跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2024/12/10 19:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張書瑋
研究生(外文):Shu-Wei Chang
論文名稱:在跳躍擴散模型下的亞式執行選擇權評價
論文名稱(外文):The Pricing Asian Strike Options with Jump-Diffusion Model
指導教授:王仁和王仁和引用關係
口試委員:林士貴鄭宏文王仁和
口試日期:2017-06-18
學位類別:碩士
校院名稱:淡江大學
系所名稱:財務金融學系碩士班
學門:商業及管理學門
學類:財務金融學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:49
中文關鍵詞:亞式選擇權跳躍擴散模型
外文關鍵詞:AsianOptionsJump-diffusionModel
相關次數:
  • 被引用被引用:0
  • 點閱點閱:370
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
選擇權是一種常見的衍生性金融商品,在世界各地的金融市場交易非常活躍。也因應不同的客戶需求,進而衍生出各種不同交易方式的選擇權,亞式選擇權就是其中之一。亞式選擇權評價需計算未來資產價格之平均,使得亞式選擇權沒有封閉解。
  許多資產價格報酬變動無法完全用幾何布朗運動解釋,若是出現重大新聞,資產價格即會急遽波動,Merton(1976)提出跳躍擴散模型解釋此現象。
  本研究以股價變動符合跳躍擴散模型為基礎,導出亞式遠期生效選擇權解析近似公式,以蒙地卡羅法模擬的亞式選擇權為基準,判斷解析近似公式之準確度。
Options is a common financial derivatives products, and the transactions of options are active around the world. In response to different customers needs, and then derives a variety of different types of options, one of them is Asian options. It does not exist closed form for Arithmetic Asian options because the payoff of Asian options is determined by the average underlying price over some pre-set period of time.
Changes in asset prices can not be explained entirely by geometric Brownian motions. Asset prices will fluctuate sharply if significant events occur. Jump-diffusion model proposed by Merton(1976) is explained this phenomenon.
In this study we derive analytic approximation formulae for pricing strike Asian options contain Jump-diffusion model. We use Monte Carlo simulation approach as benchmark verifying the accuracy of our formulae.
目錄
第一章 緒論 1
第一節 研究背景與動機 1
第二節 研究目的 4
第三節 論文架構及研究步驟 4
第二章 文獻回顧 6
第一節 Bouaziz, Briys and Crouhy(1994)模型 6
一、初始時間t在T-A前 7
二、初始時間t在T-A後 9
第二節 Tsao, Chang and Lin(2003)模型 10
一、初始時間t在T-A前 11
二、初始時間t在T-A後 12
第三章 研究方法 15
第一節 結合Bouaziz, Briys and Crouhy (1994)模型 16
一、 初始時間t在T-A之前 16
二、 初始時間t在T-A之後 18
第四章 研究結果與分析 21
第五章 結論與未來研究方向 31
參考文獻 33
附錄A 37
A.1 定理3.1.1證明 37
A.2 定理3.1.2證明 45
附錄B 49



圖目錄
圖 1 研究流程圖 5
圖 2 初始時間t在T-A前時間軸 16
圖 3 初始時間t在T-A後時間軸 19
圖 4 在[0,A]時間跳躍示意圖 38


表目錄
表 1 各亞式選擇權評價模型效用比較 25
表 2 各亞式選擇權評價模型效用比較 26
表 3 各亞式選擇權評價模型效用比較 27
表 4 各亞式選擇權評價模型效用比較 28
表 5 各亞式選擇權評價模型效用比較 29
表 6 各亞式選擇權評價模型效用比較 30
1.Alziary B., Décamps J. P. and Koehl P. F., (1997) “A P.D.E. Approach to Asian Options: Analytical and Numerical Evidence,” Journal of Banking & Finance, Vol. 21(5), pp. 613-640.
2.Amin K. I., (1993) “Jump Diffusion Option Valuation in Discrete Time,” Journal of Finance, Vol. 48, pp.1833–1863.
3.Ball, C. A. and Torous, W. N., (1985) “On Jump in Common Stock Prices and Their Impact on Call Pricing,” Journal of Finance, Vol. 40, pp.155-173
4.Black, F. and Scholes, M., (1973) “The Pricing of Options and Corporate Liabilities,” Journal of Political Economy, Vol. 81, pp.637-653.
5.Bouaziz, L., Briys, E. and Crouhy, M., (1994)“The Pricing of Forward-starting Asian Options,”Journal of Banking & Finace, Vol. 18, pp.823-839.
6.Boughamoura W., Pandey A. N. and Trabelsi F., (2011) “Pricing and Hedging of Asian Option under Jumps,” International Journal of Applied Mathematics, Vol. 41, pp. 310-319.
7.Burger P. and Kliaras M., (2013) “Jump Diffusion Models for Option Pricing vs. the Black Scholes Model,” Working Paper Series, Vol. 81
8.Cai N. and Kou S. G., (2012) “Pricing Asian Options under a Hyper-Exponential Jump Diffusion Model,” Operations Research, Vol. 60(1), pp. 64-77
9.Chung S. F. and Wong H. Y., (2014) “Analytical Pricing of Discrete Arithmetic Asian Options with Mean Reversion and Jumps,” Journal of Banking & Finance, Vol. 44, pp. 130–140.
10.Corwin J., Boyle P. P. and Tan K. S. (1996) “Quasi-Monte Carlo Methods in Numerical Finance,” Management Science, Vol. 42(6), pp. 926-938.
11.Dewynne J. N. and Wilmott P., (1995) “Asian Options as Linear Complementarity Problems,” Advances in Futures and Options Research, Vol. 8, pp. 145-173.
12.d’Halluin Y., Forsyth P. A. and Labahn G., (2006) “A Semi-Lagrangian Approach for American Asian Options under Jump Diffusion,” Journal on Scientific Computing, Vol. 27(1), pp. 315–345.
13.Hull J. and White A., (1993) “Efficient Procedures for Valuing European and American Path Dependent Options,” Journal of Derivatives, Vol. 1, pp. 21-31.
14.Kemma A. G. Z. and Vorst A. C. F., (1990) “A Pricing Method for Options Based on Average Asset Values,” Journal of Banking and Finance, Vol. 14, pp. 113-129.
15.Kim, K. I. and Qian, X. S., (2007) “Convergence of the Binomial Tree Method for Asian Options in Jump-Diffusion Models,” Journal of Mathematical Analysis and Applications, Vol. 330, pp.10–23
16.Levy E., (1992) “Pricing European Average Rate Currency Options,” Journal of International Money and Finance, Vol. 11, pp. 474-491.
17.Lin H. J., (2013) “Analytical Valuation of Asian Options with Continuously Paying Dividends in Jump-Diffusion Models,” Journal of Applied Science and Engineering, Vol. 16, No. 2, pp. 197-204.
18.Merton, R., (1976) “Option Pricing when Underlying Stock Returns are Discontinuous,” Journal of Financial Economics, Vol. 3, pp. 125-144.
19.Milevsky M. A. and Posner S. E., (1998) “Asian Options, the Sum of Lognormals and the Reciprocal Gamma Distribution,” Journal of Financial and Quantitative Analysis, Vol. 33(3), pp. 409-422.
20.Neave E. and Turnbull S., (1993) “Quick Solutions for Arithmetic Average Options on a Recombining Random Walk,” 4th Actuarial Approach for Financial Risks International Colloquium, pp. 718-739.
21.Tsao, C. Y., Chang, C. C. and Lin, C. G., (2003)“Analytic Approximation Formulae for Pricing Forward-starting Asian Options,” Journal of Futures Markets, Vol. 23 pp.487-516.
22.Turnbull S. M. and Wakeman L. M., (1991) “A Quick Algorithm for Pricing European Average Options,” Journal of Financial and Quantitative Analysis, Vol. 26(3), pp. 377-389.
23.Vecer, J. (2001). “A new PDE Approach for Pricing Arithmetic Average Asian Options,”Journal of Computational Finance, Vol. 4(4), pp. 105-113.
24.Vorst T., (1992) “Prices and Hedge Ratios of Average Exchange Rate Options,” International Review of Financial Analysis, Vol. 1(3), pp. 179-193.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top