|
1.Samuelson S.O and Kongerud J. (1994) Interval censoring in longitudinal data of respiratory symptoms in aluminium potroom workers: a comparison of methods. Statistics in Medicine 13: 1771-1780. 2.Sakamoto J., Teramukai S., Kiroaki N. and Yasuo O. (1997) A re-analysis of a randomized clinical trial for gastric cancer using interval censoring. Journal of Clinical Oncology 27: 445–446. 3.Sun J. (1997) Regression analysis of interval-censored failure time data. Statistics in Medicine 16: 497-504. 4.Lindsey J.C. and Ryan L. M. (1998) Tutorial in biostatistics methods for interval-censored data. Statistics in Medicine 17: 219-238. 5.Schick A. and Yu Q. (2000). Consistency of the GMLE with mixed case interval-censored data. Scandinavian Journal of Statistics 27: 45-55. 6.Gu M.G., Sun L. and Zuo G. (2005). A baseline-free procedure for transformation models under interval censorship. Lifetime Data Analysis 11: 473-488. 7.Zhang Z. and Zhao Y. (2013). Empirical likelihood for linear transformation models with interval-censored failure time data. Journal of Multivariate Analysis 116: 398-409. 8.Wang L., McMahan C.S., Hudgens M.G. and Qureshi Z.P. (2016). A flexible, computationally efficient method for fitting the proportional hazards model to interval-censored data. Biometrics 72: 222-231. 9.Kim J., Kim Y.N. and Kim S.W. (2016) Frailty model approach for the clustered interval-censored data with informative censoring. Journal of the Korean Statistical Society 45: 156-165. 10.Li C. (2016) Cause-specific hazard regression for competing risks data under interval censoring and left truncation. Computational Statistics and Data Analysis 104: 197-208. 11.Ma L., Hu T. and Sun J. (2016) Cox regression analysis of dependent interval-censored failure time data. Computational Statistics and Data Analysis 103: 79-90. 12.Aggarwala R. (2001) Progressive interval censoring: some mathematical results with applications to inference. Communications in Statistics-Theory and Methods 30: 1921-1935. 13.Wu S.-J., Lin Y.-P. and Chen Y.-J. (2006) Planning step-stress life test with progressively type-I group-censored exponential data. Statistica Neerlandica 60: 46-56. 14.Wu S.-J. Lin Y.-P. and Chen S.-T. (2008) Optimal step-stress test under type I progressive group-censoring with random removals. Journal of Statistical Planning Inference 138: 817-826. 15.Lu W. and Tsai T.-R. (2009a) Interval censored sampling plans for gamma lifetime model. European Journal of Operation Research 192: 116-124. 16.Lu W. and Tsai T.-R. (2009b) Interval censored sampling plans for the log-logistic lifetime model. Journal of Applied Statistics 36(5): 521-536. 17.Hong C.W., Lee W.C. and Wu J.W. (2012) Computational procedure of performance assessment of lifetime index of products for the Weibull distribution with the progressive first-failure-censored sampling plan. Journal of Applied Mathematics 2012, Article ID 717184: 1-13. 18.Lin Y.-J. and Lio Y.L. (2012) Bayesian inference under progressive type-I interval censoring. Journal of Applied Statistics 39(8): 1811-1824. 19.Singh S. and Tripathi Y.M. (2016) Estimating the parameters of an inverse Weibull distribution under progressive type-I interval censoring. Statistical Methodology pp 1–36 DOI: 10.1007/s00362-016-0750-2. 20.Wu S.-F. and Lin Y.-P. (2016) Computational testing algorithmic procedure of assessment for lifetime performance index of products with one-parameter exponential distribution under progressive type I interval censoring. Mathematics and Computers in Simulation 120: 79-90. 21.Cai J., Shi Y. and Liu B. (2017) Inference for a series system with dependent masked data under progressive interval censoring. Journal of Applied Statistics 44(1): 3-15. 22.Nagode M. and Fajdiga M. (2000) An improved algorithm for parameter estimation suitable for mixed Weibull distributions. International Journal of Fatigue 22: 75-80. 23.Jiang R., Murthy D.N.P. and Ji P. (2001) Models involving two inverse Weibull distributions. Reliability Engineering and System Safety 73: 73-81. 24.Bučar T., Nagode M., Fajdiga M. (2004) Reliability approximation using finite Weibull mixture distributions. Reliability Engineering and System Safety 84(3): 241-251. 25.Attardi L., Guida M. and Pulcini G. (2005) A mixed-Weibull regression model for the analysis of automotive warranty data. Reliability Engineering and System Safety 87(2): 265-273. 26.Nagode M. and Fajdiga M. (2006) An alternative perspective on the mixture estimation problem. Reliability Engineering and System Safety 91(4): 388-397. 27.Sultan K.S., Ismail M.A. and Al-Moisheer A.S. (2007) Mixture of two inverse Weibull distributions: properties and estimation. Computational Statistics and Data Analysis 51: 5377-5387. 28.Maqsood A. and Aslam M. (2008) A comparative study to estimate the parameters of mixed-Weibull distribution. Pakistan Journal of Statistics and Operation Research 4(1): 1-8. 29.Ling D., Huang H.-Z. and Liu Y. (2009) A method for parameter estimation of Mixed Weibull distribution. The proceedings of 2009 Annual Reliability and Maintainability Symposium pp.129 – 133. 30.Touw A.E. (2009) Bayesian estimation of mixed Weibull distributions. Reliability Engineering and System Safety 94: 463-473. 31.Castet J.-F. and Saleh J.H. (2010) Single versus mixture Weibull distributions for nonparametric satellite reliability. Reliability Engineering and System Safety 95: 295-300. 32.Chiodo E. (2012) Parameter estimation of mixed Weibull probability distributions for wind speed related to power statistics. The proceedings of International Symposium on Power Electronics Power Electronics, Electrical Drives, Automation and Motion pp. 582-587. 33.Gu Y., Ge D. and Xiong Y. (2012) A reliability data analysis method using mixture Weibull distribution model. Applied Mechanics and Materials 148-149: 1449-145. 34.Ali S. and Aslam M. (2013) Choice of suitable informative prior for the scale parameter of mixture of Laplace distribution using type-I censoring scheme under different loss function. Electronic Journal of Applied Statistical Analysis 6(1): 32-56. 35.Elmahdy E.E. and Aboutahoun A.W. (2013) A new approach for parameter estimation of finite Weibull mixture distributions for reliability modeling. Applied Mathematical Modelling 37:1800–1810. 36.Ateya S.F. and Alharthi A.S. (2014) Estimation under a finite mixture of modified Weibull distributions based on censored data via EM algorithm with application. Journal of Statistical Theory and Applications 13(3): 196-204. 37.Daniyal M. and Aleem M. (2014) On the mixture of Burr XII and Weibull distributions. Journal of Statistics Applications 3(2): 251-267. 38. Tian Y., Tian M. and Zhu Q. (2014) Estimating a finite mixed exponential distribution under progressively type-II censored data. Communications in Statistics-Theory and Methods 43: 3762–3776.
|