(3.231.166.56) 您好!臺灣時間:2021/03/08 10:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:王家盈
研究生(外文):Jia-Yin Wang
論文名稱:我的就是你的?以情感分析探討共享經濟下之風險程度
論文名稱(外文):Mine is Yours? Applying Sentiment Analysis to Investigate the Degree of Risk in Sharing Economy
指導教授:張瑋倫張瑋倫引用關係
口試委員:李月華張巧真
口試日期:2017-05-23
學位類別:碩士
校院名稱:淡江大學
系所名稱:企業管理學系碩士班
學門:商業及管理學門
學類:企業管理學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:123
中文關鍵詞:共享經濟情感分析風險
外文關鍵詞:Sharing economySentiment analysisRisk
相關次數:
  • 被引用被引用:0
  • 點閱點閱:111
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
共享經濟(Sharing Economy)為新的商業模式,以租代買的方式顛覆過去的思維,能讓閒置資源有效運用,然而,從另一個角度來看,安全與隱私是最為人詬病的問題,共享經濟雖然帶來不少好處,但依舊有其風險要克服,導致以共享經濟為模式的業者皆透過線上評論來建立信任,但多數人只閱讀較少評論就做決策,其參考資料較少且不夠完善,可能會導致風險產生,為了讓消費者能減少風險發生的可能性,本研究以共享經濟之住宿平台為例,檢視該網站住宿房型中評論之正負面情感詞,以情感分析為基礎,嘗試找出評論中正負情感比率,接著對應風險等級,讓消費者能以風險等級為參考因子,此外,透過問卷驗證進一步暸解情感與風險對消費者決策有多少程度的影響,以及情感與風險之連結程度。研究結果發現,平台之熱門排序與情感比率之排序有差異,情感比率與星等亦不相符,雖然來自相同經驗,但卻產生矛盾的情況,除此之外,不同世代的消費者在顯示圖片、房間資訊以及情感比率後的排序不相同,表示三個世代皆在不同因素下對決策會造成影響,其原因為Z世代與Y世代依序重視評論、性價比與清潔度,X世代則重視清潔度、評論與總星等,綜合上述可認為三個世代皆重視評論對決策的影響。另外,消費者對風險的態度方面,高風險趨避者更容易受負面評論的影響,而做出不同的決策,可知評論之情感連結風險概念後對決策有相當程度的影響。因此,本研究提出以情感比率對應風險之概念,期望能透過風險概念強化消費者信任,並提供更適合資訊協助消費者決策流程。
Sharing economy is the new business model of e-commerce that stimulates new thinking in different ways. Sharing economy allows the share of unused resources to become more productive. In addition, security and privacy are the most criticized problems in sharing economy. Although sharing economy has certain benefits, it still has risks that need to be overcome. The owners on sharing economy need to build trust through online reviews. However, it may take risks when most people make decisions by reading less reviews. In order to reduce the risks, this paper uses the accommodation platform in sharing economy as an example. We consider the emotions of comments in online reviews and discover the positive-negative sentiment ratio based on sentiment analysis. The sentiment ratio will match to the level of risk and customers reefer to it for suitable decision making. Finally, this research designs a questionnaire to verify and understand the degree of influence of sentiment on decision-making process. The results show that the selected rankings were different between the based of sentiment-ratio or the stars of accommodations. In addition, customers of different generations may have different decisions when showing pictures, room information, and the sentiment-ratio of online reviews. It means decision-making will be affected by different factors. Generation Z and generation Y may pay more attention to reviews, cost, and cleanliness. Generation X may pay attention to cleanliness, reviews, and total stars. In conclusion, three generations all show the importance of online reviews on decision-making. On the other hand, the high risk people are more likely to be affected by the negative reviews; that is. they may make different decisions. This study proposes the concept of sentiment-ratio of online reviews and match to the level of risk, which is expected to strengthen customers’ trust and provide more information to assist in decision making processes.
目錄
目錄 I
表目錄 II
圖目錄 III
第一章 緒論 1
第一節 研究背景 1
第二節 研究動機 3
第三節 研究問題 7
第四節 研究目的 9
第二章 文獻探討 12
第一節 共享經濟(SHARING ECONOMY) 12
第二節 線上評論之情感(SENTIMENT ANALYSIS IN ONLINE REVIEWS) 16
第三節 線上風險(ONLINE RISK) 19
第三章 研究方法 24
第一節 情感分析 24
第二節 風險因子 27
第四章 資料分析 32
第一節 平台資料收集 32
第二節 受測者資料收集 38
第三節 評論之情感分析 43
第四節 調查結果分析 51
第五節 綜合討論與交叉分析 64
第五章 結論 73
第一節 研究結論 73
第二節 學術與管理意涵 75
第三節 研究限制 77
參考文獻 78
附錄 87


表目錄
表2-1 共享經濟之定義 13
表2-2線上評論之相關議題 18
表2-3 六種感知風險之分類 20
表2-4 風險相關文獻 22
表3-1 正負詞與權重變數對照表 25
表3-2變數對照表 26
表3-3情感等級分類對照表 27
表3-4 情感等級與風險程度表 30
表4-1 AIRBNB房源與項目表 33
表4-2 HOMEAWAY房源與項目表 35
表4-3 樣本之職業分布表(人次) 42
表4-4 AIRBNB之情感分析個數 44
表4-5 AIRBNB之情感等級與風險程度表 46
表4-6 HOMEAWAY之情感分析個數 47
表4-7 HOMEAWAY之情感等級與風險程度表 50
表4-8 AIRBNB平台之Z世代排序比較表 52
表4-9 HOMEAWAY平台之Z世代排序比較表 52
表4-10 AIRBNB平台之Y世代排序比較表 55
表4-11 HOMEAWAY平台之Y世代排序比較表 55
表4-12 AIRBNB平台之X世代排序比較表 59
表4-13 HOMEAWAY平台之X世代排序比較表 59
表4-14 各個世代之差異比較 65
表4-15 使用者偏好交叉分析表 70
表4-16 價格與情感比率排序表 70


圖目錄
圖1-1全球行動簽約用戶數(億) 1
圖1-2 不同共享經濟類型之公司數量 2
圖1-3 消費者購物前閱讀評論之百分比 4
圖1-4 影響英國線上用戶時尚購買決策來源 5
圖1-5 美國人閱讀線上評論的原因 10
圖2-1全球共享經濟發展範疇與著名共享企業 14
圖3-1線上評論如何影響消費者對商家的看法 29
圖3-2 評論之情感詞分佈 31
圖4-1 樣本之性別分布圖 41
圖4-2 樣本之國籍分布圖 41
圖4-3 樣本之教育程度分布圖 42
圖4-4樣本之月所得分布圖 43
圖4-5 Z世代之月所得比例 53
圖4-6影響Z世代選擇之項目 54
圖4-7 Z世代之風險容忍程度 54
圖4-8 Y世代之職業比例 57
圖4-9 Y世代之月所得比例 57
圖4-10影響Y世代選擇之項目 58
圖4-11 Y世代之風險容忍程度 58
圖4-12 X世代之職業比例 61
圖4-13 X世代之月所得比例 61
圖4-14影響X世代選擇之項目 62
圖4-15 X世代之風險容忍程度 62
圖4-16 各項目對決策之影響程度 64
圖4-17 影響最終選擇之項目 67
圖4-18 情感對決策的影響 68
圖4-19 風險容忍程度 69
圖4-20 共享經濟之風險程度 69
中文部分
黃梓瑞(2016)。運用文本探勘技術於基於人格特質之遊戲推薦之研究(碩士論文)。
英文部分
Allen, D. (2015). The sharing economy. Review - Institute of Public Affairs, 67(3), 24-27.
Bai, X. (2011). Predicting consumer sentiments from online text. Decision Support Systems, 50(4), 732.
Bălan, C. (2016). Ride-sharing and car-sharing in romania: What choices do potential users have? Calitatea, 17(S4), 103-122.
Ballantine, P. W., & Au Yeung, C. (2015). The effects of review valence in organic versus sponsored blog sites on perceived credibility, brand attitude, and behavioural intentions. Marketing Intelligence & Planning, 33(4), 508-521.
Bauer, R. (1960), “Consumer behavior as risk taking”, paper presented at the Dynamic Marketing for a Changing World, Proceedings of the 43rd Conference of the American Marketing Association, Chicago, IL, pp. 389-98.
Belk, R. (2014). You are what you can access: Sharing and collaborative consumption online. Journal of Business Research, 67(8), 1595-1600.
Belkhamza, Z., PhD, & Wafa, S. A., PhD. (2009). The effect of perceived risk on the intention to use E-commerce: The case of algeria. Journal of Internet Banking and Commerce, 14(1), 1-10.
Bianchi, C., & Andrews, L. (2012). Risk, trust, and consumer online purchasing behaviour: A chilean perspective. International Marketing Review, 29(3), 253-275.
Botsman, R., & Rogers, R. (2010). What''s Mine Is Yours: The Rise of Collaborative Consumption. New York, NY:HarperBusiness.
Casalo, L.V., Flavian, C., Guinaliu, M., Ekinci, Y. (2015). Avoiding the dark side of positive online consumer reviews: Enhancing reviews'' usefulness for high risk-averse travelers. Journal of Business Research, 68 (2015), 1829–1835.
Chang, Y., & Fang, S. (2013). Antecedents and distinctions between online trust and distrust: Predicting high- and low-risk internet behaviors. Journal of Electronic Commerce Research, 14(2), 149-166.
Choi, H. R., Cho, M. J., Lee, K., Hong, S. G., & Woo, C. R. (2014). The business model for the sharing economy between SMEs. WSEAS Transactions on Business and Economics, 11(2), 625-634.
Chong, A. Y. L., Li, B., Ngai, E. W. T., Ch''ng, E., & Lee, F. (2016). Predicting online product sales via online reviews, sentiments, and promotion strategies. International Journal of Operations & Production Management, 36(4), 358-383.
Cui, G., Lui, H., & Guo, X. (2012). The effect of online consumer reviews on new product sales. International Journal of Electronic Commerce, 17(1), 39.
D''Alessandro, S., Girardi, A., & Tiangsoongnern, L. (2012). Perceived risk and trust as antecedents of online purchasing behavior in the USA gemstone industry. Asia Pacific Journal of Marketing and Logistics, 24(3), 433-460.
Deka, P. K. (2016). Segmentation of young consumers of north-east india based on their decision-making styles. IUP Journal of Marketing Management, 15(2), 65-85.
Dillon, T. W., & Reif, H. L. (2004). Factors influencing consumers'' e-commerce commodity purchases. Information Technology, Learning, and Performance Journal, 22(2), 1-12.
Dimoka, A., Hong, Y., Pavlou, P. A. (2012). On Product Uncertainty In Online Markets : Theory And Evidence. MIS Quarterly, 36(2), 395-426
Doolin, B., Dillon, S., Thompson, F., & Corner, J. L. (2005). Perceived risk, the internet shopping experience and online purchasing behavior: A new zealand perspective. Journal of Global Information Management, 13(2), 66-88.
Edgecliffe-Johnson, A., Grande, C., & Harney, A. (2002). Survey-FTIT: Online shoppers choose price over convenience. Financial Times, 20 (February).
Ert, E., Fleischer, A., & Magen, N. (2016). Trust and reputation in the sharing economy: The role of personal photos in airbnb. Tourism Management, 55, 62-73.
Fang, X. & Zhan, J. (2015). Sentiment analysis using product review data. Journal of Big Data, 2:5, 2-14
Felson, M. & Spaeth, J. L. (1978). Community Structure and Collaborative Consumption. The American Behavioral Scientist, 21(4), 614–624.
Fernandez-Gavilanes, M., Alvarez-Lopez, T., Juncal-Martinez, J., Costa-Montenegro, E., & Gonzalez-Castano, F. J. (2016). Unsupervised method for sentiment analysis in online texts. Expert Systems with Applications, 58, 57-75.
Francis, M.E., Pennebaker, J.W. (1993). LIWC: Linguistic Inquiry and Word Count, Dallas, TX: Southern Methodist University.
Gurung, A., & Raja, M. K. (2016). Online privacy and security concerns of consumers. Information and Computer Security, 24(4), 348-371.
Heires, K. (2015). Sentiment analysis: Are you feeling risky? Risk Management, 62(10), 14-15.
Hu, N., Bose, I., Koh, N. S., & Liu, L. (2012). Manipulation of online reviews: An analysis of ratings, readability, and sentiments. Decision Support Systems, 52(3), 674.
Hu, N., Koh, N. S., Reddy, K. S., (2014). Ratings Lead you to the Product, Reviews Help you Clinch it? The Dynamics and Impact of Online Review Sentiments on Products Sales. (Ph.D., Singapore Management University (Singapore)).
Jacoby, J. & Kaplan, L.B. (1972). The components of perceived risk, in proceedings of Third Annual Conference. M. Venkatesan (Eds.), Urbans, IL: Association for Consumer Research, 382-393.
Jsang, A., Ismail, R., & Boyd, C. (2007). A survey of trust and reputation systems for online service provision. Decision Support Systems, 43(2), 618-644.
Kalakota, R. & Whinston, A. B. (1997). Eletronic Commerce : A Manager’s Guide, Addison-Wesley Publishing Inc.
Kim, C., Jin, M., Kim, J., & Shin, N. (2012). User perception of the quality, value, and utility of user-generated content. Journal of Electronic Commerce Research, 13(4), 305-319.
Kim, S. M., Pantel, P., Chklovski, T., & Pennacchiotti, M. (2006). Automatically Assessing Review Helpfulness. Empirical Methods in Natural Language Processing (EMNLP 2006), 423–430
Koh, N. S. (2011). The valuation of user-generated content: A structural, stylistic and semantic analysis of online reviews. (Ph.D., Singapore Management University (Singapore)).
Lee, J., Do-Hyung, P., & Han, I. (2011). The different effects of online consumer reviews on consumers'' purchase intentions depending on trust in online shopping malls. Internet Research, 21(2), 187-206.
Liu, B. (2012). Sentiment Analysis and Opinion Mining. Morgan & Claypool.
Ma, Y. J., & Lee, H. (2014). Consumer responses toward online review manipulation. Journal of Research in Interactive Marketing, 8(3), 224-244.
Maks, I., & Vossen, P. (2013). Sentiment Analysis Of Reviews:Should We Analyze Writer Intentions Or Reader Perceptions ? Natural Language Processing, 415–419.
Malbon, J. (2013). Taking fake online consumer reviews seriously. Journal of Consumer Policy, 36(2), 139-157.
Malhotra, A., & Van Alstyne, M. (2014). Economic and business dimensions: The dark side of the sharing economy ... and how to lighten it. Association for Computing Machinery.Communications of the ACM, 57(11), 24.
Mayayise, T. & Osunmakinde, I. O. (2014). E-commerce assurance models and trustworthiness issues: An empirical study. Information Management & Computer Security, 22(1), 76-96.
McCabe, D. B. (2001). Online and offline decisions: The effect of product category and order of information. (Ph.D., Arizona State University).
McKnight, D. H., Kacmar, C. J., & Choudhury, V. (2004). Dispositional trust and distrust distinctions in predicting high- and low-risk internet expert advice site Perceptions1. E - Service Journal, 3(2), 35-58.
Menfors, M., & Fernstedt, F. (2015). Consumer trust in online reviews – a communication model perspective. Unpublished bachelor’s thesis, University of Hogskolan i Boras, Sweden.
Nasukawa, T., & Yi, J. (2003). Sentiment analysis:Capturing favorability using natural language processing.
O''Mahony, M. P., & Smyth, B. (2010). A classification-based review recommender. Knowledge-Based Systems, 23(4), 323-329.
Ohana, B., & Tierney, B. (2009). Sentiment Classication Of Reviews Using SentiWordNet. School of Computing 9th. IT & T Conference.
Olabarri-Fernandez, M. E., Monge-Benito, S., & Enales, S. U. (2015). Young internet users'' evaluation of online consumer reviews. the case of the students from the university of the basque country (UPV/EHU). Revista Latina De Comunicacion Social, (70), 703-725.
Park, Y. A. (2007). Investigating online decision -making styles. (Ph.D., Texas A&M University).
Pennebaker, J. W., Booth, R. J., Boyd, R. L., & Francis, M. E., (2015). Linguistic
Inquiry and Word Count : LIWC2015.
Pennebaker, J. W., Chung, C. K., Ireland,M. Gonzales, A. Booth, R.J., (2007). The Development and Psychometric Properties of LIWC2007.
Pennebaker, J. W., Francis, M. E., Booth, R. J., (2001). Linguistic Inquiry and Word Count : LIWC2001.
Peter, J. P., and Tarpey, L. Z. Sr. (1975). A Comparative Analysis of Three Consumer Decision Strategies. Journal of Consumer Research, 2, 29-37.
Plank, A. (2016). The hidden risk in user-generated content: An investigation of ski tourers'' revealed risk-taking behavior on an online outdoor sports platform. Tourism Management, 55, 289-296.
Presi, C., Saridakis, C., & Hartmans, S. (2014). User-generated content behaviour of the dissatisfied service customer. European Journal of Marketing, 48(9/10), 1600-1625.
Qiu, G. (2009). Three essays on user -generated content. (Ph.D., The University of Wisconsin - Milwaukee).
Reimer, T., & Benkenstein, M. (2016). When goodWOMhurts and badWOMgains: The effect of untrustworthy online reviews. Journal of Business Research, 69, 5993-6001
Santana, J., & Parigi, P. (2015). Risk aversion and engagement in the sharing economy. Games, 6(4), 560-573.
Shen, W. (2010). Essays on online reviews: Reviewers'' strategic behaviors and contributions over time. (Ph.D., Purdue University).
Tantrabundit, P. (2015). How online review and rating systems affect online consumer buying behavior in the hotel industry. (D.B.A., Alliant International University).
Tausczik, Y. R., & Pennebaker, J. W. (2010). The psychological meaning of words: LIWC and computerized text analysis methods. Journal of Language and Social Psychology, 29(1), 24-54.
Taylor, J.W. (1974) The role of risk in consumer behavior. Journal of Marketing 38 (April), 54–60.
Tedeschi, A., & Benedetto, F. (2014). A cloud-based tool for brand monitoring in social networks. Paper presented at the pp. 541-546.
Tirunillai, S. N. (2011). Essays on user-generated content and firm performance. (Ph.D., University of Southern California).
Utz, S., Kerkhof, P., & van den Bos, J. (2012). Consumers rule: How consumer reviews influence perceived trustworthiness of online stores. Electronic Commerce Research and Applications, 11(1), 49-58.
Wang, L. (2015). Implicit measures of online risks. (Ph.D., Nova Southeastern University).
Winterhalter, S., Wecht, C. H., & Krieg, L. (2015). Keeping reins on the sharing economy: Strategies and business models for incumbents. Marketing Review St.Gallen, 32(4), 32-39.
Wu, J., & Gaytan, E. A. A. (2013). The role of online seller reviews and product price on buyers'' willingness-to-pay: A risk perspective. European Journal of Information Systems, 22(4), 416-433.
Wu, J., Ma, P., & Zeng, M. (2016). The role of service-provider’s attributes in sharing economy: A data-driven study from the perspective of trust. Paper presented at the Proceedings of the 15th Wuhan International Conferences on E-Business in Wuhan, China, pp. 27-29.
Wu, J., Wu, Y., Sun, J., & Yang, Z. (2013). User reviews and uncertainty assessment: A two stage model of consumers'' willingness-to-pay in online markets. Decision Support Systems, 55(1), 175-185.
Xu, B., Lin, Z., & Shao, B. (2010). Factors affecting consumer behaviors in online buy-it-now auctions. Internet Research, 20(5), 509-526.
Yang, B. (2013). The effect of online customer reviews on customer''s perceived risk associated with online leisure hotel booking. (M.S., Purdue University).
Yang, Y., Liu, Y., Li, H., & Yu, B. (2015). Understanding perceived risks in mobile payment acceptance. Industrial Management & Data Systems, 115(2), 253.
Yang, J., Sarathy, R., & Lee, J. (2016). The effect of product review balance and volume on online shoppers'' risk perception and purchase intention. Decision Support Systems, 89, 66.
Zhang, Y., & Yu, T. (2012). Mining trust relationships from online social networks. Journal of Computer Science and Technology, 27(3), 492-505.
Zheng, L., Favier, M., Huang, P., & Coat, F. (2012). Chinese consumer perceived risk and risk relievers in e-shopping for clothing. Journal of Electronic Commerce Research, 13(3), 255-274.

網路部分
詹文男(2015)。2016科技業趨勢前瞻。
https://mic.iii.org.tw/micnew/Industryobservation_MIC02views.aspx?sqno=162
康廷嶽、黃柏偉(2015)。由國際共享經濟發展探究我國中小企業商機。中小企業發展季刊。(36)。
http://www.tier.org.tw/achievements/pec3010.aspx?GUID=a56e6e00-90dc-4d8e-af1d-7a3a2de32465
數位時代。(2015)共享經濟Sharing Economy
https://www.bnext.com.tw/search/tag/共享經濟
李開復。(2015)。共享經濟才剛開始,大部分服務業都會被顛覆。數位時代。
https://www.bnext.com.tw/article/35267/BN-ARTICLE-35267
愛立信行動趨勢報告(2016)
http://www.ericsson.com/res/site_TW/docs/Ericsson%20Mobility%20Report%20June%202016-愛立信行動趨勢報告暨東北亞區附錄.pdf
Botsman, R., (2010). Collaborative Consumption.
http://rachelbotsman.com/thinking/
Botsman, R., (2012). The currency of the new economy is trust. (Available from TED Talks)
https://www.ted.com/talks/rachel_botsman_the_currency_of_the_new_economy_is_trust
Burnett, L. The Sharing Economy. Leo Burnett Company: Chicago, IL, USA, 2014.
Gammon, J (2014). Americans Rely On Online Reviews Despite Not Trusting Them
https://today.yougov.com/news/2014/11/24/americans-rely-online-reviews-despite-not-trusting/
Local Comsumer Review Survey 2016. BrightLocal Blog.
https://www.brightlocal.com/learn/local-consumer-review-survey/
O''Bannon, I. M., (2008). Web 2.0 Continues Internet’s Evolution, But What Is Web 2.0? Part I of II.
http://www.cpapracticeadvisor.com/article/10274130/web-20-continues-internets-evolution-but-what-is-web-20-part-i-of-ii
PWC. (2015). The Sharing Economy. Consumer Intelligence Series.
https://www.pwc.com/us/en/technology/publications/assets/pwc-consumer-intelligence-series-the-sharingeconomy.pdf
Sanou,B.(2015). ICT Data and Statistics Division.
http://www.itu.int/en/ITU-D/Statistics/Documents/facts/ICTFactsFigures2015.pdf
Stokes, K., Clarence, E., Anderson, L., & Rinne, A. (2014). Making Sense Of The Uk Collaborative Economy. Nesta.
https://www.nesta.org.uk/sites/default/files/making_sense_of_the_uk_collaborative_economy_14.pdf
Tancer, B. (2016). Everyone’s a Critic: Winning Customers in a Review-Driven World.
The Economist. (2013). The rise of the sharing economy
http://www.economist.com/news/leaders/21573104-internet-everything-hire-rise-sharing-economy
TechCrunch. (2014). The Risk Of Reviewing The Reviewer.
https://techcrunch.com/2015/04/11/the-risk-of-reviewing-the-reviewer/
The Economist.(2013). The rise of the sharing economy
https://www.economist.com/news/leaders/21573104-internet-everything-hire-rise-sharing-economy
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔