(44.192.112.123) 您好!臺灣時間:2021/03/01 02:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:許家豪
研究生(外文):Chia-Hao Shu
論文名稱:細菌所生產α-葡萄糖苷酶抑制劑之研究
論文名稱(外文):Studies on the alpha-glucosidase inhibitors produced by bacteria
指導教授:王三郎王三郎引用關係
指導教授(外文):San-Lang Wang
口試委員:謝淳仁王三郎王全祿糜福龍郭耀豪
口試委員(外文):Chuen-Jen ShiehSan-Lang WangChuan-Lu WangFwu-Long MiYao-Haur Kuo
口試日期:2017-05-22
學位類別:博士
校院名稱:淡江大學
系所名稱:化學學系博士班
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:106
中文關鍵詞:α-葡萄糖苷酶糖尿病枯草芽孢桿菌根瘤菌類芽孢桿菌幾丁質蝦殼蟹殼
外文關鍵詞:α-glucosidasediabetesBacillus mycoidesRhizobiumpaenibacillus maceranschitinshrimp shellscrab shells
相關次數:
  • 被引用被引用:0
  • 點閱點閱:119
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
α-萄糖苷酶抑制劑 ( α-glucosidase inhibitors, aGIs ),為2型糖尿病的藥物,最主要是因為它能直接降低人體對碳水化合物的。本實驗利用Bacillus mycoides TKU040 與 Rhizobium sp. TKU041 共同培養發酵蝦頭殼粉(SHP),以及 Paenibacillus macerans TKU029 發酵蟹殼粉(CSP),生產α-葡萄糖苷酶抑制劑,實驗結果顯示出,推測此三種菌皆利用幾丁質做一個生物轉換,進而生成α-葡萄糖苷酶抑制劑。其中TKU040與TKU041所生成之抑制劑推測為醣類,IC50 = 5μg/mL ,抑制型態為混和型抑制劑(non-competitive-uncompetitive)。另外TKU029 發酵蟹殼粉的部分,發酵上清液中測得最高抑制劑活性為666 U/mL,以150mL 培養可得總活性為99900U。目前已從發酵上清液中分離出七個活性區段,後續將以HPLC繼續進行分離純化,並以NMR 進行結構鑑定。
大多數的aGIs對肝臟造成負擔,並引起胃腸道困擾,因此新的aGIs的發展變得非常重要。
本實驗利用Bacillus mycoides TKU040 and Rhizobium sp. TKU041共同培養以蝦頭殼作為唯一碳氮源生產aGIs。以50毫升的培養液培養(0.1% K2HPO4、0.05% MgSO4∙7H2O, pH 9.2),內含1% 蝦頭殼粉,於 37 ºC 培養4天發酵上清液中可得到aGIs (143 U/mL),上清液之半抑制濃度為3 mg/mL,在熱穩定性方面,可耐熱至60 ºC,30分鐘仍保有60 %的活性,在pH安定性方面,於pH11時可提高抑制活性至140 %。後續純化方面經由NMR及MALDI-TOF鑑定後,發現抑制劑結構可能為醣類化合物,抑制型態為混合型抑制劑,純化後之辦抑制濃度為5μg/mL。
另一方面本實驗利用paenibacillus macerans TKU029以螃蟹殼作為唯一碳氮源,生產aGIs,以150毫升培養液(0.1% K2HPO4、0.05% MgSO4∙7H2O, pH 4),內含2 %的螃蟹殼,於30 ºC 培養4天,可於發酵上清液中得到aGIs (99900 U/mL),在熱穩定性方面,可耐熱至100 ºC,30分鐘仍保有99 % 的活性。後續純化方面經由Diaion gel及Silica gel,分離出7個活性區段,NMR進行結構鑑定。
Alpha-glucosidase inhibitors (aGIs) have potential use as antidiabetic drugs for the treatment of type II diabetes. Most aGIs place a burden on the liver and cause gastrointestinal distress, therefore the development of new aGIs has become very important. In this study, some chitinous materials were utilized for aGIs production via microbial conversion. In the first study, we investigated the production of aGIs by the co-culture of Bacillus mycoides TKU040 and Rhizobium sp. TKU041 using shrimp head powder (SHP) as the sole source of carbon and nitrogen (C/N). After fermentation in 50 mL of 1% SHP-containing medium (0.1% K2HPO4 and 0.05% MgSO4∙7H2O, pH 9.2) at 37ºC for 4 days, the maximum productivity of aGIs (143 U/mL) was reached. The IC50 of the aGIs produced in the culture supernatant was 3 mg/mL. The α-glucosidase inhibitory (aGI) activity was only 60% after treatment at pH 3 for 30 min; this increased to 140% after treatment at pH 11 for 30 min. The aGI activity remained at 60% after treatment at 60ºC for 30 min. One major active compound was isolated from fermented SHP and confirmed as a carbohydrate by NMR and MALDI-TOF analysis. This isolated inhibitor possessed a low IC50 value of 5μg/mL. In the second study of our investigation, paenibacillus macerans TKU029 was found to produce aGIs by using carb shell powder (CSP) as the sole source of C/N. After fermentation in 150 mL of 2% CSP-containing medium (0.1% K2HPO4 and 0.05% MgSO4∙7H2O, pH 9.2) at 30 ºC for 4 days, the maximum productivity of aGIs (99900 U/mL) was reached. The aGI activity remained at 71% after treatment at 100 ºC for 30 min. The application of several techniques including Diaoin, Silica gel opened columns, coupled with a biological-guided assay resulted in isolating 7 active sub–fractions. NMR was also used for prediction of chemical structure of these active components.
目錄
頁次

中文摘要.........................................................................................................................I
英文摘要.......................................................................................................................II
目錄..............................................................................................................................III
圖目錄………………………………………………………………………………X
表目錄………………………………………………………………………………XII

Part 1
Bacillus mycoides TKU040 與 Rhizobium sp. TKU041共培養以蝦頭殼粉為唯一碳氮源生產α-葡萄糖苷酶抑制劑.......................................................................1
第一章 緒論..................................................................................................................2
第二章 文獻回顧..........................................................................................................3
2.1糖尿病概述..........................................................................................................3
2.2 α-葡萄糖苷酶 ...........................................................................3
2.3 α-葡萄糖苷酶抑制劑..................................................4
2.4 Bacillus mycoides 之簡介………………………………………………….....10
2.5 Rhizobium sp. 之簡介…………………………………………………….....10
2.6 微生物共培養………………………………………………………………11
2.7 微生物共培養生產葡萄糖苷酶抑制劑……………………...........................13
2.8 微生物發酵水產廢棄物……………………………………………………13
第三章 材料與方法…………………………………………………………………16
3.1菌株………………………………………………………...………………….16
3.2實驗藥品及材料…………………………………………………………….16
3.3實驗儀器………………………………………………………………….…17
3.4 α-葡萄糖苷酶抑制劑生產菌株之篩選……………………………...……..17
3.4.1菌株初步篩選………………………………………………………..…17
3.4.2 菌株純度確認…………………………………………………...……….18
3.5 革蘭氏染色…………………………………………………………………...19
3.6 16SrDNA萃取…………………………………………………………….......19
3.6.1 革蘭氏陽性菌純化步驟………………………………………................19
3.6.2革蘭氏陰性菌……………………………………………………………20
3.7 API(Analytical Profile Index) API 50 CHB…………………..……………….20
3.8對峙測試(antagonism test)…………………………………………………….21
3.9共培養生產α-葡萄糖苷酶抑制劑之作用機制探討.....................................21
3.9.1不同菌量接種測試……………………………………………………..21
3.9.2不同預培養條件測試…………………………………………………..21
3.10 發酵上清液收集方式……………………………………………………….22
3.11磷酸緩衝液(NPB)500mM配置…………………………………………...22
3.11.1 pH3,4,5 buffer製備……………………………………………………...22
3.11.2 pH6,7,8 NPB製備……………………………………………………….22
3.11.3 pH9,10,11 buffer製備…………………………………………………22
3.12 α-葡萄糖苷酶抑制劑抑制活性測試……………………………………23
3.13 培養條件探討…………………………………………………………….…23
3.13.1 不同碳/氮源……………….....................................................................24
3.13.2 不同濃度碳/氮源……………………………………………………….24
3.13.3 培養天數篩選…………………………………………………………24
3.13.4 不同培養溫度探討……………………………………………………24
3.13.5 不同培養體積…………………………………………………………..25
3.13.6 不同pH之培養基………………………………………………………25
3.14蛋白質含量測定…………………………………………………………...25
3.14.1 A280測定………………………………………………………………..25
3.14.2 雙縮脲染色………………………………………………………..........25
3.15總糖含量測定(硫酸法)……………………………..……………….……….26
3.16 蛋白酶活性測試…………………………………………………………….26
3.17 幾丁聚醣酶活性測試……………………………………………………….26
3.18 熱安定性測試…………………………………………………………….…27
3.19酸鹼安定性測試……………………………………………………………27
3.20 α-葡萄糖苷酶抑制劑純化…………………………………………………27
3.20.1硫酸銨沉澱法,粗抑制劑液製備………………………………………27
3.20.2陰離子交換層析………………………………………………………27
3.20.3陽離子交換層析………………………………………………………28
3.20.4疏水性層析……………………………………………………………28
3.20.5膠體過濾層析法………………………………………………………29
3.20.6酒精沉澱………………………………………………………………29
3.21抑制劑動力學………………………………………………………….........29
3.21.1決定最適抑制劑濃度…………………………………………………29
3.21.2酵素抑制動力學……………………………………………………....30
3.21.3 抑制劑種類鑑定……………………………………………………30
3.22抑制劑特異性測試………………………………………………………30
3.22. 不同來源α-葡萄糖苷酶抑制劑抑制效果測試……………………….30
3.22.2有機溶劑耐受性測試……………………………………………….30
第四章 結果與討論………………………………………………...……………….32
4.1 α-葡萄糖苷酶抑制劑生產菌株…………………………………………….32
4.2 α-葡萄糖苷酶抑制劑生產菌株之鑑定………………………………….....32
4.3 較適培養條件探討……………………………………………………...…38
4.3.1 不同碳氮源之影響………………………………………………........38
4.3.2培養體積之影響………………………………………………………40
4.3.3不同濃度碳氮源之影響……………………………………………..…40
4.3.4培養天數篩選…………………………………………………………..42
4.3.5不同培養溫度探討……………………………………………………42
4.3.6不同pH之培養基………………………………………………………44
4.3.7 較適培養條件統整……………………………………………………44
4.4 抑制劑之純化……………………………………………………………...44
4.4.1上清液熱安定性………………………………………………………..44
4.4.2 上清液pH安定性…………………………………………………..…48
4.4.3 透析結果……………………………………………………………....48
4.4.4 硫酸銨沉澱後活性測試……………………………………………....48
4.4.5 抑制劑初步定性結果…………………………………………………48
4.4.6陰離子交換層析………………………………………………………..50
4.4.7陽離子交換層析………………………………………………………..51
4.4.8疏水性層析……………………………………………………………..52
4.4.9膠體過濾層析…………………………………………………………..52
4.4.10層析法純化結果整理………………………………………………..54
4.4.11酒精沉澱……………………………………………………………....56
4.5 抑制劑結構鑑定…………………………………………………………...58
4.5.1 NMR…………………………………………………………………....58
4.5.2 MALDI-TOF-MS……………………………………………………....58
4.5.3抑制劑型態鑑定………………………………………………………..58
4.6 共培養生產α-葡萄糖苷酶抑制劑之作用機制探討………………………64
第五章結論…………………………………………………………………………..65
Part 2
Paenibacillus macerans TKU029 生產α-葡萄糖苷酶抑制劑之研究………….…66
第一章 文獻回顧……………………………………………………..……………..67
1.1 Paenibacillus………………………………………………………………...67
1.2 Paenibacillus macerans……………………………………………………...67
第二章 材料與方法……………………………………….……………………...69
2.1菌株………………………………………………………………………….69
2.2實驗藥品及材料………………………………………………………….…69
2.3實驗儀器…………………………………………………………………….69
2.4 大鼠腸道α-葡萄糖苷酶製備及抑活性測試……………………………70
2.5 培養條件探討……………………………………………………………71
2.5.1 不同碳/氮源…………………………………………………………...71
2.5.2 不同濃度碳/氮源……………………………………………………71
2.5.3 培養天數篩選…………………………………………………………71
2.5.4 不同培養溫度探討……………………………………………………71
2.5.5 不同培養體積………………………………………………………..72
2.5.6 不同pH之培養基……………………………………………………..72
2.6 α-葡萄糖苷酶抑制劑初步特性測試………………………………………..72
2.6.1 發酵上清液收集方式…………………………………………………72
2.6.2 透析……………………………………………………………………72
2.6.3 熱安定性測試…………………………………………………………72
2.7 α-葡萄糖苷酶抑制劑純化………………………………………………..72
第三章 結果與討論………………………………………………………….74
3.1 較適培養條件探討………………………………………………………...74
3.1.1 不同碳/氮源對TKU029生產α-葡萄糖苷酶抑制劑之影響………74
3.1.2 不同濃度碳/氮源……………………………………………………...74
3.1.3 不同培養溫度探討……………………………………………………74
3.1.4 不同培養體積…………………………………………………………....75
3.1.5 不同pH之培養基………………………………………………………..75
3.1.6 較適培養條件統整…………………..…………………………………75
3.2 葡萄糖苷酶抑制劑特性探討…………………………………………...86
3.2.1 分子量確認…………………………………………………………86
3.2.2 α-葡萄糖苷酶抑制劑耐熱測試…………………………………………86
3.3 α-葡萄糖苷酶抑制劑分離純化………………………………………………88
第四章 結論………………………………………………………………………....92
第五章 總結…………………………………………………………………………93
參考文獻……………………………………………………………………………..94














圖目錄
頁次
圖3.1 α-葡萄糖苷酶抑制活性測試流程圖………………………………..……23
圖4.1 TKU040格蘭氏染色圖……………………………………………………….33
圖4.2 TKU041格蘭氏染色圖……………………………………………………….33
圖4.3 TKU040 16SrDNA部分序列……………………………………………....34
圖4.4 TKU041 16SrDNA部分序列……………………………………………….34
圖4.5 TKU040 API 50 CHB比對結果……………………………………………37
圖4.6 TKU040與TKU041之對峙測試………………………………………..…37
圖4.7不同濃度幾丁質添加於培養基中對抑制劑生產之影響…………………...39
圖4.8 蛋白酶與抑制劑生產之關係圖…………………………………………...40
圖4.9 不同培養體積對抑制劑生產之影響………………………………………41
圖4.10 不同SHP濃度對抑制劑生產之影響………………………………………42
圖4.11 培養天數對抑制劑生產之影響……………………………………….…43
圖4.12 不同培養溫度對抑制劑生產之影響…………………………………….43
圖4.13 抑制劑熱安定性(不同溫度)……….……………………………………….47
圖4.14 抑制劑熱安定性(50°C,0-60分鐘)……………………………………...47
圖4.15 上清液以不同pH 緩衝容液處理30分鐘後之抑制活性…………………49
圖4.16 α-葡萄糖苷酶抑制劑之 DEAE-Sepharose CL-6B層析圖譜……………51
圖4.17 α-葡萄糖苷酶抑制劑之陽離子交換層析圖譜…………………………….52
圖4.18 α-葡萄糖苷酶抑制劑之疏水性層析法圖譜……..………………………..53
圖4.19 α-葡萄糖苷酶抑制劑之膠體層析法圖譜………………………………….53
圖4.20 雙縮脲染色之顏色變化………………………………………………….54
圖4.21 BSA之標準曲線…………………………………………………………….55
圖4.22 抑制劑純化流程圖……………………………………………………….57
圖4.23 α-葡萄糖苷酶抑制劑之1H-NMR光譜………………………………..........59
圖4.23 α-葡萄糖苷酶抑制劑之13C-NMR光譜……………………………………60
圖4.24 α-葡萄糖苷酶抑制劑之13C-NMR光譜……………………………………61
圖4.25 α-葡萄糖苷酶抑制劑之MALDI-TOF-MS圖譜……………………………62
圖4.2 α-葡萄糖苷酶抑制劑之雙倒數圖……………………………………….…63
Part 2
圖 3.1不同碳氮源對於TKU029生產α-葡萄糖苷酶抑制劑之影響……………...76
圖3.2 不同CSP濃度對α-葡萄糖苷酶抑制劑生產之影…………………………77
圖3.3 不同培養溫度對α-葡萄糖苷酶抑制劑生產之影響……………………...78
圖3.4不同培養體積對α-葡萄糖苷酶抑制劑生產之影響…………………………80
圖3.5 TKU029於pH4之培養環境中,α-葡萄糖苷酶抑制劑的產量與菌量之關...82
圖 3.6 α-葡萄糖苷酶抑制劑之熱安定性(不同溫度)…………..…………….........87
圖 3.7α-葡萄糖苷酶抑制劑之熱安定性(100°C, 30分鐘)……...…………..88
圖 3.8 α-葡萄糖苷酶抑制劑之diaion gel 分離純化流程圖…………………...89
圖 3.9 Diaion gel 分離純化後 F1及F2 之高壓液相層析儀圖譜………………..90
圖 3.10 α-葡萄糖苷酶抑制劑之silica gel 分離純化流程圖……………………..90
圖 3.11 經silica gel後第40管之α-葡萄糖苷酶抑制劑1H-NMR………………...91


表目錄
頁次
表2.1 來自植物萃取的α-葡萄糖苷酶抑制劑............................................................7
表2.2 來自於化學合成的α-葡萄糖苷酶抑制劑........................................................8
表2.3 來自微生物的α-葡萄糖苷酶抑制劑…………………………………………9
表2.4微生物發酵水產廢棄物相關文獻……………………………………………14
表4.1 TKU040 16SrDNA部分序列比對結果………………………………….35
表4.2 TKU041 16SrDNA部分序列比對結果……………………………………36
表4.3 不同碳氮源對於發酵上清液中抑制劑產量之影響……………………......38
表4.4 培養基於不同pH時抑制劑產量的差異………………………………….45
表4.5 不同微生物發酵生產α-葡萄糖苷酶抑制劑之培養條件比較…………...46
表4.5 上清液透析前後之抑制劑活性分布……………………………………...49
表4.6硫酸銨沉澱後之抑制劑活性分布……………………………………………50
表4.7雙縮脲染色法之蛋白質含量…………………………………………………55
表4.8 α-葡萄糖苷酶抑制劑之純化總表……………………………………………56
表4.9 α-葡萄糖苷酶抑制劑之純化總表(酒精沉澱後)……………………………56
表4.10 各純化步驟之IC50整理…………………………………………………..57
表 4.11 α-葡萄糖苷酶抑制劑之抑制型態與Km及Vmax值……………………...63
表 4.12 TKU040及TKU041經由預培養增加α-葡萄糖苷酶抑制劑生產之探討..64
Part 2
表3.1 Paenibacillus macerans 菌株於不同培養溫度所生產生物活性物質之比較……………………………………………………………………………………..79
表3.2 培養基於不同pH時抑制劑產量的差異……………………………….....81
表 3. 3 TKU029生產α-葡萄糖苷酶之較適培養條件……………………………..83
表3.4 Paenibacillus macerans 菌株於不同培養條件所生產生物活性物質之比較…………………………………………………………………………………84
表 3.5 透析後葡萄糖苷酶抑制劑分子量確認………………………………86
Abdel-Naby, M.A., (1999) Immobilization of Paenibacillus macerans NRRL B-3186 cyclodextrin glucosyltransferase and properties of the immobilized enzyme. Process Biochemistry 34:399-405
Abreu, A.A., Tavares, F., Alves, M.M., Pereira, M.A. (2016) Boosting dark fermentation with co-cultures of extreme thermophiles for biohythane production from garden waste. Bioresource Technology 219:132–138
Arfaoui, A., Hadrami, A.E., Mabrouk, Y., Sifi, B., Boudabous, A., Hadrami, I.E., Daayf, F., Che´rif, M. (2007) Treatment of chickpea with Rhizobium isolates enhances the expression of phenylpropanoid defense-related genes in response to infection by Fusarium oxysporum f. sp. Ciceris. Plant Physiology and Biochemistry 45:470-479
Azam, S.S., Uddin, R., Syed, A.A.S., Zaheer-Ul-Haq (2012) Molecular docking studies of potent inhibitors of tyrosinase and α-glucosidase. Medicinal Chemistry Research 21:1677-1683
Bacha, E., Segerb, G.D.d.S., Fernandesa, G.D.C., Lisboac, B.B., Passaglia, L.M.P. (2016) Evaluation of biological control and rhizosphere competence of plant growth promoting bacteria. Applied Soil Ecology 99:141–149
Bautista-Ban˜os, S., Herna´ndez-Lauzardo, A.N., Valle, M.G.V., Herna´ndez-Lo´pez, M.,E. Barkab, A., Bosquez-Molinac, E., Wilson, C.L., (2006) Crop Protection 25:108–118
Berge, O., Guinebretie''re, M.H., Achouak, W., Normand, P., Heulin, T., (2002) Paenibacillus graminis sp. nov. and Paenibacillus odorifer sp. nov., isolated from plant roots, soil and food. International Journal of Systematic and Evolutionary Microbiology 52:607–616
Bertrand, S., Bohni, N., Schnee, S., Schumpp, O., Gindro, K., Wolfender, J.L., (2014) Metabolite induction via microorganism co-culture: A potential way to enhance chemical diversity for drug discovery. Biotechnology Advances 32:1180–1204
Bian, X., Wang, Q., Ke, C., Zhao, G., Li, Y. (2013) A new series of N2-substituted-5-(p-toluenesulfonylamino)phthalimide analogues as a-glucosidase inhibitors. Bioorganic & Medicinal Chemistry Letters 23:2022–2026
Borah, B., Thakur, P.S., Nigam, J.N. (2002) Journal of Applied Microbiology 92:776-783
Chen, S., Zheng, H., Wang, J., Hou, J., He, Q., Liu, H., Xiong, C., Kong, X., Nie, Z., (2013) Carbon Nanodots as a New Matrix for the Analysis of Low-Molecular-Weight Molecules in Both Positive- and Negative-Ion MALDI-TOF MS and Quantification of Glucose and Uric Acid in Real Samples. Analytical Chemistry 85:6646-6652
Chu, Y.H., Wu, S.H., Hsieh, J.F., (2014) Isolation and characterization of α-glucosidase inhibitory constituents from Rhodiola crenulata. Food Research International 57:8-14
Conifl, R., Krol, A. (1997) Acarbose: A Review of US Clinical Experience. Clinical Thefupeutic 19(1):16-26
Dheeran, P., Nandhagopal, N., Kumar, S., Jaiswal, Y.K., Adhikari, D.K., (2012) A novel thermostable xylanase of Paenibacillus macerans IIPSP3 isolated from the termite gut. J Ind Microbiol Biotechnol 39:851–860
Diange, E.A., Lee, S.S., (2013) Rhizobium halotolerans sp. nov., Isolated from Chloroethylenes Contaminated Soil. Curr Microbiol 66(6):599-605
Ezzat, S.M., Salama, M.M. (2014) A new α-glucosidase inhibitor from Achillea fragrantissima (Forssk.) Sch. Bip. growing in Egypt. Natural Product Research 28:812-818
Fatmawati, S., Shimizu, K., Kondo, R., (2011) Ganoderol B: A potent α-glucosidase inhibitor isolated from the fruiting body of Ganoderma lucidum. Phytomedicine 18:1053-1055
Fatnassi, I.C., Chiboub, M., Saadani, O., Jebara, M., Jebara, S.H. (2015) Impact of dual inoculation with Rhizobium and PGPR on growth and antioxidant status of Vicia faba L. under copper stress. C. R. Biologies 338:241–254
Franco, C.D., Beccari, E., Santini, T., Pisaneschi, G., Tecce, G. (2002) Colony shape as a genetic trait in the pattern-forming Bacillus mycoides. BMC Microbiology 2:1-15
Fuhrmann, U., Bause, E., Ploegh, H., (1985) Inhibitors of oligosaccharide processing. Biochimica et Biophysica Acta (BBA) - Gene Structure and Expression 825(2): 95-110
Gardener, B.B.M., (2004) Ecology of Bacillus and Paenibacillus spp. in Agricultural Systems. Phytopathology 94:1252-1258
Ge, A.H., Bai, Y., Li, J., Liu, J., He, J., Liu, E.W., Zhang, P., Zhang, B.L., Gao, X.M., Chang, Y.X., (2014) An activity-integrated strategy involving ultra-high-performance liquid chromatography/quadrupole-time-of-flight mass spectrometry and fraction collector for rapid screening and characterization of the α-glucosidase inhibitors in Coptis chinensis Franch. (Huanglian). Journal of Pharmaceutical and Biomedical Analysis 100:79-87
Gloster, T.M., Vocadlo, D.J. (2012) Developing inhibitors of glycan processing enzymes as tools for enabling glycobiology. Nature Chemical Biology 8:683–694
Gumbo, J.R., and Cloete, T.E. (2011) The mechanism of Microcystis aeruginosa death upon exposure to Bacillus mycoides. Physics and Chemistry of the Earth 36:881–886
Gupta, A., Murarka, A., Campbell, P., Gonzalez, R., (2009) Anaerobic Fermentation of Glycerol in Paenibacillus macerans: Metabolic Pathways and Environmental Determinants. Applied and Environmental Microbiology 75(18):5871-5883
He, Y., Wang, X.B., Fan, B.Y., Kong, L.Y., (2014) Honokiol trimers and dimers via biotransformation catalyzed by Momordica charantia peroxidase: Novel and potent α-glucosidase inhibitors. Bioorganic & Medicinal Chemistry 22:762-771
Ho, C.Y., Chang, J.J., Lee, S.C., Chin, T.Y., Shih, M.C., Li, W.H., Huang, C.C. (2012) Development of cellulosic ethanol production process via co-culturing of artificial cellulosomal Bacillus and kefir yeast. Applied Energy 100:27–32
Holman, R.R., Cull, C.A., Turner, R.C. (1999) A randomized double-blind trial of acarbose in type 2 diabetes shows improved glycemic control over 3 years (U.K. Prospective Diabetes Study 44). Diabetes Care 22:960–964
Hsu, C.H., Nguyen, A.D., Chen, Y.W., Wang, S.L., (2014) Tyrosinase inhibitors and insecticidal materials produced by Burkholderia cepacia using squid pen as the sole carbon and nitrogen source. Research on Chemical Intermediates 40(6):2249–2258
Indrianingsih, A.W and Tachibana, S.,(2016) Bioactive constituents from the leaves of Quercus phillyraeoides A. Gray for α- glucosidase inhibitor activity with concurrent antioxidant activity. Food Science and Human Wellness
Iwasa, T., Yamamoto, H., Shibata, M. (1970). Studies on validamycins,new antibiotic I. Streptomyces hygroscopicus var. limoneus. Validamycin producing organism. Journal of Antibiotechnology 23:595–602.
Jabeen, F., Shehzadi, S.A., Fatmi, M.Q., Shaheen, S., Iqbal, L., Afza, N., Panda, S.S., Ansari, F.L. (2016) Synthesis, in vitro and computational studies of 1,4-disubstituted 1,2,3-triazoles as potential α-glucosidase inhibitors. Bioorganic & Medicinal Chemistry Letters 26:1029–1038
Jing, L., Zong, S., Li, J., Surhio, M.M., Ye, M., (2016) Purification, structural features and inhibition activity on -glucosidase of a novel polysaccharide from Lachnum YM406. Process Biochemistry 51:1706–1713
José, R.C., Martín, G.A., María, D.C.G., Anthony, E.G., Rachel, M. (2013) Thielavins A, J and K: A-Glucosidase inhibitors from MEXU 27095, an endophytic fungus from Hintonia latiflora. Phytochemistry 94:198-205
Juzeliunas, E., Ramanauskas, R., Lugauskas, A., Leinartas, K., M.,Samuleviˇcien˙e, Sudavi˙cius., A., (2006 ) Influence of wild strain Bacillus mycoides on metals: From corrosion acceleration to environmentally friendly protection. Electrochimica Acta 51:6085–6090
Juzeliunas, E., Ramanauskas, R., Lugauskas, A., Samulevicˇiene, M., Leinartas, K. Microbially influenced corrosion acceleration and inhibition. EIS study of Zn and Al subjected for two years to influence of Penicillium frequentans, Aspergillus niger and Bacillus mycoides (2005) Electrochemistry Communications 7:305–311
Kameda, Y., Asano, N., Yoshikavva, M., Matsui, K., (1980) Valienamine as an α-glucosidase inhibitor. The Journal of Antibiotics 12:1575-1576
Kashtoh, H., Muhammad, M.T., Khan, J.J.A., Rasheed, S., Khan, A., Perveen, S., Javaid, K., Wahab, A.T. Khan, K.M., Choudhary, M.I. (2016) Dihydropyrano [2,3-c] pyrazole: Novel in vitro inhibitors of yeast α-glucosidase. Bioorganic Chemistry 65:61–72
Kim, B.H., Ramanan, R., Cho, D.H., Oh, H.M., Kim, H.S. (2014) Role of Rhizobium, a plant growth promoting bacterium, in enhancing algal biomass through mutualistic interaction. Biomass and bioenergy 69:95-105
Kim, J.G.,Chang, H.B., Kwon, Y.I., Moon, S.K., Chun, H.S., Ahn, S.K., Hong, C.I., (2002) Novel alpha-glucosidase inhibitors, CKD-711 and CKD-711a produced by Streptomyces sp. CK-4416. I. Taxonomy, fermentation and isolation. J Antibiot (Tokyo) 55:457-461
Kuo, Y.H., Hsu, H.C., Chen, Y.C., Liang, T.W., Wang, S.L., (2012) A Novel Compound with Antioxidant Activity Produced by Serratia ureilytica TKU013. J. Agric. Food Chem. 60:9043−9047
Lal, S., Tabacchioni, S., (2009) Ecology and biotechnological potential of Paenibacillus polymyxa: a minireview. Indian J Microbiol 49:2–10
Li, D.Q., Zhao, J. Xie, J., Li, S.P., (2014) A novel sample preparation and on-line HPLC–DAD–MS/MS–BCD analysis for rapid screening and characterization of specific enzyme inhibitors in herbal extracts: Case study of α-glucosidase. Journal of Pharmaceutical and Biomedical Analysis 88:130–135
Li, G.L., Cai, C.Y., He, J.Y., Rao, L., Ma, L., Liu, Y., Wang, B. (2016) Synthesis of 3-acyloxyxanthone derivatives as a-glucosidase inhibitors: A further insight into the 3-substituents’ effect. Bioorganic & Medicinal Chemistry 24:1431–1438
Li, Z.F., Li , B., Gu, Z.B., Du, G.C., Wu, J., Chen, J., (2010) Extracellular expression and biochemical characterization of a-cyclodextrin glycosyltransferase from Paenibacillus macerans. Carbohydrate Research 345:886–892
Liang, T.W., Chen, W.T., Lin ,Z.H., Kuo, Y.H, Nguyen, A.D., Pan, P.S., Wang, S.L., (2016) An Amphiprotic Novel Chitosanase from Bacillus mycoides and Its Application in the Production of Chitooligomers with Their Antioxidant and Anti-Inflammatory Evaluation. Int. J. Mol. Sci. 17:1302-1316
Liang, T.W., Chen,.S.Y., Chen, Y.C., Chen, C.H., Yen, Y.H., Wang, S.L., (2013) Enhancement of prodigiosin production by Serratia marcescens TKU011 and its insecticidal activity relative to food colorants. Journal of Food Science 78:1743-1751
Liang, T.W., Kuo, Y.H., Wu, P.C., Wang, C.L., Dzung, N. A., Wang, S.L., (2010) Purification and characterization of a chitosanase and a protease by conversion of shrimp shell wastes fermented by Serratia Marcescens Subsp. Sakuensis TKU019. Journal of the Chinese Chemical Society 57:857-863
Liang, T.W., Tseng, S.C., Wang, S.L., (2016) Production and characterization of antioxidant properties of exopolysaccharide(s) from Peanibacillus mucilaginosus TKU032. Mar. Drugs 14(40):1-12
Liang, T.W., Wu, C.C., Cheng, W.T., Chen, Y.C., Wang, C.L., Wang, I.L., Wang, S.L., (2014) Exopolysaccharides and Antimicrobial Biosurfactants Produced by Paenibacillus macerans TKU029. Applied Biochemistry and Biotechnology 172(2):933-950
Liang, T.W., Wu, C.C., Cheng, W.T., Chen, Y.C., Wang, C.L., Wang, I.Li., Wang, S.L., (2014) Exopolysaccharides and Antimicrobial Biosurfactants Produced by Paenibacillus macerans TKU029. Appl Biochem Biotechnol 172:933–950
Liang,T.W., Lee, Y.C., Wang, S.L., (2015) Tyrosinase inhibitory activity of supernatant and semi-purified extracts from squid pen fermented with Burkholderia cepacia TKU025. Research on Chemical Intermediates 41(9):6105–6116
Lin, H., Chen , Z., Megharaj, M., Naidu, R. (2013) Biodegradation of TNT using Bacillus mycoides immobilized in PVA–sodium alginate–kaolin Applied Clay Science 83(84):336–342
Meng, P., Xie, C., Geng, P., Qi, X.,Zheng, F., Bai, F., (2013) Inhibitory effect of components from Streptomyces species on alpha-glucosidase and alpha-amilase of different origin. Prikl Biokhim Mikrobiol 49:181-189
Montes, M.J., Mercade´, E., Bozal, N., Guinea, J., (2004) Paenibacillus antarcticus sp. nov., a novel psychrotolerant organism from the Antarctic environment. International Journal of Systematic and Evolutionary Microbiology 54:1521–1526
Najafi, A.R., Roostaazad, R., Soleimani, M., Arabian, D., Moazed, M.T., Rahimpour, M.R., Mazinani, S. (2015) Comparison and modification of models in production of biosurfactant for Paenibacillus alvei and Bacillus mycoides and its effect on MEOR efficiency. Journal of Petroleum Science and Engineering 128:177–183
Nakayama, M., Toshiaki, N.K., Katayama, H., Higuchi, K., Kawasaki, Y., Fuji, R. (2008) High Catalase Production by Rhizobium radiobacter Strain 2-1. Journal of Bioscience and Bioengineering 106(6):554–558
Nguyen, VB., Nguyen, AD., Kuo, YH., Wang, SL., (2017) Biosynthesis of α– glucosidase inhibitors by a newly isolated bacterium, Paenibacillus sp. TKU042 and its effect on reducing plasma glucose in mouse model. International Journal of Molecular Sciences 18(4):700-712
Nishimura, Y. (1992) Glycosidase and Glycosyltransferase Inhibitors. Studies in Natural Products Chemistry 10:495-583
Noskin, G.A., Suriano, T., Collins, S., Sesler, S., Peterson, L.R., (2001) Paenibacillus macerans pseudobacteremia resulting from contaminated blood culture bottles in a neonatal intensive care unit. American Journal of Infection Control 29(2):126–129
Onose, S., Ikeda, R., Nakagawa, K., Kimura, T., Yamagishi, K., Higuchi, O., Miyazawa, T., (2013) Production of the a-glycosidase inhibitor 1-deoxynojirimycin from Bacillus species. Food Chemistry 138:516–523
Özil, M., Emirik, M., Etlik, S.Y., Ülker, S., Kahveci, B.(2016) A simple and efficient synthesis of novel inhibitors of alpha-glucosidase based on benzimidazole skeleton and molecular docking studies. Bioorganic Chemistry 68:226–235
Passeraa, A., Venturinia, G., Battellib, G., Casatia, P., Penacaa, F., Quaglinoa, F., Bianco, P.A., (2017) Competition assays revealed Paenibacillus pasadenensis strain R16 as anovel antifungal agent. Microbiological Research 198:16–26
Paul, B., Charles, R., Bhatnagar, T., (1995) Biological control of Pythium mamillatum causing damping-off of cucumber seedlings by a soil bacterium, Bacillus mycoides. Microbiological Research 150: 71-75
Qin, P., Wu, L., Yao, Y., Ren, G. (2013) Changes in phytochemical compositions, antioxidant and α-glucosidase inhibitory activities during the processing of tartary buckwheat tea. Food Research International 50:562–567
Reichman, S.M. (2007) The potential use of the legume–rhizobium symbiosis for the remediation of arsenic contaminated sites. Soil Biology & Biochemistry 39:2587–2593
Rodriguez-Jerez, J.J., Giaccone, V., Colavita, G., Parisi, E., (1994) Bacillus macerans—a new potent histamine producing micro-organism isolated from Italian cheese. Food Microbiology 11(5):409-415
Sabitha, V., Panneerselvam, K., Ramachandran, S., (2012) In vitro α–glucosidase and α–amylase enzyme inhibitory effects in aqueous extracts of Abelmoscus esculentus (L.) Moench. Asian Pacific Journal of Tropical Biomedicine 2:162-164
Sánchez, A.C., Gutiérrez, R.T., Santana, R.C., Urrutia, A.R., Fauvart, M., Michiels, J., Vanderleyden, J., (2014) Effects of co-inoculation of native Rhizobium and Pseudomonas strains on growth parameters and yield of two contrasting Phaseolus vulgaris L. genotypes under Cuban soil conditions. European Journal of Soil Biology 62:105-112
Seonga, S.H., Roya, A., Jungb, H.A., Junga, H.J., Choi, J.S.(2016) Protein tyrosine phosphatase 1B and α-glucosidase inhibitory activities of Pueraria lobata root and its constituents. Journal of Ethnopharmacology 194:706–716
Shukla, S., Park, J., Kim, D.H., Hong, S.Y., Lee, J.S., Kim, M., (2016) Total phenolic content, antioxidant, tyrosinase and a-glucosidase inhibitory activities of water soluble extracts of noble starter culture Doenjang, a Korean fermented soybean sauce variety. Food Control 59:854-861
Sivasothy, Y., Yong, L.K., Hoong, L.K., Litaudon, M., Awang, K. A potent alpha-glucosidase inhibitor from Myristica cinnamomea King. (2016) Phytochemistry 122:265–269
Tanabe, G., Xie,W., Balakishan, Amer, G., M.F.A., Tsutsui, N., Takemura, H., Nakamura,S., Akaki, J., Ninomiya, K., Morikawa, T., Nakanishi, I., Muraoka, O., (2016) Hydrophobic substituents increase the potency of salacinol, a potent a-glucosidase inhibitor from Ayurvedic traditional medicine ‘Salacia’. Bioorganic & Medicinal Chemistry 24:3705–3715
Uddin, G., Rauf, A., Al-Othman, A.M., Collina, S., Arfan, M., Ali, Gowhar., Khan, Inamullah., (2012) Pistagremic acid, a glucosidase inhibitor from Pistacia integerrima. Fitoterapia 83:1648-1652
Unno, Y., Shinano, T., Minamisawa, K., Ikeda, S. (2015) Bacterial community shifts associated with high abundance of Rhizobium spp. in potato roots under macronutrient-deficient conditions. Soil Biology & Biochemistry 80:232-236
Verma, D.P.S., Zogbi, V., Bal, A.K. (1978) A cooperative action of plant and Rhizobium to dissolvethe host cell wall during development of root nodule symbiosis. Plant Science Letters 13(2):137-142
Wang, C.L., Huang, T.H., Liang, T.W., Fang, C.Y., Wang, S.L., (2011) Production and characterization of exopolysaccharides and antioxidant from Paenibacillus sp. TKU023. New Biotechnology 28(6):559-565
Wang, G.C., Peng, Z., Wang, J., Li, J., Li, X. (2016) Synthesis, biological evaluation and molecular docking study of N-arylbenzo[d]oxazol-2-amines as potential a-glucosidase inhibitors. Bioorganic & Medicinal Chemistry 24:5374–5379
Wang, G.C., Peng, Z., Wang, J., Li, X., Li, J. (2017) Synthesis, in vitro evaluation and molecular docking studies of novel triazine-triazole derivatives as potential a-glucosidase inhibitors. European Journal of Medicinal Chemistry 125:423-429
Wang, S., Shih, I.L., Liang, T.W., Wang, C.H. (2002) Purification and Characterization of Two Antifungal Chitinases Extracellularly Produced by Bacillus amyloliquefaciens V656 in a Shrimp and Crab Shell Powder Medium. J. Agric. Food Chem. 50:2241−2248
Wang, S.L., Chen, Y.H., Wang, C.L., Yen, Y.H., Chern M.K., (2005) Purification and characterization of a serine protease extracellularly produced by Aspergillus fumigatus in a shrimp and crab shell powder medium. Enzyme and Microbial Technology 36:660–665
Wang, S.L., Li, J.Y., Liang, T.W., Hsieh, J.L., Tseng, W.N., (2010) Conversion of shrimp shell by using Serratia sp. TKU017 fermentation for the production of enzymes and antioxidants. Journal of Microbiology and Biotechnology 20(1):117-126
Wang, S.L., Lin, B.S., Liang, T.W., Wang, C.L., Wu, P.C., Liu, J.R., (2010) Purification and Characterization of Chitinase from a New Species Strain, Pseudomonas sp. TKU008. J. Microbiol. Biotechnol. 20(6):1001–1005
Wang, S.L., Lin, Z.Y., Yen, U.H., Liao, H.F., Chen, Y.J. (2006) Bioconversion of shellfish chitin wastes for the production of Bacillus subtilis W-118 chitinase. Carbohydrate Research 341:2507-2515
Wang, S.L., Shih, I.L., Wang, C.H., K Tseng, K.C., Chang, W.T., Twu, Y.K., Ro, J.J., Wang, C.L. (2002) Production of antifungal compounds from chitin by Production of antifungal compounds from chitin by Bacillus subtilis. Enzyme and Microbial Technology 31:321–328
Wang, S.L., Wang, Kao, T.Y., Wang, C.L., Yen, Y.H., Chern, M.K., Chen, Y.H. (2006) A solvent stable metalloprotease produced by Bacillus sp. TKU004 and its application in the deproteinization of squid pen for β-chitin preparation. Enzyme and Microbial Technology 39:724–731
Wang, S.L., Yang, C.W., Liang, T.W., Peng, J.H., Wang, C.L. (2009) Degradation of chitin and production of bioactive materials by bioconversion of squid pens. Carbohydrate Polymers 78:205–212
Wang, S.L., Yeh, P.Y. (2006) Production of a surfactant- and solvent-stable alkaliphilic protease by bioconversion of shrimp shell wastes fermented by Bacillus subtilis TKU007. Process Biochemistry 41:1545–1552
Wanga, S.L., Yieha, T.C., Shih, I.L., (1999) Production of antifungal compounds by Pseudomonas aeruginosa K-187 using shrimp and crab shell powder as a carbon source. Enzyme and Microbial Technology 25:142–148
Wei, G., Yu, J., Zhu, Y., Chen, W., Wang, Li. (2008) Characterization of phenol degradation by Rhizobium sp. CCNWTB 701 isolated from Astragalus chrysopteru in mining tailing region
Wei, J., Liu, L.L., Dong, S., Li, H., Tang, D., Zhang, Q., Xue, Q.H., Gao, J.M., (2016) Gabosines P and Q, new carbasugars from Streptomyces sp. and their a-glucosidase inhibitory activity. Bioorganic & Medicinal Chemistry Letters 26:4903–4906
Xionga, Y., Liuc, Q., Yin, X. (2016) Synthesis of α-glucosidase-immobilized nanoparticles and their application in screening for -glucosidase inhibitors. Journal of Chromatography B 1022:75–80
Xu, H.Wei., Dai, G.F., Liu, G.Z., Wang, J.F., Liu, H.M., (2007) Synthesis of andrographolide derivatives: A new family of α-glucosidase inhibitors. Bioorganic & Medicinal Chemistry 15:4247-4255
Yang, J.K., Shih, I.L., Tzeng,Y.M., Wang, S.L. (2000) Production and purification of protease from a Bacillus subtilis that candeproteinize crustacean wastes. Enzyme and Microbial Technology 26:406–413
Yee, H.S., Fong, N.T., (1996) A review of the safety and efficacy of acarbose in diabetes mellitus. Pharmacotherapy 16:792-805
Yen, Y.H., Li, P.L., Wang, C.L., Wang, S.L. (2006) An antifungal protease produced by Pseudomonas aeruginosa M-1001 with shrimp and crab shell powder as a carbon. sourceEnzyme and Microbial Technology 39:311–317
Young, J.M., Kuykendall, L.D., Romero, E.M., Kerr, A., Sawada, H. (2001) A revision of Rhizobium Frank 1889, with an emended description of the genus, and the inclusion of all species of Agrobacterium Conn 1942 and Allorhizobium undicola de Lajudie et al. 1998 as new combinations: Rhizobium radiobacter, R. rhizogenes, R. rubi, R. undicola and R. vitis. International Journal of Systematic and Evolutionary Microbiology 51:89–103
Yu, Z., Yin, Y., Zhao, W., Yu, Y., Liu, B., Liu, J., Chen, Feng. (2011) Novel peptides derived from egg white protein inhibiting alpha-glucosidase. Food Chemistry 129:1376–1382
Zhang , L., Tu , Z.C., Yuan,T., Wang, H., Xie, X., Fu, Z.F. (2016) Antioxidants and a-glucosidase inhibitors from Ipomoea batatas leaves identified by bioassay-guided approach and structure-activity relationships. Food Chemistry 208:61–67
Zhang, A., Ye, F., Lu, J., Zhao, S. (2013) Screening α-glucosidase inhibitor from natural products by capillary electrophoresis with immobilised enzyme onto polymer monolith modified by gold nanoparticles. Food Chemistry 141:1854-1859
Zhu, X., Shen, Y., Chen, X., Hu, Y.O.O., Xiang, H., Tao, J., Ling, Y. (2016) Biodegradation mechanism of microcystin-LR by a novel isolate of Rhizobium sp. TH and the evolutionary origin of the mlrA gene. International Biodeterioration & Biodegradation 115:17-25
Zhu, Y.P., Yin, L.J., Cheng, Y.Q., Yamaki, K., Mori, Y., Su, Y.C., Li, L.T., (2008) Effects of sources of carbon and nitrogen on production of α-glucosidase inhibitor by a newly isolated strain of Bacillus subtilis B2. Food Chemistry 109:737–742
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔