跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2024/12/11 21:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張博淞
研究生(外文):Bo-Song Zhang
論文名稱:壓縮比對渦輪增壓汽油引擎性能及油耗的影響
論文名稱(外文):The Influence of Compression Ratio on Performance and Fuel Consumption of Turbocharged Gasoline Engines
指導教授:鄭鴻斌鄭鴻斌引用關係吳浴沂
指導教授(外文):Hong-bin ZhengYu-Yi Wu
口試委員:姜嘉瑞盧昭暉鄭鴻斌吳浴沂
口試委員(外文):Chia-Jui ChiangJau Huai LuHong-bin ZhengYu-Yi Wu
口試日期:2017-07-15
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:能源與冷凍空調工程系碩士班
學門:工程學門
學類:其他工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
中文關鍵詞:引擎模擬軟體渦輪壓縮器壓縮比
外文關鍵詞:Ricardo WAVE Engine Simulation SoftwareTurbochargerCompression ratio
相關次數:
  • 被引用被引用:0
  • 點閱點閱:578
  • 評分評分:
  • 下載下載:22
  • 收藏至我的研究室書目清單書目收藏:0
從19世紀至今內燃機技術依然是車廠的需求,在電動車完全發展之前,內燃機是車輛不可取代的地位。但由於環境變遷的影響,世界各地也規定環境相關法規。本論文提高壓縮比來探討油耗是否改善,主要針對渦輪增壓引擎進行探討。
先由引擎模擬軟體Ricardo WAVE進行渦輪增壓汽油引擎壓縮比模擬分析與實驗驗證,比較壓縮比對引擎油耗改善之影響,再透過改變從壓縮比(8.5-11)、設定為理論空燃比,再進行引擎實驗,得出模擬與實驗值之指示平均有效壓力、指示燃料消耗率、制動平均有效壓力、制動燃料消耗率 比較是否有改善空間。
由模擬結果顯示,使用引擎模擬軟體Ricardo WAVE所建立之渦輪增壓引擎能表現該目標引擎之性能及油耗,透過分析提高壓縮比之參數。
From the 19th century up to now, internal combustion engine technology still demands for depot. Before the electric vehicle is well developed, internal combustion engine is an irreplaceable position of the vehicle. However, due to the impact of environmental changes, emission regulations are regulated around the world as well. This paper to explore whether the fuel consumption is improved from compression ratios, mainly for the turbocharged engine.
First, simulated and experimental compression ratios of turbocharged gasoline engine were verified by Ricardo WAVE Engine Simulation Software. The effect of compression ratio on engine fuel consumption improved by changing from compression ratio (8.5-11) to stoichiometric air-fuel ratio, (IMEP), Indicated Specific Fuel Consumption (ISFC), Brake Mean Effective Pressure (BMEP), and Brake Specific Fuel Consumption (BSFC) are compared with the experimental results.
According to the simulation results, the turbocharged engine simulated by Ricardo WAVE engine simulation software can be used to calculate the performance and fuel consumption of the target engine. By increasing compression ratio, we can find the performance parameters, IMEP and BMEP (from 2400 to 4000 rpm) are increasing with the higher speed, but the figure of fuel consumption parameters, ISFC and BSFC are declining with the higher speed. When compression ratio is increasing, ISFC and BMEP are increased from 2400 to 4000 rpm.
摘 要 i
ABSTRACT ii
誌 謝 iii
目 錄 iv
表目錄 vi
圖目錄 vii
第一章 前言 1
1.1 研究背景與動機 1
1.2 文獻回顧 3
1.2.1 渦輪增壓器 4
1.2.2目標引擎之燃燒 5
1.2.3 壓縮比 7
1.3 研究目的與方法 7
第二章 引擎模擬分析 9
2.1 Ricardo WAVE引擎模擬軟體介紹 9
2.1.1 模擬環境設定 11
2.1.2 引擎模擬架構設定 11
2.1.3 引擎本體幾何架構 12
2.1.4 進排氣幾何架構 13
2.1.5 其他系統部件 16
2.2 模型運算說明 24
2.2.1 氣體交換模型 25
2.2.2 燃燒模型 26
2.2.3 熱傳模型 27
2.2.4 摩擦損失模型 27
2.3 數據分析方法 27
第三章 實驗設備與方法 29
3.1 實驗設備 29
3.1.1 目標引擎 29
3.1.2 大氣壓力計 29
3.1.3 引擎動力計 30
3.1.4 燃油流量計 32
3.1.5 空氣流量計 34
3.1.6 AVL燃燒分析儀 35
3.1.7 熱電偶溫度感知器 38
3.2 實驗步驟 39
第四章 結果與討論 41
4.1 模擬結果驗證 41
4.2 改變壓縮比對IMEP及ISFC影響 46
4.3 改變壓縮比對BMEP及BSFC影響 47
第五章 結論與未來展望 49
5.1 結論 49
5.2 未來展望 49
參考文獻 50
符號彙編 54
[1]台灣綜合研究院,聯合國氣候變化框架公約 京都議定書
[2]行政院環境保護署,巴黎協定 繁體中文版
[3]https://www.epa.gov/ghgemissions/overview-greenhouse-gases,U.S. Environmental Protection Agency,U.S. Greenhouse Gas Inventory Report: 1990-2014,2017年7月15日
[4]https://pride.stpi.narl.org.tw/ 國研院政策中心 政策研究指標資料庫,PRIDE從數據看全球暖化,2017年7月15日
[5]http://ec.europa.eu/clima/policies/transport/vehicles/cars_en,Reducing CO2 emissions from passenger cars,2017年7月15日
[6]https://ec.europa.eu/clima/policies/strategies/2020_en,2020 climate & energy package,2017年7月15日
[7]戴文達,中國公布“十二五”控制溫室氣體排放工作方案,工業技術研究院 綠能與環境研究所
[8]http://www.transportpolicy.net/index.php?title=Japan:_Light-duty:_Fuel_Economy#2020_Targets,Japan: Light-duty: Fuel Economy
[9]https://www2.moeaboe.gov.tw/oil102/,經濟部能源局 油價資訊管理與分析系統,2017年7月15日
[10]2016年能源產業技術白皮書,2017年7月15日
[11]Michael Howlett, Bernhard Enzi, Georg von Falck, Wolfgang Schoeffmann, Reinhold Haslinger and Mario Brunner, “CO2 Reduction Potential through Improved Mechanical Efficiency of the Internal Combustion Engine: Technology Survey and Cost-Benefit Analysis,” SAE Technical Paper No. 2013-01-1740, 2013.
[12]林耿宏,運用引擎模擬分析改善引擎性能,碩士論文,國立臺北科技大學車輛工程研究所,臺北,2005。
[13]Payri, F., Benajes, J. and Reyes, M. “Modeling of Supercharger Turbines in Internal Combustion Engines,” Int. J. Mech. Sci. Vol. 38, Nos 8-9, I996, pp. 853-869.
[14]Gimmler, H., Holzt, H.-P., Weimann and H.-J, “Computer Simulation of the Acceleration Characteristics of an Exhaust Gas Turbocharged Automotive Diesel Engine,” Turbocharging and Turbochargers, Proceedings of the Institution of Mechanical Engineers, No. C34/82, IMechE, 1982.
[15]Fillipi, Z., Assanis, D.N., “Quasi-Dimensional Computer Simulation of the Turbocharged Spark-Ignition Engine and its use for 2- and 4-Valve Engine Matching Studies,” SAE Technical Paper No.910075, 1991.
[16]Kouremenos D.A., Hountalas D.T. and Kotsiopoulos P.N., “Computer Simulation of Turbocharged Diesel Engines and its Application for Engine and Turbocharger Diagnosis,” Turbocharging and Turbochargers, Proceedings of the Institution of Mechanical Engineers, No.C484/008/94, IMechE, 1994.
[17]Benvenuto, G., Campora, U, “A Computer Model for the Dynamic Simulation of Turbocharged Diesel Engines,” Proceedings of the 1st International Conference on Control and Diagnostics in Automotive Applications, No.96A4014, 1996.
[18]Watson, N., “Turbocharged Spark Ignition Engine Simulation,” FISITA Congress No. 845042, 1984.
[19]Hong, C. W., and Watson, N, “Turbocharged S.I. Engine Simulation under Steady and Transient Conditions,” SAE Technical Paper No.880122, 1988.
[20]Kao, M., Moskwa, J. J., “Turbocharged Diesel Engine Modelling for Nonlinear Engine Control and State Estimation,” Transactions of the ASME, Vol. 117, March 1995.
[21]A. C. Clenci1, G. Descombes, P. Podevin, and V. Hara, “Some aspects concerning the combination of downsizing with turbocharging, variable compression ratio, and variable intake valve lift, ” Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, Vol. 221, No. 10, 2007, pp.1287-1294.
[22]尹傑,運用EGR系統於渦輪增壓引擎,碩士論文,國立臺北科技大學車輛工程研究所,臺北,2016。
[23]林煌閔,四缸渦輪汽油引擎模型建立與驗證,碩士論文,國立臺北科技大學車輛工程研究所,臺北,2016。
[24]Gabriele Di Blasio, Giacomo Belgiorno, and Carlo Beatrice, “Parametric Analysis of Compression Ratio Variation Effects on Thermodynamic, Gaseous Pollutant and Particle Emissions of a Dual-Fuel CH4-Diesel Light Duty Engine,” SAE Paper NO. 2017-01-0764
[25]Oldrich Vitek and Jan Macek, “Thermodynamic Potential of Electrical Turbocharging for the Case of Small Passenger Car ICE under Steady Operation,” SAE Paper NO. 2017-01-0526
[26]J.A. Gatowski, E.N. Balles, K.M. Chun, F.E. Nelson, J.A. Ekchian, and J.B. Heywood, “Heat Release Analysis of Engine Pressure Data,” SAE Technical Paper No.841359, 1984.
[27]R.A. Svehla and B.J. McBride, “Fortran IV Computer Programs for Calculation of Thermodynamic and Transport Properties of Complex Chemical Systems,” Technical Report NASA Technical Note TND-7056, NASA Lewis Research Center, 1973.
[28]K. M. Chun and J. B. Heywood, “Estimating Heat-Release and Mass-of-Mixture Burned from Spark-Ignition Engine Pressure Data,” Combustion Sci. and Tech., Vol. 54, 1987, p.p.133–143.
[29]R.B. Krieger and G.L. Borman, “The Computation of Apparent Heat Release for Internal Combustion Engines,” ASME 66-WA/DGP-4, 1966.
[30]R. Stone, Introduction to Internal Combustion Engines, SAE International, 3rd edition, 1999.
[31]G. Woschni, “A Universally Applicable Equation for the Instantaneous Heat Transfer Coefficient in the Internal Combustion Engine,” SAE Technical Paper No.670931, 1967.
[32]G.F. Hohenberg, “Advanced Approaches for Heat Transfer Calculations,” SAE Technical Paper No.790825, 1979.
[33]T.K. Hayes, R.A. White, and J.E. Peters, “Combustion Chamber Temperature and Instantaneous Local Heat Flux Measurements in a spark Ignition Engine,” SAE Technical Paper No.930217, 1993.
[34]A. Wimmer, R. Pivec, and T. Sams, “Heat Transfer to the Combustion Chamber and Port Walls of IC Engines – Measurement and Prediction,” SAE Technical Paper No.2000-01-0568
[35]J. B. Heywood, Internal Combustion Engine Fundamentals, McGraw-Hill Book Company, 1988.
[36]R. Harish Kumar and A. J. Antony, “Progressive Combustion in SI-Engines-Improved Empirical Models for Simulating and Optimizing Engine Performance,” SAE Technical Paper No.2008-01-1630
[37]M Mittal, G Zhu, and H Schock, “Fast mass-fraction-burned calculation using the net pressure method for real-time applications,” Proc. IMechE Vol. 223 Part D: J. Automobile Engineering, IMechE 2009, p.p. 389-394.
[38]Heywood, J. B., “Internal Combustion Engine Fudamentals”, McGraw-Hill, New Tirk, 1988.
[39]Yu Wan and Aimin Du, “Reducing Part Load Pumping Loss and Improving Thermal Efficiency through High Compression Ratio Over-Expanded Cycle,” SAE Technical Paper No.2013-01-1744
[40]Y. Motoyama and T. Gotoh, “The Effect of Higher Compression Ratio in Two-Stroke Engines” SAE Technical Paper No. 93A090
[41]Kohei Kuzuoka, Tadashi Kurotani, Hiroshi Chishima, and Hirotsugu Kudo, “Study of High-Compression-Ratio Engine Combined with an Ethanol-Gasoline Fuel Separation System,” SAE Paper NO. 2014-01-2614
[42]Cenk Sayina and Mustafa Kemal Balkib, “Effect of compression ratio on the emission, performance and combustion characteristics of a gasoline engine fueled with iso-butanol/gasoline blends,” Energy, Vol. 82, 2015, pp.550-555
[43]蕭守志,Atkinson cycle引擎模擬分析,碩士論文,國立臺北科技大學車輛工程研究所,臺北,2015。
[44]Joel Prince Lobo, James Howard Lee, Eric Oswald, Spenser Lionetti, and Robert Garriek, “The Effect of Lean Operation, Ignition Advance, and Compression Ratio on the Performance and Emissions of a Propane Fueled Electronic Fuel Injected Engine,” SAE Paper NO. 2016-32-0068
[45]Michael H. Shelby, Thomas G. Leone, Kevin D. Byrd, and Frank K. Wong, “Fuel Economy Potential of Variable Compression Ratio for Light Duty Vehicles,” SAE Paper NO. 2017-01-0639
[46]www.ricardo.com, Basic WAVE Turbocharger Training
[47]Raithby, G. D. and K. G. T. Hollands, “A General Method of Obtaining Approximate Solutions to Laminar and Turbulent Free Convection Problems,” Advances in Heat Transfer, Vol. 11, 1975, p.p.265-315.
[48]Chen, S. K. and P. F. Flynn, “Development of Single Cylinder Compression Ignition Research Engine,” SAE Technical Paper No. 650733, 1965.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top