跳到主要內容

臺灣博碩士論文加值系統

(2600:1f28:365:80b0:f3de:de2a:940c:ec8b) 您好!臺灣時間:2024/12/04 08:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林柏廷
研究生(外文):Po-Ting Lin
論文名稱:三維模擬奈米基柱誘導自組裝之樹枝狀結構
論文名稱(外文):Three-Dimensional Simulation of Nanopost-Guided Self-Organization of Dendritc Structure
指導教授:許華倚
口試委員:許又仁韓麗龍
口試日期:2017-06-19
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:製造科技研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:100
中文關鍵詞:相場模型樹枝狀結構自組裝
外文關鍵詞:Phase-field modelDendriticSelf-Organization
相關次數:
  • 被引用被引用:0
  • 點閱點閱:225
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文主要利用數值方法,並建構相場模型對奈米柱陣列誘導樹枝狀結構自主成長進行三維模擬,三維模擬能夠觀察樹枝狀結構在奈米柱陣列上的成長趨勢以及空間填補關係,使模擬更接近真實狀況。透過建立不同形狀及排列的奈米柱陣並在不同散熱通量條件下模擬,分析各結果的差異以及探討奈米柱與樹枝狀結構分支的影響,並與實驗作比較。

從模擬結果得知,樹枝狀結構分支會沿著奈米柱邊緣成長,並嘗試以最短路徑成長至下一個奈米柱,不同形狀的奈米柱具有不同的分支成長趨勢,這也顯示了奈米柱對樹枝狀結構分支的影響,而在空間填補關係,分支會優先填補奈米柱附近的空間或表面。在加入散熱通量條件後,觀察到隨著散熱通量的增加,空間填補更快速且更布滿整個空間。此研究可以為智慧自組裝結構的提供一個指標性的發展。
In this study, three-dimensional simulation of the nanopost-guided self-organization of dendritc structure by using numerical method. The three-dimensional simulation can observe the growth trend and the spatial filling of the dendritic structure on the nanoposts and make the simulation closer to the real situation. We established the different shapes and arrangement of nanoposts and simulated under different negative heat flux conditions. Further, we analysis the results of simulation and the effects between nanoposts and dendritic branches.
The results show that the dendritic branch will grow along the edge of the nanopost and grow to the next nanopost with the shortest path. Different shapes of nanoposts have different branch growth trends that it show the effects between nanoposts and dendritic branches. After adding the heat flux condition, it is observed that as the heat flux increases, the space filling is faster and more full of space.
摘 要 i
ABSTRACT ii
誌 謝 iii
目 錄 iv
表目錄 vi
圖目錄 vii
第一章 緒論 1
1.1 前言 1
1.2 研究動機 2
1.3 文獻回顧 3
1.3.1 自我組織 3
1.3.2 樹枝狀結構 5
1.3.3 奈米柱陣誘導自組裝之無機鹽樹枝狀結構 6
1.3.4 相場模型 14
1.4 本文架構 19
第二章 數值分析與控制方程 20
2.1 數值方法 21
2.1.1 有限差分法 22
2.1.2 有限體積法 22
2.1.3 有限元素法 23
2.2 相場模型與控制方程 24
2.3 網格 28
第三章 模擬步驟與模型建立 30
3.1 求解步驟 30
3.2 幾何形狀建立 32
3.2.1 圓形奈米基柱 33
3.2.2 28∘橢圓奈米基柱 35
3.2.3 38∘橢圓奈米基柱 38
3.3 奈米基柱邊緣之散熱通量條件 40
3.4 參數與網格設置 41
3.5 初始條件設置 42
第四章 結果與討論 46
4.1 界面寬度 46
4.2 奈米柱陣列在零通量條件下的樹枝狀結構 53
4.3 奈米柱陣列在散熱通量條件下的樹枝狀結構 72
4.4 液固相在求解域的體積覆蓋率 82
第五章 結論 97
5.1 結論 97
參考文獻 97
1.Cao, M.H.L., T. F.; Gao, S.; Sun, G. B.; Wu, X. L.; Hu, C. W.; Wang, Z. L,, Single-Crystal Dendritic Micro-Pines of Magnetic α- Fe2O3: Large-Scale Synthesis, Formation Mechanism, and Properties. Angew. Chem., Int. Ed., 2005. 44(27): p. 4197-4201.
2.Chen. X. Y, Wang. X, Wang. Z. H, Yang. X. G, Qian. Y. T, Hierarchical Growth and Shape Evolution of HgS Dendrites. Cryst Growth Des, 2005. 5(1): p. 347-350.
3.Ma, Y.R.Q., L. M.; Ma, J. M.; Cheng, H. M,, Hierarchical, Star-Shaped PbS Crystals Formed by a Simple Solution Route. Cryst. Growth Des, 2004. 2004(4): p. 2.
4.Noorduin, W.L.G., A.; Mahadevan, L.; Aizenberg, J,, Rationally Designed Complex, Hierarchical Microarchitectures. Science, 2013. 340(6134): p. 832-837.
5.Wu, K.C.W.Y., C. Y.; Cheng, C. M,, Using Cell Structures to Develop Functional Nanomaterials and Nanostructures - Case Studies of Actin Filaments and Microtubules. Chem. Commun, 2014. 50(32): p. 4148-4157.
6.Y., Q., et al., Ionic Liquid-Assisted Growth of Single-Crystalline Dendritic Gold Nanostructures with a Three-Fold Symmetry. Chem. Mater, 2008. 20(12): p. 3965-3972.
7.Luo, J.D.H., M.; Ma, H.; Liu, S.; Kim, T. D.; Tian, Y. Q.; Chen, B. Q.; Jang, S. H.; Dalton, L. R.; Jen, A. K. Y,, Nanoscale Architectural Control and Macromolecular Engineering of Nonlinear Optical Dendrimers and Polymers for Electro-Optics. J. Phys. Chem. B, 2004. 108(25): p. 8523-8530.
8.Rosen, B.M.W., C. J.; Wilson, D. A.; Peterca, M.; Imam, M. R.; Percec, V,, Dendron-Mediated Self-Assembly, Disassembly, and Self-Organization of Complex Systems. Chem. Rev., 2009. 109(11): p. 6275-6540.
9.Wen, X.G.X., Y. T.; Mak, W. C.; Cheung, K. Y.; Li, X. Y.; Renneberg, R.; Yang, S,, Dendritic Nanostructures of Silver: Facile Synthesis, Structural Characterizations, and Sensing Applications. Langmuir, 2006. 22(10): p. 4836-4842.
10.Lim, B.J., M. J.; Camargo, P. H. C.; Cho, E. C.; Tao, J.; Lu, X. M.; Zhu, Y. M.; Xia, Y. N.,, Pd-Pt Bimetallic Nanodendrites with High Activity for Oxygen Reduction. Science, 2009. 324(5932): p. 1302-1305.
11.Qiu, R.Z., X. L.; Qiao, R.; Li, Y.; Kim, Y. I.; Kang, Y. S.,, Cuni Dendritic Material: Synthesis, Mechanism Discussion, and Application as Glucose Sensor. Chem. Mater, 2007. 19(17): p. 4174-4180.
12.Song, R.Q.C., H., Mesocrystals-Ordered Nanoparticle Superstructures. Adv. Mater., 2010. 22(12): p. 1301-1330.
13.Betzler, S.B., et al., Template-free synthesis of novel, highly-ordered 3D hierarchical Nb3O7(OH) superstructures with semiconductive and photoactive properties. Journal of Materials Chemistry A, 2014. 2: p. 12005-12013.
14.Ulman, A., Formation and Structure of Self-Assembled Monolayers. Chem. Rev, 1996. 96: p. 1533-1554.
15.al., Z.L.e., Self-assembled monolayers as interfaces for organic opto-electronic devices. European Physical Journal, 1999. 11(3): p. 505-512.
16.Parviz, B.A. and D. Ryan, G.M. Whitesides, Using self-assembly for the fabrication of nano-scale electronic and photonic devices. Ieee Transactions on Advanced Packaging, 2003. 3(3): p. 233-241.
17.Smith, H.I., Low cost nanolithography with nanoaccuracy. Physica E, 2001. 11(2-3): p. 104-109.
18.Su, H.-W., M.-S. Ho, and C.-M. Cheng,, Probing characteristics of collagen molecules on various surfaces via atomic force microscopy. Applied Physics Letters, 2012. 100(23).
19.Yu, S.H., et al., Biomimetic crystallization of calcium carbonate spherules with controlled surface structures and sizes by double-hydrophilic block copolymers. Advanced Functional Materials, 2002. 12(8): p. 541-545.
20.Yu, S.H.e.a., Growth and self-assembly of BaCrO4 and BaSO4 nanofibers toward hierarchical and repetitive superstructures by polymer-controlled mineralization reactions. Nano Letters, 2003. 3(3): p. 379-382.
21.Chang, E.C., et al., Nanopost-Guided Self-Organization of Dendritic Inorganic Salt Structures. Langmuir, 2014. 30(36): p. 10940-10949.
22.Kurz, W., Solidification path and phase diagram of directionally solidified Co-Sm-Cu alloys. J. Cryst. Growth, 1981. 51: p. 283-291.
23.Libbrecht, K.G., The physics of snow crystals. Rep. Prog. Phys, 2005. 68: p. 855-895.
24.Roseita Esfand and Donald A. Tomalia, Poly(amidoamine) (PAMAM) dendrimers: from biomimicry to drug delivery and biomedical applications. DDT, 2001. 6(8): p. 427-436.
25.C. C. Hays, C.P.K., and W. L. Johnson,, Microstructure Controlled Shear Band Pattern Formation and Enhanced Plasticity of Bulk Metallic Glasses Containing in situ Formed Ductile Phase Dendrite Dispersions. PHYSICAL REVIEW LETTERS, 2000. 84(13).
26.Lan., C.W., Grain control in directional solidification of photovoltaic silicon. Journal of Crystal Growth, 2012. 360: p. 68-75.
27.Langer, J.S., in Directions in Condensed Matter. World Scientific,Singapore, 1986: p. 164.
28.B. I. Halperin, P.C.H., and S-K. Ma,, Renormalization-group methods for critical dynamics: I. Recursion relations and effects of energy conservation. Phys. Rev. B, 1974. 10(139).
29.O Penrose and P.C Fife, Thermodynamically consistent models of phase field type for the kinetics of phase transitions. Physica D, 1990. 43: p. 44-62.
30.S-L Wang, R.S., AA Wheeler, BT Murray, SR Coriell, RJ Braun, GB McFadden,, Thermodynamically-consistent phase-field models for solidification. Physica D, 1993. 69(1-2): p. 189-200.
31.Kobayashi, R., Modeling and numerical simulations of dendritic crystal growth. Physica D, 1993. 63: p. 410-423.
32.G. B. McFadden, A.A.W., R. 3. Braun, and S. R. Coriell,, Phase-field models for anisotropic interfaces. PHYSICAL REVIEW E 1993. 48(3).
33.Rappel, A.K.a.W.-J., Quantitative phase-field modeling of dendritic growth in two and three dimensions. PHYSICAL REVIEW E, 1998. 57(4).
34.Caginalp, G., Stefan and Hele-Shaw type models as asymptotic limits of the phase-field equations. PHYSICAL REVIEW A 1989. 39.
35.Kobayashi, R., A numerical approach to three-dimensional dendritic solidification. Experiment. Math., 1994. 3(1): p. 59-81.
36.A.A. Wheeler ~, B.T.M.a.R.J.S., Computation of dendrites using a phase field model. Physica D, 1993. 66: p. 243-262.
37.Shun-Lien Wang* and Robert F. Sekerka, Computation of the dendritic operating state at large supercoolings by the phase field model. PHYSICAL REVIEW E, 1996. 53(4).
38.Alain Karma and Wouter-Jan Rappel, Phase-field method for computationally efficient modeling of solidification with arbitrary interface kinetics. PHYSICAL REVIEW E, 1996. 53(4).
39.Hsu, Y.-R., Investigation of Dendritic Patterns Formation through Nanopost-Guided Organization: Experiment, and Numerical Simulation. 2016.
40.Xiao-Yong Liu, M.W., Da-Wei Li, Christina S. Strom, Piet Bennema, Nai-Ben Ming,, Nucleation-limited aggregation of crystallites in fractal growth. Journal of Crystal Growth, 2000. 208: p. 687-695.
41.Hua-Yi Hsu, B.-T.L., You-Ren Hsu, Three-dimensional numerical investigation of dendritic self-organizational structure growth on a nanopost surface. Advances in Mechanical Engineering, 2017. 9(2): p. 1-9.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top