Multimedia Tools and Applications, Vol. 74, No. 15, pp. 5861–5872, 2014. [18] M. Bertalmio, G. Sapiro, V. Caselles and C. Ballester. “Image Inpainting,” in Proc. ACM Conf. Comp. Graphics (SIGGRAPH), pp. 417-424, Jul. 2000. [19] T. K. Shih and R. C. Chang. “Digital Inpainting - Survey and Multilayer Image Inpainting Algorithms,” in ICITA 2005, Vol. 1, Iss. 4-7, pp. 15-24, Jul. 2005. [20] A. Criminisi, P. Perez and K. Toyama, “Region Filling and Object Removal by Exemplar-Based Image Inpainting,” in IEEE Transactions Image Processing, Vol. 13, No. 9, pp. 1200-1212, Sep. 2004. [21] W.-H. Cheng, C.-H. Hsieh, S.-K. Lin, C.-W. Wang and J.-L. Wu. “Robust Algorithm for Exemplar-based Image Inpainting,” in International Conference on Computer Graphics Imaging and Visualization, 2005. [22] Y. Zhang, J. Xiao and M. Shah “Region Completion in A Single Image,” in Eurographics Association 2004 / Short Presentations, 2004. [23] H.-C. Wang, W.-M. Chen and P.-Y. Lee, “Image Tamper Detection and Recovery based on Dilation and Chaotic Mixing,” Computer Science and Information Technology (HRPUB), Vol. 3, No. 4, pp. 127-132, 2015. [24] P. Breen, “Algorithms for Sparse Approximation,“ in Year 4 Project, School of Mathematics, University of Edinburgh, 2009. [25] J. A. Tropp, “Greed Is Good: Algorithmic Results For Sparse Approximation,” in IEEE Transactions on Information Theory, Vol. 50, no. 10, pp. 2231-2242, Oct., 2004. [26] Linde, Y., Buzo, A. and Gray, R.M., “An Algorithm for Vector Quantizer Design,” in IEEE Transactions on Communications, Vol. 28, no. 1, pp. 84-95, Jan., 1980. [27] H.-C. Wang, W.-M. Chen and Y.-H. Hsieh, “Imperceptible Watermark Research Based On Sparse Approximation,” International Journal of Electrical Engineering (IJEE), Vol. 21, no.3, pp. 93-98, Dec., 2014. [28] R. M. Thanki and K. R. Borisagar, "Discrete Wavelet Transform and Compressive Sensing Based Multibiometric Watermarking — A Novel Approach to Embed Watermark into Biometrie," 2014 2nd International Conference on Emerging Technology Trends in Electronics, pp. 1-6, Dec., 2014. [29] B. Liao, J. Lv, "A Novel Watermark Embedding Scheme Using Compressive Sensing in Wavelet Domain", The Open Cybernetics & Systemics Journal, Vol. 9, pp. 1-6, 2015. [30] H.-C. Wang, W.-M. Chen, Y.-P. Lin and W.-C. Shen, “Tumor Detecting In Colonoscopic Narrow-Band Imaging Data,” in Proc. of IEEE International Symposium on Intelligent Signal Processing and Coummunication Systems, pp. 564-568, Nov. 4-7, 2012. [31] L.-W. Kang, C.-W. Lin, C.-T. Lin and Y.-C. Lin, “Self-Learning-based Rain Streak Removal for Image/Video,” in IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1871-1874, May, 2012. [32] J.A. Tropp and A.C. Gilbert, “Signal Recovery From Random Measurements Via Orthogonal Matching Pursuit,” in IEEE Transactions on Information Theory, Vol. 53, no. 12, pp. 4655-4666, Dec., 2007. [33] K. Nagata and F. Nemenzo, "Some Properties of Binary Gray Code," 2015 International Conference on Computer Application Technologies, pp.72-75, Aug., 2015. [34] E. N. Mambou and T. G. Swart, "Encoding and Decoding of Balanced Q-ary Sequences Using A Gray Code Prefix," 2016 IEEE International Symposium on Information Theory (ISIT), pp.380-384, Jul., 2016. [35] W. He, Q. He, J. Yang and J. Li, "A Fast Codebook Generation Algorithm Based on Multiple Split Initialization Method," 2015 IEEE China Summit and International Conference on Signal and Information Processing (ChinaSIP), pp. 45-49, Jul., 2015. [36] G. Voyatzis and I. Pitas, “Chaotic Mixing of Digital Images and Applications to Watermarking,” in Proc. of the European Conference on Multimedia Applications, Systems and Techniques (ECMAST’96), Vol. II, pp. 687-694, 1996.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top