跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.173) 您好!臺灣時間:2024/12/02 01:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:虞哲煇
研究生(外文):Che-Huei Yu
論文名稱:系統鷹架結構承載力及其接頭勁度之試驗研究
論文名稱(外文):Experimental Studies on Load-Carrying Capacities and Joint Stiffnesses of System Scaffolds
指導教授:彭瑞麟彭瑞麟引用關係黃中和黃中和引用關係
口試委員:林楨中顏聰彭瑞麟黃中和
口試日期:2017-07-31
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:土木工程系土木與防災碩士班
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:295
中文關鍵詞:插入深度接合裕度接頭勁度系統鷹架
外文關鍵詞:Depth of InsertionAllowanceJoint StiffnessSystem Scaffold
相關次數:
  • 被引用被引用:0
  • 點閱點閱:251
  • 評分評分:
  • 下載下載:47
  • 收藏至我的研究室書目清單書目收藏:0
系統鷹架主要由主桿、橫桿、斜桿及調整座接合而成,可作為施工架或是模板支撐使用。系統鷹架承載力會受接頭強度及勁度的影響,但因接頭之力學試驗資料較少,影響系統鷹架在設計分析之精確度,致使系統鷹架存在倒塌之風險。本研究針對國內常用系統鷹架之各類接頭進行承載力與勁度試驗,並對兩層單排單跨系統鷹架進行承載力測試,藉此了解接頭強度及勁度變化對系統鷹架承載力之影響。
試驗結果顯示,主桿與主桿之接合裕度愈寬鬆其承載力則愈低,最大降幅可高達約65%;當主桿插入套管之深度變化,其承載力變化為-74%~+132%。調整座底鈑平整度及螺桿垂直度對主桿承載力影響較明顯,而接合裕度及插入深度對其影響較小。橫桿與主桿接頭水平旋轉面勁度較大,為垂直旋轉面勁度的11.31倍。斜桿與主桿接頭無法提供繞主桿旋轉面勁度,垂直旋轉面勁度可達100 kN-cm/rad;另外兩層單排單跨系統鷹架結構系統有配置斜桿時,承載力則提高1.04倍。
System scaffold is primarily formed from the joining of main pipes, ledgers, braces, and basse screw jacks and can be used to support scaffolding or formwork. The load-bearing capacity of system scaffold is affected by the strength and stiffness of connectors; however, the scarcity of mechanical test data on connectors has affected the precision of system falsework design analyses and resulted in a risk of collapse. This study tested the load-bearing capacity and stiffness of various connectors commonly used in system scaffold in Taiwan and further tested the load-bearing capacity of double-layer, single-row, single-span system scaffold. These tests were conducted to examine the effects of changes in connector strength and stiffness on the load-bearing capacity of system scaffold.
The results of these experiments indicated that a looser allowance between main pipes resulted in decreased load-bearing capacity, with a maximum decrease of approximately 65%. Changes in the depth of insertion of the main pipe into casing tubes resulted in changes in load-bearing capacity from −74% to +132%. The plate flatness and degree of inclination of screws in the base jack showed a more evident effect on main-pipe load-bearing capacity, whereas connection allowance and depth of insertion showed weaker effects on load-bearing capacity. The stiffness of a level surface of revolution in the connection between ledgers and the main pipe was 11.31 times higher than the stiffness of a vertical surface of revolution. The stiffness of a surface of revolution around the main pipe could not be determined from the connection between braces and the main pipe, whereas the stiffness of a vertical surface of revolution reached 100 kN-cm/rad. Furthermore, when the double-layer, single-row, single-span system scaffold featured braces, the load-bearing capacity increased by 1.04 times.
摘 要 i
ABSTRACT ii
誌 謝 iv
目 錄 v
表目錄 viii
圖目錄 ix
照片目錄 xviii
第一章 緒論 1
1.1 前言 1
1.2 研究目的 2
1.3 研究內容及步驟 2
1.4 章節結構 3
第二章 文獻回顧 7
2.1 工程現況 7
2.2 文獻回顧 8
2.2.1 國內外相關規範 8
2.2.2 國內外相關研究 9
2.3 小結 12
第三章 試驗規劃 15
3.1概述 15
3.2試驗儀器 15
3.3試驗材料及斷面性質 15
3.4 各構件續接接頭勁度試驗 16
3.4.1 主桿與主桿接頭 16
3.4.2 橫桿與圓盤接頭 17
3.4.3 斜桿與圓盤接頭 18
3.4.4 主桿與調整座 19
3.5 續接構件強度試驗 21
3.5.1 主桿U型插銷強度 21
3.5.2 主桿扣盤銲接強度 21
3.5.3 橫桿承載強度 22
3.6 接合裕度及插入深度對承載力影響之載重試驗 22
3.6.1 主桿與主桿接合裕度及插入深度 22
3.6.2 主桿插入調整座接合裕度及插入深度 24
3.7 基本單元配置 25
第四章 試驗結果與討論 68
4.1 概述 68
4.2 各構件續接接頭勁度試驗 68
4.2.1 主桿與主桿接頭 68
4.2.2 橫桿與圓盤接頭 69
4.2.3 斜桿與圓盤接頭 71
4.2.4 主桿與調整座接頭 73
4.3 續接構件強度試驗 74
4.3.1 主桿U型插銷強度 74
4.3.2 主桿扣盤銲接強度 74
4.3.3 橫桿承載強度 75
4.4 接合裕度及插入深度對承載力影響之載重試驗 75
4.4.1 主桿與主桿接合裕度 75
4.4.2 主桿與主桿插入深度 82
4.4.3 主桿插入調整座接合裕度 90
4.4.4 主桿插入調整座插入深度 95
4.5 基本單元配置 99
第五章 結論與建議 288
5.1 結論 288
5.2 建議 292
參考文獻 293
1.張智奇,黃奕睿,(2014),“模板支撐構件動態特性與破壞機制研究”,行政院勞工委員會勞工安全衛生研究所,IOSH102-S314。
2.林楨中,顏聰,(2016),“施工架安全性能影響因子及安全設計重點之研究”,勞動部勞動及職業安全衛生研究所,ILOSH104-S310。
3.中華民國標準(CNS)總號4750,類號A2067(鋼管施工架),2013。
4.ANSI 10.8-2001,(2001)”Safety Requirement for Scaffolding, “American National Standard Institute.
5.ANSI 10.9-1989, (1983) “Concrete and Masonry Work-Safety Require-ments,” American National Standard Institute.
6.AISC Manual of Steel Construction, (1989) “Allowable Stress Design,9th ed.,”American Institute of Steel Construction.
7.AISC Manual of Steel Construction, (2001), “Load & Resistance Factor Design: Structural Members, Specifications, & Codes,3rd ed.,”American Institute of Steel Construction.
8.EN 12810-1, (2003), “Façade Scaffolds Made of Prefabricated Components-Part 1:Products Specifications,”The European Standard.
9.EN 12810-1, (2003), “Façade Scaffolds Made of Prefabricated Components-Part 2:Particular Methods of Structural Design,”The European Standard.
10.EN 12811-1, (2003), “Temporary Works Equipment - Part 1:Scaffolds - Performance Requirement and General Design,”The European Standard.
11.EN 12811-2, (2004), “Temporary Works Equipment - Part 2:Information on Materials,”The European Standard.
12.EN 12811-3, (2002), “Temporary Works Equipment - Part 3:Loading Testing,”The European Standard.
13.Beale, R.G., (2014), “Scaffold Research – A Review,”Journal of Constructional Steel Research, Vol.98:188-200.
14.Michael Pienko, Ewa Blazik-Boroway,(2013), “Numerical analysis of load-bearing capacity of modular scaffolding node,” Enginnering Structures, Vol.48, pp.1-9
15.Peng,J.L.,Wu,C.W.,C,S.L.,and Huang, C.HH.,(2013), “Experimental and Numerical Studies of Practical System Scaffolds,”Journal of Constructional Steel Research,Vol.91,pp.64-75.
16.Zhang, H., Rasmussen, K.J.R., and Ellingwood, B.R., (2012), “Reliability assessment of steel scaffold shoring structure for concrete formwork,”Engineering Structures, Vol.36, pp.81-89.
17.Zhang, H., Chandrangsu, T.and Rasmussen, K.J.R., (2010), “Probabilistic study of the strength of steel scaffold systems,”Structural Safety, Vol.32, pp.393-401.
18.Liu, H.B., Chen, Z.H., Wang, X.D., Zhou, T., Wang, D., Liu, J. and Chen, Z.H., (2010), “Experimental and Analytical Studies on the Stability of Structural Steel Tube and Couple Scaffolds without X-bracing,” Enginnering Structures, Vol.32, pp.1003-1015.
19.Peng, J.L., Chen, K.H., Chan, S.L., and Chen, W.t., (2009), “Experimental and Analytical Studies on Steel Scaffolds under Eccentric Loads,” Journal of Constructional Steel Research, Vol.65, pp.422-435.
20.Peng, J.L., Yen, T., Kuo, C.C., and Chan, S.L., (2009), “Analytical and Experimental Bearing Capacities of System Scaffolds,” Journal of Zhejiang University SCIENCE A, Vol.10, No.1, pp.82-92.
21.Peng, J.L., (2002), “Stability Analyses and Design Recommendations for Practical Shoring System during Construction,” Journal of Construction Engineering and Management, ASCE, Vol.128, No.6, pp.536-544.
22.Nethercot, D.A., (2000), “Frame structures: global performance, static and stability behavior General Report,” Journal of Constructional Steel Research, Vol.55, pp.109-124.
23.彭瑞麟,顏聰,呂良正,周登春,陳惠發,(2013),“從模板支撐破壞機制談國道六號北山交流道工程模板支撐倒塌問題(上)”,結構工程,第二十八卷,第三期:61-93。
24.彭瑞麟,顏聰,呂良正,周登春,陳惠發,(2013),“從模板支撐破壞機制談國道六號北山交流道工程模板支撐倒塌問題(下)”,結構工程,第二十八卷,第四期:15-36。
25.何崇銘,(2016),“系統鷹架結構系統力學行為及設計指引建置之研究”,國立雲林科技大學工程科技研究所博士論文。
26.Colson A. and Louveau J.M., (1983), “Connections incidence on the inelastic behavior of steel structures,” Euromech Colloquim, October, pp.174.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top