[1]曾昭源,折彎及壓扁後製程對燒結式熱管毛細結構之影響,碩士論文,私立大同大學,台北市,2007。[2]依日光,熱管技術理論實務,日本技術協會編,台北:復漢出版社,1986。
[3]Hirofumi Aoki, “Ultra Thin Heat Pipe and its Application”,10th International Heat Pipe Symposium, Nov.6-9,2011, Taipei, Taiwan.
[4]C. K. Huang, C. Y. Su, K. Y. Lee, “The Effects of Vapor Space Height on the Vapor Chamber Performance”, Experimental Heat Transfer, vol. 25, No. 1, pp. 1-11, 2012.
[5]R.S. Gaugler, “Heat Transfer Device”, U.S. Patent NO.2350348, 1944.
[6]G.M. Grover, “Evaporation-condensation heat transfer device”,U.S. Patent NO.3229759 1963.
[7]X. Y. Huang, C. Y. Liu, “The pressure and velocity fields in the wick structure of a localized heated flat plate heat pipe”, International Journal of Heat and Mass Transfer, vol. 39, 1995, pp. 1325-1330.
[8]K. H. Sun, C. Y. Liu, K. C. Leong, “The effective length of a flat plate heat pipe covered partially by a strip heater on the evaporator section”, Heat Recovery Systems & CHP, vol. 15, No. 4, 1995, pp. 383-388.
[9]B. K. Tan, T. N. Wong, K. T. Ooi, “Analytical effective length study of a flat plate heat pipe using point source approach”, Applied Thermal Engineering, vol. 25, 2005, pp. 2272-2284.
[10]S. F. Wang, J. J. Chen, Y. X. Hu, W. Zhang, “Effect of evaporation section and condensation section length on thermal performance of flat plate heat pipe”, Applied Thermal Engineering, 2011, pp. 1-7.
[11]L. Rosso, N. Koneva, V. Fernicola, “Development of a heat-pipe-based hot plate for surface-temperature measurements”, International Journal of Thermophysics, vol. 30, 2009, pp. 257-264.
[12]Y. Koito, H. Imura, M. Mochizuki, Y. Saito, S. Torii, “Numerical analysis and experimental verification on thermal fluid phenomena in a vapor chamber”, Applied Thermal Engineering, vol. 26, 2006, pp. 1669-1676.
[13]S. Lee, S. Song, V. Au, K. P. Moran, “Constriction/spreading resistance model for electronics packaging”, Proceedings of the 4th ASME/JSME thermal engineering joint conference, vol. 4, pp. 199-206, 1995.
[14]A. Faghri, “Heat pipe science and technology”, Taylor & Francis, Washington, DC, 1995.
[15]JAHP, “Jitsuyou Heat Pipe”, second ed., Nikkan Kogyo Shimbun, Ltd, Tokyo, 2001.
[16]J. S. Go, “Quantitative thermal performance evaluation of a cost-effective vapor chamber heat sink containing a metal-etched microwick structure for advanced microprocessor cooling”, Sensors and Actuators A, vol. 121, 2005, pp. 549-556.
[17]S. M. Rassoulinejad-Mousavi, S. Porkhial, M. Layeghi, B. Nikaeen, H. Samanipour, “Experimental Study on Thermal Behavior of a Stainless Steel-Di Water Flat Plate Heat Pipe”, World Applied Sciences Journal 16(10), 2012, pp. 1393-1397.
[18]C. Ding, G. Soni, P. Bozorgi, B. D. Piorek, C. D. Meinhart, N. C. MacDonald “A Flat Heat Pipe Architecture Based on Nanostructured Titania”, Journal of Microelectromechanical Systems, vol. 19, No. 4, 2010, pp. 878-884.
[19]Silva, Débora de O., Roger R. Riehl. “Thermal behavior of water-copper and water-stainless steel heat pipes operating in cycles”, Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), 2016 15th IEEE Intersociety Conference on. IEEE, 2016, pp. 6-11.
[20]簡國詳,金屬粉體在熱管及平板熱管之應用,粉體材料在熱管理方面之原理與應用研討會,工業技術研究院,2004,pp. 1-8。
[21]G. P. Peterson, “An Introduction to Heat Pipe”, John Wily and Sons, New York, 1994.
[22]A. F. Mills, “Heat Transfer”, Richard D. Irwin, 1982, pp. 629-688.
[23]S. EzhilVannan, P. M. Shravan, A. Sandesh Kumar, “Experimental Investigation of Conventional Heat Pipe using Different Working Fluids”, International Journal of Engineering Trends and Technology (IJETT), vol. 38, No. 7, 2016, pp. 352-354.
[24]K. Shukla, A. Solomon, B. Pillai, “Thermal Performance of Vapor Chanber with Nanofluids”, Frontiers in Heat Pipes (FHP), 2013.
[25]S. C. Wong, Y. C. Lin, “Effect of copper surface wettability on the evaporation performance: Tests in a flat-plate heat pipe with visualization”,International Journal of Heat and Mass Transfer, vol. 54, 2011, pp. 3921-3926.
[26]S. C. Wong, J. H. Liou, C. W. Chang, “Evaporation resistance measurement with visualization for sintered copper-powder evaporator in operating flat-plate heat pipes”,International Journal of Heat and Mass Transfer, vol. 53, 2011, pp. 3792-3798.
[27]S. C. Wong, Y. C. Lin, J. H. Liou, “Visualization and evaporator resistance measurement in heat pipes charged with water, methanol or acetone”,International Journal of Thermal Sciences, vol. 52, 2012, pp. 154-160.
[28]S. Lips, F. Lefevre, “Nucleate boiling in a flat grooved heat pipe”, International Journal of thermal science, vol. 48, 2009, pp. 1273-1278.
[29]A. A. A. Attia, B. T. A. El-Assal, “Experimental investigation of vapor chamber with different working fluids at different charge ratios”, Ain Shams Engineering Journal, vol. 3, 2012, pp.289-297.
[30]J. S. Chen, J. H. Chou, “Cooling performance of flat plate heat pipes with different liquid filling ratios”, International Journal of Heat and Mass Transfer, vol. 77, 2014, pp. 874-882.
[31]C. Li, G. P. Peterson, Y. Wang, “Evaporation/boiling in thin capillary wicks (I) – wick thickness effects”, Journal of Heat transfer, vol. 128, 2006, pp. 1312-1319..
[32]C. Li, G. P. Peterson, Y. Wang, “Evaporation/boiling in thin capillary wicks (II) – effects of volumetric porosity and mesh size”, Journal of Heat transfer, vol. 128, 2006, pp. 1320-1328.
[33]S. C. Wong, Y. H. Kao, “Visualization and performance measurement of operating mesh-wicked heat pipes”, International Journal of Heat and Mass Transfer, vol. 51, 2008, pp. 4249-4259.
[34]F. Lefevre, J. B. Conrardy, M. Raynaud, J. Bonjouur, “Experimental investigations of flat plate heat pipes with screen meshes or grooves covered with screen meshes as capillary structure”, Applied Thermal Engineering, vol. 37, 2012, pp. 95-102.
[35]S. C. Wong, K. C. Hsieh, J. D. Wu, “A novel vapor chamber and its performance”, International Journal of Heat and Mass Transfer, vol. 53, 2010, pp. 2377-2384.
[36]S. C. Wong, S. F. Huang, K. C. Hsieh, “Performance tests on a novel vapor chamber”, Applied Thermal Engineering, vol. 31, 2011, pp. 1757-1762.
[37]M. G. Mwaba, X. Huang, J. Gu, “Influence of wick characteristics on heat pipe performance”, International Journl of Energy Research, vol. 30, 2006, pp. 489-499.
[38]鄭景太,熱管技術介紹,工業材料雜誌220期4月,台北市,2005。
[39]S. W. Chi, “Heat Pipe Theory and Practice”, McGraw-Hill, New York, 1976.
[40]W. M. Kays, “Convective Heat and Mass Transfer”, McGraw-Hill, New York, 1966.
[41]B. D. Marcus, “Theory and Design of Variable Conductance Heat Pipes”, Report No, NASA CR, 2018, Washington, D. C. April, 1972.
[42]C. Y. Zhao, W. Lu, S. A. Tassou, “Flow boiling heat transfer in horizontal metal-foam tubes”, Journal of Heat Transfer, vol. 131, 2009, pp. 1-8.
[43]Y. Yang, X. Ji, J. Xu, “Pool boiling heat transfer on copper foam covers with water as working fluid”, International Journal of Thermal Sciences, vol. 49, 2010, pp. 1227-1237.
[44]H. Aoki, N. Shioya, M. Ikeda, Y. Kimura, “Development of ultra thin plate-type heat pipe with less than 1 mm thickness”, 26th IEEE SEMI-THERM Symposium, 2010.
[45]W. K. Sheng, H. T. Lin, C.H. Wu, L.S. Kuo, P. H. Chen, “A hybrid surface modification method on copper wire braids for enhancing thermal performance of ultra-thin heat pipes”, IOP Conference Series: Materials Science and Engineering, vol. 175. No. 1. IOP Publishing, 2017.
[46]M. S. Ahamed, Y. Saito, K. Mashiko, M. Mochizuki, “Characterization of a high performance ultra-thin heat pipe cooling module for mobile hand held electronic devices”, Heat and Mass Transfer, 2017, pp. 1-7.
[47]S. Xu, R. J. Lewis, L. A. Liew, Y. C. Lee, R. Yang, “Development of Ultra-Thin Thermal Ground Planes by Using Stainless-Steel Mesh as Wicking Structure”, Journal of Microelectromechanical Systems, vol. 25, No, 5, 2016, pp. 842-844.
[48]R. Lewis, S. Xu, L. A. Liew, C. Coolidge, R. Yang, Y. C. Lee, “Thin flexible thermal ground planes:Fabrication and scaling characterization”, Journal of Microelectromechanical Systems, vol. 24, No. 6, 2015, pp. 2040-2048.
[49]G. Patankar, S. Mancin, J. A. Weibel, S. V. Garimella, M. A. MacDonald, “A method for thermal performance characterization of ultrathin vapor chambers cooled by natural convection”, Journal of Electronic Packaging, vol. 138, 2016.
[50]J. M. Gerken and W. A. Owczarski, Diffusion Welding, 1965, pp. 43-52.
[51]寺井清,最新金屬接合技術,台北市,復漢出版社印行,1977,第 324-355 頁。
[52]蘇貴福,新材料的接合技術,全華科技圖書股份有限公司,台北市,1992。
[53]J. Y. Tai, C. W. Chang, C. E. Ho, “Microstructure evolution of gold-tin eutectic solder on Cu and Ni subtrates”, Journal of Electronic Materials, vol. 35, 2006, pp. 65-71.
[54]R. J. Davies, N. Stephenson, “Diffusion bonding and pressure brazing of nimonic 90 Ni-Cr-Co Alloy”, Brit. Welding J, vol. 9, 1962, pp. 139-148.
[55]D. V. Donford, P. G. Patridge, “Diffusion bonding of Al-Li alloys”, An Overview Materials Science and Technology, vol. 8, 1992, pp. 385-386.
[56]王柏森,矽晶圓與銅基板接合之結構特性研究,碩士論文,國立台北科技大學,台北市,2010。[57]孫即愚,熱管技術介紹,化工技術月刊第2卷第2期,1994,pp. 69-78。[58]郭家宏,微結構對均熱板性能影響之研究,碩士論文,國立台北科技大學,台北市,2005。[59]陳登傑,Al2O3奈米流體應用於LED 均溫板之熱傳分析,碩士論文,國立台灣海洋大學,基隆市,2010。[60]George F. Vander Voort, “Metallography Principles and Practice”, McGraw-Hill, Taipei, Taiwan, 1984.
[61]郭韋廷,均熱板蒸氣流道與蒸發區結構對熱阻性能影響之研究,碩士論文,國立台北科技大學,台北市,2014。