|
1.Alziary B., Décamps J. P. and Koehl P. F., (1997) “A P.D.E. Approach to Asian Options: Analytical and Numerical Evidence,” Journal of Banking & Finance, Vol. 21(5), pp. 613-640. 2.Amin K. I., (1993) “Jump Diffusion Option Valuation in Discrete Time,” Journal of Finance, Vol. 48, pp.1833–1863. 3.Ball, C. A. and Torous, W. N., (1985) “On Jump in Common Stock Prices and Their Impact on Call Pricing,” Journal of Finance, Vol. 40, pp.155-173 4.Black, F. and Scholes, M., (1973) “The Pricing of Options and Corporate Liabilities,” Journal of Political Economy, Vol. 81, pp.637-653. 5.Bouaziz, L., Briys, E. and Crouhy, M., (1994)“The Pricing of Forward-starting Asian Options,”Journal of Banking & Finace, Vol. 18, pp.823-839. 6.Boughamoura W., Pandey A. N. and Trabelsi F., (2011) “Pricing and Hedging of Asian Option under Jumps,” International Journal of Applied Mathematics, Vol. 41, pp. 310-319. 7.Burger P. and Kliaras M., (2013) “Jump Diffusion Models for Option Pricing vs. the Black Scholes Model,” Working Paper Series, Vol. 81 8.Cai N. and Kou S. G., (2012) “Pricing Asian Options under a Hyper-Exponential Jump Diffusion Model,” Operations Research, Vol. 60(1), pp. 64-77 9.Chung S. F. and Wong H. Y., (2014) “Analytical Pricing of Discrete Arithmetic Asian Options with Mean Reversion and Jumps,” Journal of Banking & Finance, Vol. 44, pp. 130–140. 10.Corwin J., Boyle P. P. and Tan K. S. (1996) “Quasi-Monte Carlo Methods in Numerical Finance,” Management Science, Vol. 42(6), pp. 926-938. 11.Dewynne J. N. and Wilmott P., (1995) “Asian Options as Linear Complementarity Problems,” Advances in Futures and Options Research, Vol. 8, pp. 145-173. 12.d’Halluin Y., Forsyth P. A. and Labahn G., (2006) “A Semi-Lagrangian Approach for American Asian Options under Jump Diffusion,” Journal on Scientific Computing, Vol. 27(1), pp. 315–345. 13.Hull J. and White A., (1993) “Efficient Procedures for Valuing European and American Path Dependent Options,” Journal of Derivatives, Vol. 1, pp. 21-31. 14.Kemma A. G. Z. and Vorst A. C. F., (1990) “A Pricing Method for Options Based on Average Asset Values,” Journal of Banking and Finance, Vol. 14, pp. 113-129. 15.Kim, K. I. and Qian, X. S., (2007) “Convergence of the Binomial Tree Method for Asian Options in Jump-Diffusion Models,” Journal of Mathematical Analysis and Applications, Vol. 330, pp.10–23 16.Levy E., (1992) “Pricing European Average Rate Currency Options,” Journal of International Money and Finance, Vol. 11, pp. 474-491. 17.Lin H. J., (2013) “Analytical Valuation of Asian Options with Continuously Paying Dividends in Jump-Diffusion Models,” Journal of Applied Science and Engineering, Vol. 16, No. 2, pp. 197-204. 18.Merton, R., (1976) “Option Pricing when Underlying Stock Returns are Discontinuous,” Journal of Financial Economics, Vol. 3, pp. 125-144. 19.Milevsky M. A. and Posner S. E., (1998) “Asian Options, the Sum of Lognormals and the Reciprocal Gamma Distribution,” Journal of Financial and Quantitative Analysis, Vol. 33(3), pp. 409-422. 20.Neave E. and Turnbull S., (1993) “Quick Solutions for Arithmetic Average Options on a Recombining Random Walk,” 4th Actuarial Approach for Financial Risks International Colloquium, pp. 718-739. 21.Tsao, C. Y., Chang, C. C. and Lin, C. G., (2003)“Analytic Approximation Formulae for Pricing Forward-starting Asian Options,” Journal of Futures Markets, Vol. 23 pp.487-516. 22.Turnbull S. M. and Wakeman L. M., (1991) “A Quick Algorithm for Pricing European Average Options,” Journal of Financial and Quantitative Analysis, Vol. 26(3), pp. 377-389. 23.Vecer, J. (2001). “A new PDE Approach for Pricing Arithmetic Average Asian Options,”Journal of Computational Finance, Vol. 4(4), pp. 105-113. 24.Vorst T., (1992) “Prices and Hedge Ratios of Average Exchange Rate Options,” International Review of Financial Analysis, Vol. 1(3), pp. 179-193.
|