[1]台灣綜合研究院,聯合國氣候變化框架公約 京都議定書
[2]行政院環境保護署,巴黎協定 繁體中文版
[3]https://www.epa.gov/ghgemissions/overview-greenhouse-gases,U.S. Environmental Protection Agency,U.S. Greenhouse Gas Inventory Report: 1990-2014,2017年7月15日
[4]https://pride.stpi.narl.org.tw/ 國研院政策中心 政策研究指標資料庫,PRIDE從數據看全球暖化,2017年7月15日
[5]http://ec.europa.eu/clima/policies/transport/vehicles/cars_en,Reducing CO2 emissions from passenger cars,2017年7月15日
[6]https://ec.europa.eu/clima/policies/strategies/2020_en,2020 climate & energy package,2017年7月15日
[7]戴文達,中國公布“十二五”控制溫室氣體排放工作方案,工業技術研究院 綠能與環境研究所
[8]http://www.transportpolicy.net/index.php?title=Japan:_Light-duty:_Fuel_Economy#2020_Targets,Japan: Light-duty: Fuel Economy
[9]https://www2.moeaboe.gov.tw/oil102/,經濟部能源局 油價資訊管理與分析系統,2017年7月15日
[10]2016年能源產業技術白皮書,2017年7月15日
[11]Michael Howlett, Bernhard Enzi, Georg von Falck, Wolfgang Schoeffmann, Reinhold Haslinger and Mario Brunner, “CO2 Reduction Potential through Improved Mechanical Efficiency of the Internal Combustion Engine: Technology Survey and Cost-Benefit Analysis,” SAE Technical Paper No. 2013-01-1740, 2013.
[12]林耿宏,運用引擎模擬分析改善引擎性能,碩士論文,國立臺北科技大學車輛工程研究所,臺北,2005。[13]Payri, F., Benajes, J. and Reyes, M. “Modeling of Supercharger Turbines in Internal Combustion Engines,” Int. J. Mech. Sci. Vol. 38, Nos 8-9, I996, pp. 853-869.
[14]Gimmler, H., Holzt, H.-P., Weimann and H.-J, “Computer Simulation of the Acceleration Characteristics of an Exhaust Gas Turbocharged Automotive Diesel Engine,” Turbocharging and Turbochargers, Proceedings of the Institution of Mechanical Engineers, No. C34/82, IMechE, 1982.
[15]Fillipi, Z., Assanis, D.N., “Quasi-Dimensional Computer Simulation of the Turbocharged Spark-Ignition Engine and its use for 2- and 4-Valve Engine Matching Studies,” SAE Technical Paper No.910075, 1991.
[16]Kouremenos D.A., Hountalas D.T. and Kotsiopoulos P.N., “Computer Simulation of Turbocharged Diesel Engines and its Application for Engine and Turbocharger Diagnosis,” Turbocharging and Turbochargers, Proceedings of the Institution of Mechanical Engineers, No.C484/008/94, IMechE, 1994.
[17]Benvenuto, G., Campora, U, “A Computer Model for the Dynamic Simulation of Turbocharged Diesel Engines,” Proceedings of the 1st International Conference on Control and Diagnostics in Automotive Applications, No.96A4014, 1996.
[18]Watson, N., “Turbocharged Spark Ignition Engine Simulation,” FISITA Congress No. 845042, 1984.
[19]Hong, C. W., and Watson, N, “Turbocharged S.I. Engine Simulation under Steady and Transient Conditions,” SAE Technical Paper No.880122, 1988.
[20]Kao, M., Moskwa, J. J., “Turbocharged Diesel Engine Modelling for Nonlinear Engine Control and State Estimation,” Transactions of the ASME, Vol. 117, March 1995.
[21]A. C. Clenci1, G. Descombes, P. Podevin, and V. Hara, “Some aspects concerning the combination of downsizing with turbocharging, variable compression ratio, and variable intake valve lift, ” Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, Vol. 221, No. 10, 2007, pp.1287-1294.
[22]尹傑,運用EGR系統於渦輪增壓引擎,碩士論文,國立臺北科技大學車輛工程研究所,臺北,2016。[23]林煌閔,四缸渦輪汽油引擎模型建立與驗證,碩士論文,國立臺北科技大學車輛工程研究所,臺北,2016。[24]Gabriele Di Blasio, Giacomo Belgiorno, and Carlo Beatrice, “Parametric Analysis of Compression Ratio Variation Effects on Thermodynamic, Gaseous Pollutant and Particle Emissions of a Dual-Fuel CH4-Diesel Light Duty Engine,” SAE Paper NO. 2017-01-0764
[25]Oldrich Vitek and Jan Macek, “Thermodynamic Potential of Electrical Turbocharging for the Case of Small Passenger Car ICE under Steady Operation,” SAE Paper NO. 2017-01-0526
[26]J.A. Gatowski, E.N. Balles, K.M. Chun, F.E. Nelson, J.A. Ekchian, and J.B. Heywood, “Heat Release Analysis of Engine Pressure Data,” SAE Technical Paper No.841359, 1984.
[27]R.A. Svehla and B.J. McBride, “Fortran IV Computer Programs for Calculation of Thermodynamic and Transport Properties of Complex Chemical Systems,” Technical Report NASA Technical Note TND-7056, NASA Lewis Research Center, 1973.
[28]K. M. Chun and J. B. Heywood, “Estimating Heat-Release and Mass-of-Mixture Burned from Spark-Ignition Engine Pressure Data,” Combustion Sci. and Tech., Vol. 54, 1987, p.p.133–143.
[29]R.B. Krieger and G.L. Borman, “The Computation of Apparent Heat Release for Internal Combustion Engines,” ASME 66-WA/DGP-4, 1966.
[30]R. Stone, Introduction to Internal Combustion Engines, SAE International, 3rd edition, 1999.
[31]G. Woschni, “A Universally Applicable Equation for the Instantaneous Heat Transfer Coefficient in the Internal Combustion Engine,” SAE Technical Paper No.670931, 1967.
[32]G.F. Hohenberg, “Advanced Approaches for Heat Transfer Calculations,” SAE Technical Paper No.790825, 1979.
[33]T.K. Hayes, R.A. White, and J.E. Peters, “Combustion Chamber Temperature and Instantaneous Local Heat Flux Measurements in a spark Ignition Engine,” SAE Technical Paper No.930217, 1993.
[34]A. Wimmer, R. Pivec, and T. Sams, “Heat Transfer to the Combustion Chamber and Port Walls of IC Engines – Measurement and Prediction,” SAE Technical Paper No.2000-01-0568
[35]J. B. Heywood, Internal Combustion Engine Fundamentals, McGraw-Hill Book Company, 1988.
[36]R. Harish Kumar and A. J. Antony, “Progressive Combustion in SI-Engines-Improved Empirical Models for Simulating and Optimizing Engine Performance,” SAE Technical Paper No.2008-01-1630
[37]M Mittal, G Zhu, and H Schock, “Fast mass-fraction-burned calculation using the net pressure method for real-time applications,” Proc. IMechE Vol. 223 Part D: J. Automobile Engineering, IMechE 2009, p.p. 389-394.
[38]Heywood, J. B., “Internal Combustion Engine Fudamentals”, McGraw-Hill, New Tirk, 1988.
[39]Yu Wan and Aimin Du, “Reducing Part Load Pumping Loss and Improving Thermal Efficiency through High Compression Ratio Over-Expanded Cycle,” SAE Technical Paper No.2013-01-1744
[40]Y. Motoyama and T. Gotoh, “The Effect of Higher Compression Ratio in Two-Stroke Engines” SAE Technical Paper No. 93A090
[41]Kohei Kuzuoka, Tadashi Kurotani, Hiroshi Chishima, and Hirotsugu Kudo, “Study of High-Compression-Ratio Engine Combined with an Ethanol-Gasoline Fuel Separation System,” SAE Paper NO. 2014-01-2614
[42]Cenk Sayina and Mustafa Kemal Balkib, “Effect of compression ratio on the emission, performance and combustion characteristics of a gasoline engine fueled with iso-butanol/gasoline blends,” Energy, Vol. 82, 2015, pp.550-555
[43]蕭守志,Atkinson cycle引擎模擬分析,碩士論文,國立臺北科技大學車輛工程研究所,臺北,2015。[44]Joel Prince Lobo, James Howard Lee, Eric Oswald, Spenser Lionetti, and Robert Garriek, “The Effect of Lean Operation, Ignition Advance, and Compression Ratio on the Performance and Emissions of a Propane Fueled Electronic Fuel Injected Engine,” SAE Paper NO. 2016-32-0068
[45]Michael H. Shelby, Thomas G. Leone, Kevin D. Byrd, and Frank K. Wong, “Fuel Economy Potential of Variable Compression Ratio for Light Duty Vehicles,” SAE Paper NO. 2017-01-0639
[46]www.ricardo.com, Basic WAVE Turbocharger Training
[47]Raithby, G. D. and K. G. T. Hollands, “A General Method of Obtaining Approximate Solutions to Laminar and Turbulent Free Convection Problems,” Advances in Heat Transfer, Vol. 11, 1975, p.p.265-315.
[48]Chen, S. K. and P. F. Flynn, “Development of Single Cylinder Compression Ignition Research Engine,” SAE Technical Paper No. 650733, 1965.