|
1.Cao, M.H.L., T. F.; Gao, S.; Sun, G. B.; Wu, X. L.; Hu, C. W.; Wang, Z. L,, Single-Crystal Dendritic Micro-Pines of Magnetic α- Fe2O3: Large-Scale Synthesis, Formation Mechanism, and Properties. Angew. Chem., Int. Ed., 2005. 44(27): p. 4197-4201. 2.Chen. X. Y, Wang. X, Wang. Z. H, Yang. X. G, Qian. Y. T, Hierarchical Growth and Shape Evolution of HgS Dendrites. Cryst Growth Des, 2005. 5(1): p. 347-350. 3.Ma, Y.R.Q., L. M.; Ma, J. M.; Cheng, H. M,, Hierarchical, Star-Shaped PbS Crystals Formed by a Simple Solution Route. Cryst. Growth Des, 2004. 2004(4): p. 2. 4.Noorduin, W.L.G., A.; Mahadevan, L.; Aizenberg, J,, Rationally Designed Complex, Hierarchical Microarchitectures. Science, 2013. 340(6134): p. 832-837. 5.Wu, K.C.W.Y., C. Y.; Cheng, C. M,, Using Cell Structures to Develop Functional Nanomaterials and Nanostructures - Case Studies of Actin Filaments and Microtubules. Chem. Commun, 2014. 50(32): p. 4148-4157. 6.Y., Q., et al., Ionic Liquid-Assisted Growth of Single-Crystalline Dendritic Gold Nanostructures with a Three-Fold Symmetry. Chem. Mater, 2008. 20(12): p. 3965-3972. 7.Luo, J.D.H., M.; Ma, H.; Liu, S.; Kim, T. D.; Tian, Y. Q.; Chen, B. Q.; Jang, S. H.; Dalton, L. R.; Jen, A. K. Y,, Nanoscale Architectural Control and Macromolecular Engineering of Nonlinear Optical Dendrimers and Polymers for Electro-Optics. J. Phys. Chem. B, 2004. 108(25): p. 8523-8530. 8.Rosen, B.M.W., C. J.; Wilson, D. A.; Peterca, M.; Imam, M. R.; Percec, V,, Dendron-Mediated Self-Assembly, Disassembly, and Self-Organization of Complex Systems. Chem. Rev., 2009. 109(11): p. 6275-6540. 9.Wen, X.G.X., Y. T.; Mak, W. C.; Cheung, K. Y.; Li, X. Y.; Renneberg, R.; Yang, S,, Dendritic Nanostructures of Silver: Facile Synthesis, Structural Characterizations, and Sensing Applications. Langmuir, 2006. 22(10): p. 4836-4842. 10.Lim, B.J., M. J.; Camargo, P. H. C.; Cho, E. C.; Tao, J.; Lu, X. M.; Zhu, Y. M.; Xia, Y. N.,, Pd-Pt Bimetallic Nanodendrites with High Activity for Oxygen Reduction. Science, 2009. 324(5932): p. 1302-1305. 11.Qiu, R.Z., X. L.; Qiao, R.; Li, Y.; Kim, Y. I.; Kang, Y. S.,, Cuni Dendritic Material: Synthesis, Mechanism Discussion, and Application as Glucose Sensor. Chem. Mater, 2007. 19(17): p. 4174-4180. 12.Song, R.Q.C., H., Mesocrystals-Ordered Nanoparticle Superstructures. Adv. Mater., 2010. 22(12): p. 1301-1330. 13.Betzler, S.B., et al., Template-free synthesis of novel, highly-ordered 3D hierarchical Nb3O7(OH) superstructures with semiconductive and photoactive properties. Journal of Materials Chemistry A, 2014. 2: p. 12005-12013. 14.Ulman, A., Formation and Structure of Self-Assembled Monolayers. Chem. Rev, 1996. 96: p. 1533-1554. 15.al., Z.L.e., Self-assembled monolayers as interfaces for organic opto-electronic devices. European Physical Journal, 1999. 11(3): p. 505-512. 16.Parviz, B.A. and D. Ryan, G.M. Whitesides, Using self-assembly for the fabrication of nano-scale electronic and photonic devices. Ieee Transactions on Advanced Packaging, 2003. 3(3): p. 233-241. 17.Smith, H.I., Low cost nanolithography with nanoaccuracy. Physica E, 2001. 11(2-3): p. 104-109. 18.Su, H.-W., M.-S. Ho, and C.-M. Cheng,, Probing characteristics of collagen molecules on various surfaces via atomic force microscopy. Applied Physics Letters, 2012. 100(23). 19.Yu, S.H., et al., Biomimetic crystallization of calcium carbonate spherules with controlled surface structures and sizes by double-hydrophilic block copolymers. Advanced Functional Materials, 2002. 12(8): p. 541-545. 20.Yu, S.H.e.a., Growth and self-assembly of BaCrO4 and BaSO4 nanofibers toward hierarchical and repetitive superstructures by polymer-controlled mineralization reactions. Nano Letters, 2003. 3(3): p. 379-382. 21.Chang, E.C., et al., Nanopost-Guided Self-Organization of Dendritic Inorganic Salt Structures. Langmuir, 2014. 30(36): p. 10940-10949. 22.Kurz, W., Solidification path and phase diagram of directionally solidified Co-Sm-Cu alloys. J. Cryst. Growth, 1981. 51: p. 283-291. 23.Libbrecht, K.G., The physics of snow crystals. Rep. Prog. Phys, 2005. 68: p. 855-895. 24.Roseita Esfand and Donald A. Tomalia, Poly(amidoamine) (PAMAM) dendrimers: from biomimicry to drug delivery and biomedical applications. DDT, 2001. 6(8): p. 427-436. 25.C. C. Hays, C.P.K., and W. L. Johnson,, Microstructure Controlled Shear Band Pattern Formation and Enhanced Plasticity of Bulk Metallic Glasses Containing in situ Formed Ductile Phase Dendrite Dispersions. PHYSICAL REVIEW LETTERS, 2000. 84(13). 26.Lan., C.W., Grain control in directional solidification of photovoltaic silicon. Journal of Crystal Growth, 2012. 360: p. 68-75. 27.Langer, J.S., in Directions in Condensed Matter. World Scientific,Singapore, 1986: p. 164. 28.B. I. Halperin, P.C.H., and S-K. Ma,, Renormalization-group methods for critical dynamics: I. Recursion relations and effects of energy conservation. Phys. Rev. B, 1974. 10(139). 29.O Penrose and P.C Fife, Thermodynamically consistent models of phase field type for the kinetics of phase transitions. Physica D, 1990. 43: p. 44-62. 30.S-L Wang, R.S., AA Wheeler, BT Murray, SR Coriell, RJ Braun, GB McFadden,, Thermodynamically-consistent phase-field models for solidification. Physica D, 1993. 69(1-2): p. 189-200. 31.Kobayashi, R., Modeling and numerical simulations of dendritic crystal growth. Physica D, 1993. 63: p. 410-423. 32.G. B. McFadden, A.A.W., R. 3. Braun, and S. R. Coriell,, Phase-field models for anisotropic interfaces. PHYSICAL REVIEW E 1993. 48(3). 33.Rappel, A.K.a.W.-J., Quantitative phase-field modeling of dendritic growth in two and three dimensions. PHYSICAL REVIEW E, 1998. 57(4). 34.Caginalp, G., Stefan and Hele-Shaw type models as asymptotic limits of the phase-field equations. PHYSICAL REVIEW A 1989. 39. 35.Kobayashi, R., A numerical approach to three-dimensional dendritic solidification. Experiment. Math., 1994. 3(1): p. 59-81. 36.A.A. Wheeler ~, B.T.M.a.R.J.S., Computation of dendrites using a phase field model. Physica D, 1993. 66: p. 243-262. 37.Shun-Lien Wang* and Robert F. Sekerka, Computation of the dendritic operating state at large supercoolings by the phase field model. PHYSICAL REVIEW E, 1996. 53(4). 38.Alain Karma and Wouter-Jan Rappel, Phase-field method for computationally efficient modeling of solidification with arbitrary interface kinetics. PHYSICAL REVIEW E, 1996. 53(4). 39.Hsu, Y.-R., Investigation of Dendritic Patterns Formation through Nanopost-Guided Organization: Experiment, and Numerical Simulation. 2016. 40.Xiao-Yong Liu, M.W., Da-Wei Li, Christina S. Strom, Piet Bennema, Nai-Ben Ming,, Nucleation-limited aggregation of crystallites in fractal growth. Journal of Crystal Growth, 2000. 208: p. 687-695. 41.Hua-Yi Hsu, B.-T.L., You-Ren Hsu, Three-dimensional numerical investigation of dendritic self-organizational structure growth on a nanopost surface. Advances in Mechanical Engineering, 2017. 9(2): p. 1-9.
|