|
[1]Ritschel, T. et al. Orbital textures and charge density waves in transition metal dichalcogenides. Nature Phys. 11, 328 (2015). [2]Yang, J. J. et al. Charge-orbital density wave and superconductivity in the strong spin-orbit coupled IrTe2:Pd. Phys. Rev. Lett. 108, 116402 (2012). [3]Borisenko, S. V. et al. Two energy gaps and Fermi-surface ‘‘arcs’’ in NbSe2. Phys. Rev. Lett. 102, 166402 (2009). [4]Ugeda, M. M. et al. Characterization of collective ground states in single-layer NbSe2. Nature Phys. 12, 92 (2016). [5]Weber, F. et al. Extended phonon collapse and the origin of the charge-density wave in 2H-NbSe2. Phys. Rev. Lett. 107, 107403 (2011). [6]Valla, T. et al. Quasiparticle spectra, charge-density waves, superconductivity, and electron-phonon coupling in 2H-NbSe2. Phys. Rev. Lett. 92, 086401 (2004). [7]Kase, N., Hayamizu, H. & Akimitsu, J. Superconducting state in the ternary stannide superconductors R3T4Sn13 (R = La, Sr; T = Rh, Ir) with a quasiskutterudite structure. Phys. Rev. B 83, 184509 (2011). [8]Tomy, C. V., Balakrishnan, G. & Pual, D. M. Observation of the peak effect in the superconductor Ca3Rh4Sn13. Phys. Rev. B 56, 8346 (1997). [9]Goh, S. K. et al. Ambient pressure structural quantum critical point in the phase diagram of (CaxSr1−x)3Rh4Sn13. Phys. Rev. Lett. 114, 097002 (2015). [10]Ślebarski, A. & Goraus, J. Electronic structure and crystallographic properties of skutterudite-related Ce3M4Sn13 and La3M4Sn13 (M = Co, Ru, and Rh). Phys. Rev. B 88, 155122 (2013). [11]Thomas, E. L. et al. Crystal growth, transport, and magnetic properties of Ln3Co4Sn13(Ln = La, Ce) with a perovskite-like structure. J. Sol. Sta. Chem. 179, 1642 (2006). [12]Kase, N., Hayamizu, H., Inoue, K. & Akimitsu, J. Superconducting state in the ternary stannide R3Co4Sn13 (R = Ca, La). Physica C 471, 711 (2011). [13]Liu, H. F., Kuo, C. N., Lue, C. S., Syu, K. Z. & Kuo, Y. K. Partially gapped Fermi surfaces in La3Co4Sn13 revealed by nuclear magnetic resonance. Phys. Rev. B 88, 115113 (2013). [14]Israel, C. et al. Crystal structure and low-temperature physical properties of R3M4Sn13 (R = Ce, La; M = Ir, Co) intermetallics. Physica B 359, 251 (2005). [15]Sato, H. et al. Magnetic and transport properties of RE3Ir4Sn13. Physica B 186, 630 (1993). [16]Klintberg, L. E. et al. Pressure- and composition-induced structural quantum phase transition in the cubic superconductor (Sr, Ca)3Ir4Sn13. Phys. Rev. Lett. 109, 237008 (2012). [17]Zhou, S. Y. et al. Nodeless superconductivity in Ca3Ir4Sn13: evidence from quasiparticle heat transport. Phys. Rev. B 86, 064504 (2012). [18]Fang, A. F., Wang, X. B., Zheng, P. & Wang, N. L. Unconventional charge-density wave in Sr3Ir4Sn13 cubic superconductor revealed by optical spectroscopy study. Phys. Rev. B 90, 035115 (2014). [19]Tompsett, D. A. Electronic structure and phonon instabilities in the vicinity of the quantum phase transition and superconductivity of (Sr,Ca)3Ir4Sn13. Phys. Rev. B 89, 075117 (2014). [20]Kuo, C. N. et al. Characteristics of the phase transition near 147 K in Sr3Ir4Sn13. Phys. Rev. B 89, 094520 (2014). [21]Mazzone, D. G. et al. Crystal structure and phonon softening in Ca3Ir4Sn13. Phys. Rev. B 92, 024101 (2015). [22]Wang, L. M. et al. Weakly-correlated nodeless superconductivity in single crystals of Ca3Ir4Sn13 and Sr3Ir4Sn13 revealed by critical fields, Hall effect, and magnetoresistance measurements. New Journal of Physics 17, 033005 (2015). [23]Kuo C. N. et al. Lattice distortion associated with Fermi-surface reconstruction in Sr3Rh4Sn13. Physical Review B 91, 165141 (2015). [24]Luo C. W. et al. Dynamics of phonons in Sr3Ir4Sn13: An experimental study by ultrafast spectroscopy measurements. New Journal of Physics 18, 073045 (2016). [25]Lue, C. S. et al. Comparative study of thermodynamic properties near the structural phase transitions in Sr3Rh4Sn13 and Sr3Ir4Sn13. Phys. Rev. B 93, 245119 (2016). [26]Huang, C. H. et al. Electronic and atomic structures of quasi-one-dimensional K0.3MoO3. Appl. Phys. Lett. 86, 141905 (2005). [27]Du, C. H. et al. Direct measurement of spatial distortions of charge density waves in K0.3MoO3. Appl. Phys. Lett. 88, 241916 (2006). [28]Tsai, H. M. et al. Anisotropic electronic structure in quasi-one-dimensional K0.3MoO3: an angle-dependent x-ray absorption study. Appl. Phys. Lett. 91, 022109 (2007). [29]Kim, Y. J., Gu, G. D., Gog, T. & Casa, D. X-ray scattering study of charge density waves in La2−xBaxCuO4. Phys. Rev. B 77, 064520 (2008). [30]Du, C. H. et al. The modulated structure and ferromagnetic insulating state in a nine-layer BaRuO3. J. Phys: Condens. Matt. 22, 036003 (2010). [31]Galli, F. et al. Charge-density-wave transitions in the local-moment magnet Er5Ir4Si10. Phys. Rev. Lett. 85, 158 (2000). [32]R.E. Peierls, Quantum Theory of Solids (Clarendon, Oxford, 1955). [33]Synchrotron Radiation Source, edited by Herman Winick (World scientific, 1997). [34]''X-Ray Absorption: Principles, Applications, Techniques of EXAFS, SEXAFS and XANES'', edited by D. C. Koningsberger and R. Prins (Wiley-interscience, 1988). [35]“X-Ray Absorption : Principles, Application, Techniques of EXAFS, SEXAFS, SEXAFS and XANES”, edited by D. C. Koningsberger, and R. Prins, Chem. Analysis Vol. 92 (Wiley 1988). [36]D. E. Sayers, E. A. Stern, F. W. Lytle, Phys. Rev. Lett. 27, 1024 (1971). [37]“NEXAFS Spectroscopy”, edited by Joachim Stöhr (Springer-Verlag 1991). [38]E. A. Stern, M. Newville, B. Ravel, Y. Yaceby, and D. Haskel, Phys. B. 208&209, 117 (1995). [39]“EXAFS and Near edge Structure”, edited by A. Bianconi, L. Incoccia and S. Stipcich (Springer-Verlay 1983). [40]"EXAFS , Basic Principle and Data Analysis" , edited by Boon K. Teo (Springer-Verlag 1986). [41]“安全訓練手冊”,新竹同步輻射 (2001). [42]C. S Hwang, F. Y. Lin, C. H. Lee, K. L. Yu, P. K. Tseng, J. T. Lin, H. C. Tseng, W. C. Su, J. R. Chen, T. L. Lin, W. F. Pong et al., Rev. Sci. Instrum. 69, 1230 (1998). [43]Collins, M. F. Magnetic Critical Scattering (Oxford University Press, New York, 1989). [44]Joseph, B. et al. Local structural displacements across the structural phase transition in IrTe2: order-disorder of dimers and role of Ir-Te correlations. Phys. Rev. B 88, 224109 (2013). [45]Piamonteze, C. et al. Short-range charge order in RNiO3 perovskites (R=Pr, Nd, Eu, Y) probed by x-ray-absorption spectroscopy. Phys. Rev. B 71, 012104 (2005). [46]Wang, B. Y. et al. Effect of geometry on the magnetic properties of CoFe2O4–PbTiO3 multiferroic composites. RSC Adv. 3, 7884 (2013). [47]Clancy, J. P. et al. Spin-orbit coupling in iridium-based 5d compounds probed by x-ray absorption spectroscopy. Phys. Rev. B 86, 195131 (2012). [48]Aluri, E. R. & Grosvenor, A. P. An x-ray absorption spectroscopic study of the effect of bond covalency on the electronic structure of Gd2Ti2-xSnxO7. Phys. Chem. Chem. Phys. 15, 10477 (2013). [49]Mon, K. K., Ashcroft, N. W. & Chester, G. V. Core polarization and the structure of simple metals. Phys. Rev. B 19, 5103 (1979). [50]Carter, G. C., Bennett, L. H. & Kahan, D. J. Metallic Shifts in NMR: A Review of Theory and Comprehensive Critical Data Compilation of Metallic Materials (Pergamon, Oxford, 1977). [51]Rahn, D. J. et al. Gaps and kinks in the electronic structure of the superconductor 2H-NbSe2 from angle-resolved photoemission at 1 K. Phys. Rev. B 85, 224532 (2012). [52]Tan, S. Y. et al. Photoemission study of the electronic structure and charge density waves of Na2Ti2Sb2O. Sci. Rep. 5, 9515 (2015). [53]Gray, A. X. et al. Correlation-driven insulator-metal transition in near-ideal vanadium dioxide films. Phys. Rev. Lett. 116, 116403 (2016). [54]Qazilbash, M. M. et al. Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging. Science 318, 1750 (2007). [55]Liu, M. K. et al. Anisotropic Electronic state via spontaneous phase separation in strained vanadium dioxide films. Phys. Rev. Lett. 111, 096602 (2013).
|