跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.89) 您好!臺灣時間:2024/12/13 06:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:鐘原嘉
研究生(外文):Yuan-Chia Chung
論文名稱:超薄型均熱板氣室高度對其性能影響之研究
論文名稱(外文):A Study of the Impact to Ultra-Thin Vapor Chamber by Vapor Space Height
指導教授:蘇程裕蘇程裕引用關係
指導教授(外文):Cherng-Yuh Su
口試委員:程金保王榮昌黃振康
口試日期:2017-07-31
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:機電整合研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:83
中文關鍵詞:銅網氣室高度超薄型均熱板
外文關鍵詞:Copper NetVapor Space HeightUltra-thin Vapor Chamber
相關次數:
  • 被引用被引用:2
  • 點閱點閱:548
  • 評分評分:
  • 下載下載:91
  • 收藏至我的研究室書目清單書目收藏:0
當今社會之3C電子產品,皆朝向輕薄短小及有效提升散熱性能為首要目標,而散熱裝置的應用,也隨著電子產品的演進,輕薄的需求相形重要。其中均熱板為一種以熱管為理論基礎的兩相變化熱傳散熱元件,此種元件為一真空腔體內襯微結構於內壁上,利用腔體內部流體的蒸發凝結進行快速熱傳遞,達到散熱效果。
本研究擬利用上述之原理,製備出六種不同氣室高度之超薄型均熱板,利用自然對流方式,藉由一系列的測試數據,評估氣室高度與超薄型均熱板性能之影響,以求出最佳化的設計標準。
實驗結果顯示,微結構分析方面,從二次製程製作出來的微結構觀察,能有效克服因一次製程所製備出來的微結構堵塞氣室空間之情形,進而提升薄型均熱板的性能。熱阻分析方面,總熱阻與基板熱阻擁有相同的趨勢,在相同熱傳5 W下,氣室高度為0.35 mm時,超薄型均熱板擁有最低總熱阻值7.79 ℃/W,基板熱阻有最低熱阻值0.27 ℃/W。
Today’s society, 3C electronic products have been designed toward thinner、 smaller and effectively enhance the cooling performance as the primary goal. The application of thermal devices are also depend on thinner with the evolution of electronic products. Vapor chamber is a two-phase thermal conductivity component which is based on the theory of heat pipe; this component is a combination of a vacuum chamber and wick structure embedding; using the working fluid evaporation and condensation characteristic to speed up the thermal transmission to achive the cooling performance.
In this study, we fabricate the ultra-thin vapor chamber with six different vapor space height and total thickness. We test thermal performance by a natural convection. Via a series of tests, the study is to find out the relationship among performance, vapor space height and then to conclude a optimum design guide.
The results show that the wick structure analysis from the secondary process can effectively overcome the situation that the wick structure clog the vapor flow space manufactured by single process; also can improve the thermal performance of ultra-thin vapor chamber. From thermal resistance analysis, the total thermal resistance and board resistance have the same trend. In the same heat transfer 5 W, when the vapor space height is 0.35 mm, the ultra-thin vapor chamber has the minimum total thermal resistance of 7.79 ℃/W, and has the minimum board resistance of 0.27 ℃/W.
摘要 i
ABSTRACT ii
誌謝 iv
目錄 v
表目錄 viii
圖目錄 ix
第一章 緒論 1
1.1 前言 1
1.2 研究動機與目的 2
第二章 文獻回顧 6
2.1 熱管及均熱板工作原理 6
2.1.1 密閉容器 12
2.1.2 工作流體 17
2.1.3 毛細結構 21
2.1.4 均熱板之操作極限 27
2.2 毛細結構選用之目的 34
2.3 超薄型散熱元件 35
2.4 一般均熱板氣室高度 41
2.5 小結 44
2.6 擴散接合 45
第三章 研究方法 49
3.1 實驗流程 49
3.2 銅網規格選擇 50
3.2.1 銅網對均熱板影響 50
3.2.2 收縮率 51
3.2.3 孔隙率 51
3.2.4 滲透率 52
3.3 超薄型均熱板製作 53
3.3.1 上蓋 53
3.3.2 下蓋 54
3.3.3 下蓋微結構 55
3.3.4 試片表面清潔 56
3.3.5下蓋與銅網接合 56
3.3.6 上、下蓋擴孔 57
3.3.7 上、下蓋接合與注水 57
3.4 超薄型均熱板規格 60
3.5 性質量測 61
3.5.1測試設備 61
3.5.2測試步驟 63
第四章 結果與討論 65
4.1 微結構分析 65
4.1.1製程分析 65
4.1.2小結 67
4.2 超薄型均熱板性能 68
4.2.1 熱源表面溫度對超薄型均熱板之影響 68
4.2.2 熱源表面溫度對超薄型均熱板冷凝區表面溫度之影響 69
4.2.3 氣室高度對超薄型均熱板熱阻值之影響 72
第五章 結論 78
參考文獻 79
[1]曾昭源,折彎及壓扁後製程對燒結式熱管毛細結構之影響,碩士論文,私立大同大學,台北市,2007。
[2]依日光,熱管技術理論實務,日本技術協會編,台北:復漢出版社,1986。
[3]Hirofumi Aoki, “Ultra Thin Heat Pipe and its Application”,10th International Heat Pipe Symposium, Nov.6-9,2011, Taipei, Taiwan.
[4]C. K. Huang, C. Y. Su, K. Y. Lee, “The Effects of Vapor Space Height on the Vapor Chamber Performance”, Experimental Heat Transfer, vol. 25, No. 1, pp. 1-11, 2012.
[5]R.S. Gaugler, “Heat Transfer Device”, U.S. Patent NO.2350348, 1944.
[6]G.M. Grover, “Evaporation-condensation heat transfer device”,U.S. Patent NO.3229759 1963.
[7]X. Y. Huang, C. Y. Liu, “The pressure and velocity fields in the wick structure of a localized heated flat plate heat pipe”, International Journal of Heat and Mass Transfer, vol. 39, 1995, pp. 1325-1330.
[8]K. H. Sun, C. Y. Liu, K. C. Leong, “The effective length of a flat plate heat pipe covered partially by a strip heater on the evaporator section”, Heat Recovery Systems & CHP, vol. 15, No. 4, 1995, pp. 383-388.
[9]B. K. Tan, T. N. Wong, K. T. Ooi, “Analytical effective length study of a flat plate heat pipe using point source approach”, Applied Thermal Engineering, vol. 25, 2005, pp. 2272-2284.
[10]S. F. Wang, J. J. Chen, Y. X. Hu, W. Zhang, “Effect of evaporation section and condensation section length on thermal performance of flat plate heat pipe”, Applied Thermal Engineering, 2011, pp. 1-7.
[11]L. Rosso, N. Koneva, V. Fernicola, “Development of a heat-pipe-based hot plate for surface-temperature measurements”, International Journal of Thermophysics, vol. 30, 2009, pp. 257-264.
[12]Y. Koito, H. Imura, M. Mochizuki, Y. Saito, S. Torii, “Numerical analysis and experimental verification on thermal fluid phenomena in a vapor chamber”, Applied Thermal Engineering, vol. 26, 2006, pp. 1669-1676.
[13]S. Lee, S. Song, V. Au, K. P. Moran, “Constriction/spreading resistance model for electronics packaging”, Proceedings of the 4th ASME/JSME thermal engineering joint conference, vol. 4, pp. 199-206, 1995.
[14]A. Faghri, “Heat pipe science and technology”, Taylor & Francis, Washington, DC, 1995.
[15]JAHP, “Jitsuyou Heat Pipe”, second ed., Nikkan Kogyo Shimbun, Ltd, Tokyo, 2001.
[16]J. S. Go, “Quantitative thermal performance evaluation of a cost-effective vapor chamber heat sink containing a metal-etched microwick structure for advanced microprocessor cooling”, Sensors and Actuators A, vol. 121, 2005, pp. 549-556.
[17]S. M. Rassoulinejad-Mousavi, S. Porkhial, M. Layeghi, B. Nikaeen, H. Samanipour, “Experimental Study on Thermal Behavior of a Stainless Steel-Di Water Flat Plate Heat Pipe”, World Applied Sciences Journal 16(10), 2012, pp. 1393-1397.
[18]C. Ding, G. Soni, P. Bozorgi, B. D. Piorek, C. D. Meinhart, N. C. MacDonald “A Flat Heat Pipe Architecture Based on Nanostructured Titania”, Journal of Microelectromechanical Systems, vol. 19, No. 4, 2010, pp. 878-884.
[19]Silva, Débora de O., Roger R. Riehl. “Thermal behavior of water-copper and water-stainless steel heat pipes operating in cycles”, Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), 2016 15th IEEE Intersociety Conference on. IEEE, 2016, pp. 6-11.
[20]簡國詳,金屬粉體在熱管及平板熱管之應用,粉體材料在熱管理方面之原理與應用研討會,工業技術研究院,2004,pp. 1-8。
[21]G. P. Peterson, “An Introduction to Heat Pipe”, John Wily and Sons, New York, 1994.
[22]A. F. Mills, “Heat Transfer”, Richard D. Irwin, 1982, pp. 629-688.
[23]S. EzhilVannan, P. M. Shravan, A. Sandesh Kumar, “Experimental Investigation of Conventional Heat Pipe using Different Working Fluids”, International Journal of Engineering Trends and Technology (IJETT), vol. 38, No. 7, 2016, pp. 352-354.
[24]K. Shukla, A. Solomon, B. Pillai, “Thermal Performance of Vapor Chanber with Nanofluids”, Frontiers in Heat Pipes (FHP), 2013.
[25]S. C. Wong, Y. C. Lin, “Effect of copper surface wettability on the evaporation performance: Tests in a flat-plate heat pipe with visualization”,International Journal of Heat and Mass Transfer, vol. 54, 2011, pp. 3921-3926.
[26]S. C. Wong, J. H. Liou, C. W. Chang, “Evaporation resistance measurement with visualization for sintered copper-powder evaporator in operating flat-plate heat pipes”,International Journal of Heat and Mass Transfer, vol. 53, 2011, pp. 3792-3798.
[27]S. C. Wong, Y. C. Lin, J. H. Liou, “Visualization and evaporator resistance measurement in heat pipes charged with water, methanol or acetone”,International Journal of Thermal Sciences, vol. 52, 2012, pp. 154-160.
[28]S. Lips, F. Lefevre, “Nucleate boiling in a flat grooved heat pipe”, International Journal of thermal science, vol. 48, 2009, pp. 1273-1278.
[29]A. A. A. Attia, B. T. A. El-Assal, “Experimental investigation of vapor chamber with different working fluids at different charge ratios”, Ain Shams Engineering Journal, vol. 3, 2012, pp.289-297.
[30]J. S. Chen, J. H. Chou, “Cooling performance of flat plate heat pipes with different liquid filling ratios”, International Journal of Heat and Mass Transfer, vol. 77, 2014, pp. 874-882.
[31]C. Li, G. P. Peterson, Y. Wang, “Evaporation/boiling in thin capillary wicks (I) – wick thickness effects”, Journal of Heat transfer, vol. 128, 2006, pp. 1312-1319..
[32]C. Li, G. P. Peterson, Y. Wang, “Evaporation/boiling in thin capillary wicks (II) – effects of volumetric porosity and mesh size”, Journal of Heat transfer, vol. 128, 2006, pp. 1320-1328.
[33]S. C. Wong, Y. H. Kao, “Visualization and performance measurement of operating mesh-wicked heat pipes”, International Journal of Heat and Mass Transfer, vol. 51, 2008, pp. 4249-4259.
[34]F. Lefevre, J. B. Conrardy, M. Raynaud, J. Bonjouur, “Experimental investigations of flat plate heat pipes with screen meshes or grooves covered with screen meshes as capillary structure”, Applied Thermal Engineering, vol. 37, 2012, pp. 95-102.
[35]S. C. Wong, K. C. Hsieh, J. D. Wu, “A novel vapor chamber and its performance”, International Journal of Heat and Mass Transfer, vol. 53, 2010, pp. 2377-2384.
[36]S. C. Wong, S. F. Huang, K. C. Hsieh, “Performance tests on a novel vapor chamber”, Applied Thermal Engineering, vol. 31, 2011, pp. 1757-1762.
[37]M. G. Mwaba, X. Huang, J. Gu, “Influence of wick characteristics on heat pipe performance”, International Journl of Energy Research, vol. 30, 2006, pp. 489-499.
[38]鄭景太,熱管技術介紹,工業材料雜誌220期4月,台北市,2005。
[39]S. W. Chi, “Heat Pipe Theory and Practice”, McGraw-Hill, New York, 1976.
[40]W. M. Kays, “Convective Heat and Mass Transfer”, McGraw-Hill, New York, 1966.
[41]B. D. Marcus, “Theory and Design of Variable Conductance Heat Pipes”, Report No, NASA CR, 2018, Washington, D. C. April, 1972.
[42]C. Y. Zhao, W. Lu, S. A. Tassou, “Flow boiling heat transfer in horizontal metal-foam tubes”, Journal of Heat Transfer, vol. 131, 2009, pp. 1-8.
[43]Y. Yang, X. Ji, J. Xu, “Pool boiling heat transfer on copper foam covers with water as working fluid”, International Journal of Thermal Sciences, vol. 49, 2010, pp. 1227-1237.
[44]H. Aoki, N. Shioya, M. Ikeda, Y. Kimura, “Development of ultra thin plate-type heat pipe with less than 1 mm thickness”, 26th IEEE SEMI-THERM Symposium, 2010.
[45]W. K. Sheng, H. T. Lin, C.H. Wu, L.S. Kuo, P. H. Chen, “A hybrid surface modification method on copper wire braids for enhancing thermal performance of ultra-thin heat pipes”, IOP Conference Series: Materials Science and Engineering, vol. 175. No. 1. IOP Publishing, 2017.
[46]M. S. Ahamed, Y. Saito, K. Mashiko, M. Mochizuki, “Characterization of a high performance ultra-thin heat pipe cooling module for mobile hand held electronic devices”, Heat and Mass Transfer, 2017, pp. 1-7.
[47]S. Xu, R. J. Lewis, L. A. Liew, Y. C. Lee, R. Yang, “Development of Ultra-Thin Thermal Ground Planes by Using Stainless-Steel Mesh as Wicking Structure”, Journal of Microelectromechanical Systems, vol. 25, No, 5, 2016, pp. 842-844.
[48]R. Lewis, S. Xu, L. A. Liew, C. Coolidge, R. Yang, Y. C. Lee, “Thin flexible thermal ground planes:Fabrication and scaling characterization”, Journal of Microelectromechanical Systems, vol. 24, No. 6, 2015, pp. 2040-2048.
[49]G. Patankar, S. Mancin, J. A. Weibel, S. V. Garimella, M. A. MacDonald, “A method for thermal performance characterization of ultrathin vapor chambers cooled by natural convection”, Journal of Electronic Packaging, vol. 138, 2016.
[50]J. M. Gerken and W. A. Owczarski, Diffusion Welding, 1965, pp. 43-52.
[51]寺井清,最新金屬接合技術,台北市,復漢出版社印行,1977,第 324-355 頁。
[52]蘇貴福,新材料的接合技術,全華科技圖書股份有限公司,台北市,1992。
[53]J. Y. Tai, C. W. Chang, C. E. Ho, “Microstructure evolution of gold-tin eutectic solder on Cu and Ni subtrates”, Journal of Electronic Materials, vol. 35, 2006, pp. 65-71.
[54]R. J. Davies, N. Stephenson, “Diffusion bonding and pressure brazing of nimonic 90 Ni-Cr-Co Alloy”, Brit. Welding J, vol. 9, 1962, pp. 139-148.
[55]D. V. Donford, P. G. Patridge, “Diffusion bonding of Al-Li alloys”, An Overview Materials Science and Technology, vol. 8, 1992, pp. 385-386.
[56]王柏森,矽晶圓與銅基板接合之結構特性研究,碩士論文,國立台北科技大學,台北市,2010。
[57]孫即愚,熱管技術介紹,化工技術月刊第2卷第2期,1994,pp. 69-78。
[58]郭家宏,微結構對均熱板性能影響之研究,碩士論文,國立台北科技大學,台北市,2005。
[59]陳登傑,Al2O3奈米流體應用於LED 均溫板之熱傳分析,碩士論文,國立台灣海洋大學,基隆市,2010。
[60]George F. Vander Voort, “Metallography Principles and Practice”, McGraw-Hill, Taipei, Taiwan, 1984.
[61]郭韋廷,均熱板蒸氣流道與蒸發區結構對熱阻性能影響之研究,碩士論文,國立台北科技大學,台北市,2014。
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top