第一部分、英文 (按英文字母順序排列)
1.Beaty, M. and Byrne, P.M. (1998),“ An effective stress model for predicting liquefaction behaviour of sand,” In Geotechnical earthquake engineering and soil dynamics III, Americal Society of Civil Engineers, Geotechnical Special Publication 75(1), 1998, pp. 766-777.
2.Bray, J. D. and Sancio, R. B.(2006),“ Assessment of the Liquefaction Susceptibility of Fine-Grained Soils,” Journal of Geotechnical and Geoenvironmental Engineering ©ASCE 2006. Vol. 132, No. 9, pp. 1165-1177.
3.Byrne, P.M. (1991), “A cyclic shear-volume coupling and pore pressure model for sand”, Proceedings of the 2nd International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, St. Louis,Missouri,Vol.1, pp. 47-56.
4.Byrne, P.M. (2004), “Numerical modeling of liquefaction andcomparison with centrifuge tests”, Canadian Geotechnical Journal, Vol. 41, 2004, pp 193-211.
5.Casagrande, A. (1936), “Characteristics of Cohesionless Soils Affecting Stability of Slopes and Earth Fills,” Journal of the Boston Society of Civil Engineers, January; reprinted in Contributions to Soil Mechanics 1925-1940, BSCE, pp. 257-276.
6.Castro, G. (1969), “Liquefaction of Sands,” Doctor’s dissertation,Harvard University, USA.
7.Castro, G. and Poulos, S. J. (1977), “Factors Affecting Liquefaction and Cyclic Mobility,” Journal of the Geotechnical Engineering Division, ASCE, Vol. 103, No. GT6, pp. 501-516..
8.Chang, D.W., Cheng, S.H. and Wang, Y.L. (2014). “One-dimensional wave equation analyses for pile responses subjected to seismic horizontal ground motions.” Soils and Foundations, 54(3), 313-328.
9.Chang, D.W., Lin B.S. and Cheng S.H. (2009), “Lateral Load Distributions on Grouped Piles from Dynamic Pile-to-Pile Interactions Factors”, International Journal for Numerical and Analytical Methods in Geomechanics, Vol. 33, Issue 2, pp. 173-191.
10.Chang, D.W., Yang T.Y. and Yang C.L. (2010), “Seismic Performance of Piles from PBEE and EQWEAP Analyses”, J. of Geotechnical Engineering, SEAGS/AGSSEA, Vol. 41 , No.2, pp. 1-8.
11.Chang, D.W. and Yeh, S.H. (1999), “Time-Domain Wave Equation analysis of single Piles Utilizing Transformed Radiation Damping”, Soil and foundations, JGS., Vol.39, No.2, pp.31-44
12.Chung, K. Y. C., and Wong, I. H. (1982), “Liquefaction potential of soils with plastic fines,” Soil Dynamics and Engineering Conference, Southampton, pp.887-897.
13.Finn, W. D. L., Lee, K.W. and Martin, G. R. (1977), “An Effective Stress Model for Liquefaction,” Journal of the Geotechnical Engineering Division,ASCE, Vol. 103, No. SM7, pp. 657-692.
14.Guo, T. and Prakash S. (2000), “Liquefaction Silt-Clay Mixtures,’’ Proc. 11 World Conf. On Earthquake Engineering Auckland NZ, CD ROM.
15.Idriss, I. M. and Seed, H. B. (1968), “Seismic Response of Horizontal Soil Layers,” Journal of the Soil Mechanics and Foundation Division, ASCE, Vol. 94, No. SM4, pp. 1003-1031.
16.Ishihara, K. (1985), “Stability of Natural Depsoit during Earthquake,” Proc., 11th International Conference on Soil Mechanics and Foundation Engineering, Vol. 1, pp. 321-376.
17.Ishihara, K. (1993), “Liquefaction and Flow Failure During Earthquake,” Journal of the Geotechnical Engineering, ASCE, Vol. 43, No. 3, pp. 351-415.
18.Ishibashi, I. M., Sherlif, M. A., & Cheng, W. L. (1982), “The Effects of Soil Parameters on Pore Pressure Rise and Liquefaction Prediction,” Soils and Foundations, JSSMEF, 22(1), pp. 37-48.
19.Ishihara, K., Sodekawa, M., and Tanaka, Y. (1978), “Effect of Overconsolidation on Liquefaction Characteristics of Sand Containing Fine,” Dynamics Geotechnical Test, ASCE, STP 654, ASTM, pp. 246-264.
20.Ishihara, K. and Towhata, I. (1982), “Dynamic Response Analysis of Level Ground Based on the Effective Stress Method,” Soils Mechanics-Transient and Cyclic Loads, Wiley, New York, pp. 133-171.
21.Ishihara, K., Tsukamoto Y. & Kamada K. (2004), “Undrained behaviour of near-saturated sand in cyclic and monotonic loading,” Cyclic Behaviour of Soils and Liquefaction Phenomena, © 2004 Taylor & Francis Group, London, UK, pp.27-39.
22.Ishihara, K. and Yamasaki, F. (1980), “Cyclic Simple Shear Tests on Saturated Sand in Multi-directional Loading,” Soils and Foundations, JGS, Vol. 20, No. 1, pp. 45-59.
23.Kramer, S.L. (1996), “Geotechnical Earthquake Engineering,’’ Prentice Hall, Inc., Upper Saddle River, New Jersey, pp.348-368.
24.Liang, M. and Husein, A. I. (1993), “Simplified Dynamic Method for Pile-Driving Control,” Journal of Geotechnical Engineering, ASCE, Vol. 119, No. 4, pp. 694-713.
25.Martin, G. R., Finn, W. D. L. and Seed, H. B. (1975), “Fundamentals of liquefaction under cyclic loading,” Journal of the Geotechnical Engineering Division, ASCE, Vol. 101, No. GT5, pp. 423-438.
26.Matsuzawa, H., Ishibashi, I, and Kawamura, M. (1985), “Dynamic soil and Water Pressures of Submerged Soils,” Journal of the Geotechnical Engineering, ASCE, Vol. 111, No. 10, pp. 1161-1176.
27.MIDASGTS (2011), “MIDAS/GTS Analysis Reference User’s Manual”.
28.MIDAS GTS NX (2014), “New experience of GeoTechnical analysis System User’s Manual”.
29.Mulilis, J. P., Chen, C. K. and Seed, H. B. (1975), “The Effects of Method of Sample Preparation on the Cyclic Stress-Strain Behavior of Sands,” Report No. EERC75-18, U.C. Berkeley, Earthquake Engineering Research Center.
30.Peacock, W. H., & Seed, H. B. (1968), “Sand Liquefaction under Cyclic Loading Simple Shear Conditions,’’ Journal of Soil Mech. Found. Div., ASCE, 94 (SM3), pp. 689-708.
31.Puebla, H., Byrne, PM., and Phillips, R., (1997),“ Analysis of CANLEX liquefaction embankments: protype and centrifuge models,” Canadian Geotechnical Journal, 34, 1997, pp 641-657.
32.Seed, H. B. and Idriss, L. M. (1971), “Simplified Procedure for Evaluating Soil Liquefaction Potential,’’ Journal of the Soil Mechanics and Foundations Division, ASCE, 97(SM9), pp. 1249-1273.
33.Seed, H. B. and Peacock, W. H. (1971), “Test Procedures for Measuring Soil Liquefaction Characteristics,’’ Journal of the Soil Mechanics and Foundations Division, ASCE, 97(SM8), pp. 1099-1119.
34.Seed, H. B., Mori, K., & Chan, C. K. (1975a), “Influence of Seismic History on the Liquefaction Characteristics of Sands,’’ Report No. EERC 75-25, Earthquake Research Center, University of California, Berkeley, California.
35.Seed, H. B., Martin, P. P., & Lysmer, J. (1975b), “The Generation and Dissipation of Pore Water Pressure During Soil Liquefaction,’’ Report No. EERC 75-26, Earthquake Research Center, University of California, Berkeley, California.
36.Seed, H.B. (1979), “Soil Liquefaction and Cyclic Mobility Evaluation for Level Ground During Earthquakes,” Journal of the Geotechnical Engineering Division, ASCE, Vol. 105, No. GT2, pp. 201-255.
37.Seed, H. B. and Idriss, I. M. (1982), “Ground Motions and Soil Liquefaction During Earthquakes,’’ Earthquake Engineering Research Institute, California.
38.Sherif, M. A., Ishibashi, I. & Tsuchiga, C. (1977), “Saturation Effects on Initial Soil Liquefaction,” Journal of the Geotechnical Engineering Division, ASCE, pp. 914-917.
39.Ueng, T. S. and Chang C. S. (1982), “The Effects of Clay Content on Liquefaction of Fulung Sand,” Soil Dynamics and Earthquake Engineering Conference, Southampton.
40.Yoshimi Y., Tokimatsu K. and Hosaka Y. (1989), “Evaluation of Liquefaction Resistance of Clean Sands Based on High-Quality Undisturbed Samples,’’ Soils and Foundations, Vol. 29, No. 1, pp. 93-104
第二部分、中文 (按姓氏筆畫排列)
1.王世權 (2001),「垂直地震樁基之波動方程分析」,碩士論文,淡江大學土木工程研究所,台灣,淡水。2.王志煒 (2002),「側向地震樁基之波動方程分析」,碩士論文,淡江大學土木工程研究所,台灣,淡水。3.王彥誌 (2012),「以波動方程和有限元素分析樁基礎受震行為之比較」,碩士論文,淡江大學土木工程研究所,台灣,淡水。4.王寅綸 (2013),「樁基礎耐震性能之研究」,碩士論文,淡江大學土木工程研究所,台灣,淡水。5.內政部營建署 (2011),「建築物耐震設計規範及解說」,營建雜誌社。
6.交通部中央氣象局網站http://www.cwb.gov.tw/V7/earthquake/accsta.htm
7.江鈞平 (1984),“壓密與顆粒性質對含微量黏土細砂之液化潛能的影響”,碩士論文,國立台灣大學土木工程研究所,台灣,台北。8.李漢珽 (2008), 「土質參數折減係數應用於液化影響樁基礎之波動方程分析」,碩士論文,淡江大學土木工程研究所,台灣,淡水。9.李旻儒 (2016),「樁筏基礎受水平地震力作用之簡易分析」,碩士論文,淡江大學土木工程研究所,台灣,淡水。10.巫秀星 (2005),“液化土壤模數折減下樁基動力反應分析”,碩士論文,淡江大學土木工程研究所,台灣,淡水。11.宋士豪 (2012),「樁基承載力與耐震性能之關聯性研究」,碩士論文,淡江大學土木工程研究所,台灣,淡水。12.林伯勳 (2002),「群樁受垂直向及側向載重之非線性變形研究」,碩士論文,淡江大學土木工程研究所,台灣,淡水。13.林成川 (2002),“921 集集大地震霧峰地區土壤側潰研究”,碩士論文,中興大學土木工程研究所,台灣,台中。
14.林煒宸 (2014),「樁筏基礎受力變形之有限元素分析」,碩士論文,淡江大學土木工程研究所,台灣,淡水。15.林于茹 (2016),「軟弱地盤中樁筏基礎構造之靜態力學行為」,碩士論文,淡江大學土木工程研究所,台灣,淡水。16.周功台、李志剛、廖瑞堂、俞清瀚、余榮生、郭漢興、黃富國、鄭清江 (2000),“液化區基礎修復補強工法對策說明書”,台北市、臺灣省大地工程技師公會,台北。
17.洪明揚 (2016),「樁筏基礎靜態與地震行為之案例研究」,碩士論文,淡江大學土木工程研究所,台灣,淡水。18.夏啟民 (1992),“細料塑性程度對台北盆地粉泥質砂液化潛能之影響”,碩士論文,台灣大學土木工程研究所,台灣,台北。
19.張紹綸 (2008),“孔隙水壓模式應用於液化影響樁基礎之波動方程分析”,碩士論文,淡江大學土木工程研究所,台灣,淡水。20.張德文、王寅綸、王彥誌、宋士豪 (2012),「樁基礎耐震性能分析評估與運用」,台灣世曦工程顧問股份有限公司研發報告。
21.鄭世豪 (2004),「簡易橋墩基礎之地震反應分析」,碩士論文,淡江大學土木工程研究所,台灣,淡水。22.趙紹錚、黃宏謀、徐瑩潔 (2010),「蘭陽平原土層特性分析」,國立宜蘭大學工程學刊第6期,53-64頁。23.劉佳泓 (2014),「人工合成地震對基樁耐震性能之影響」,碩士論文,淡江大學土木工程研究所,台灣,淡水。