跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2024/12/11 20:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張惟婷
研究生(外文):Wei-Ting Chang
論文名稱:基於物聯網技術之糖尿病互動式健康照護系統設計與實作
論文名稱(外文):Design and Implementation of an Interactive mHealth System for Diabetics based on the Internet of Things
指導教授:蔣璿東
口試委員:王鄭慈王亦凡葛煥昭許輝煌
口試日期:2017-01-09
學位類別:博士
校院名稱:淡江大學
系所名稱:資訊工程學系博士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:117
中文關鍵詞:醫療保健互動式系統互聯網應用移動計算糖尿病照護
外文關鍵詞:HealthcareInteractive SystemsInternet ApplicationsMobile ComputingDiabetes Care
相關次數:
  • 被引用被引用:2
  • 點閱點閱:200
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
目前市面上的通訊醫療設備與健康照護系統之間的通訊功能,大多侷限在單向數據傳輸的應用;僅將醫療設備測量的生理參數上傳到醫療系統,無法依據患者測量情況即時進行後續處理,在照護功能上始終有所限制。另一方面,基於社會結構老年化及慢性疾病年輕化兩大因素,近年來慢性病患人數大幅增加,而慢性病是需要長期管理的疾病,如何降低及延遲慢性疾病的發病率及復發率,及其長期照護問題將是未來全球需一同面對的重要議題。目前許多相關研究都指出,患者的正向行為改變是慢性病患最有效的預防及自我照護方式;而照護者的鼓勵則是造成病患正向行為改變的重要因素之一。為了強化慢性患者與其家庭照護者之前的雙向溝通,我們以糖尿病患為例,設計一互動式健康照護系統(Interactive mobile Health System,ImHS)。ImHS以互聯網技術為基礎,利用現有的移動醫療設備-GPRS血糖監控儀(GPRS blood glucose monitors,GPRS BGM)、雲端平台及遠距照護應用程式,建立糖尿病患者和其家庭照護者之間的雙向溝通。如在糖尿病患者測量到異常血糖值時,ImHS會立即發送相關提醒給患者和其照護人員,讓病患及家庭照護者能夠快速地了解病患的健康狀況並進行後續處理。如病患至不熟悉的醫院進行就醫時,也可以利用ImHS所提供的功能,直接下載病患最近的血糖測量資訊,供醫師進行診斷。
ImHS亦規畫相關Location Based Service (LBS)功能,病患可以利用ImHS提供的LBS功能查詢最近的醫療診所及最近的照護者,而照護者也可以利用LBS功能知道病患目前所在的位置。但受限於目前使用的GPRS BGM還未內建GPS等行動定位模組,因此本研究目前先使用病患手持式裝備進行LBS功能模擬,待未來相關醫療設備內建行動定位模組後,即可快速將LBS應用於ImHS,進而降低病患發生危險的機率。
Currently, communication between medical devices and health care systems is restricted to access of the server database: Data can only be uploaded to the health care system, while requests sent from the system cannot be directly met, limiting the usefulness of healthcare system Applications. To reinforce communication of healthcare data between diabetic patients and their family caregivers via mobile devices, we designed and implemented an Interactive Mobile Health System (ImHS) for diabetic patients and caregivers with Internet of Things (IoT) technology. The ImHS was constructed by making use of existing mobile health devices, e.g. GPRS blood glucose monitors (BGMs), as well as integration with cloud platforms and telecare Android Apps. The ImHS provides real-time, two-way communication between diabetes patients and caregivers by utilizing IoT technology. In the scenario of a diabetic patient recording abnormal blood sugar values during measurement, the ImHS will send a reminder to the patient and caregivers, motivating behavior change and improving quality of chronic care. The ImHS features user-friendly interfaces for patients, family and professional caregivers that allow users to rapidly understand the patient''s health status. In this study, we look at ImHS use in diabetes care. The ImHS can however be easily adapted for integration into other healthcare systems.
ImHS also designs and implements the location-based services (LBS) function. The patients can use the LBS function to find the nearest medical clinic and the nearest family caregiver, and family caregivers can use the LBS function to know the patient current location. However, due to the GPRS BGM has not built-in GPS module, so this study currently uses patients'' mobile device to simulate the LBS function. When the medical equipment built-in the positioning module, the LBS function can be quickly applied to ImHS, to reduce the risk of patients.
目錄
第一章緒論 1
1-1研究動機與目的 1
1.2論文架構 4
第二章文獻探討 5
2.1醫療健康系統現狀 6
2.2家庭照護者 8
2.3糖尿病(Diabetesmellitus) 9
2.3.1糖尿病的類型 10
2.3.2糖尿病的併發症 12
2.3.3血糖監測 15
2.4物聯網(IoT) 18
2.5MessageQueuingTelemetryTransport(MQTT) 22
2.6地理位置服務(LBS) 25
2.7GPRS血糖機(GPRSBGM) 27
第三章研究方法 29
3.1問題陳述 29
3.2系統架構與流程 31
3.2.1系統架構 31
3.2.2系統流程 33
3.3血糖異常檢測服務(ADE) 35
3.4測量時程監控服務(MSE) 40
3.5後續動作與告警服務(IoT-AAS) 42
3.6地理位置服務(LBS) 45
3.7基本照護服務(BHS) 49
第四章系統實作結果 52
4.1註冊及綁定 53
4.2血糖異常門檻值設定 59
4.3血糖測量與測量異常通知 61
4.4基本照護服務 63
4.4.1Dashboard呈現 63
4.4.2Report功能 67
4.4.3血糖測量記錄 71
4.4.4行事曆功能 73
4.5ImHS家庭照護者介面 76
4.5.1追蹤設定 76
4.5.2Dashboard呈現 78
4.5.3即時提醒功能 82
4.5.4病患列表 84
4.5.5個別病患資訊 85
4.6LBS功能 88
第五章結論與未來研究方向 92
參考文獻 93
附錄一英文論文 98
圖目錄
圖1.血糖異常檢測規則-一般血糖值 16
圖2.血糖異常檢測規則-急性併發症 16
圖3.物聯網技術架構 19
圖4.MQTT傳輸模式 23
圖5.GPRSBGM與其模組 27
圖6.IMHS系統架構圖 31
圖7.IMHS元件組成圖 34
圖8.ADE流程圖 37
圖9.ADE演算法 39
圖10.MSE演算法 41
圖11.利用LBS查詢最近醫療診所 46
圖12.家庭照護者要求確認病患位置 47
圖13.病患使用LBS向最近的照護者求助 48
圖14.IMHS註冊畫面 53
圖15.IMHS病患資料編輯頁面 54
圖16.利用血糖機的IMEI進行設備綁定 55
圖17.家庭照護者設定頁面 56
圖18.家庭照護者設定頁面及家庭照護者帳號開通通知信件 57
圖19.家庭照護者列表 58
圖20.TYPE1糖尿病患預設血糖異常區間 59
圖21.血糖異常門檻值區間設定 60
圖22.IMHS患者異常情況通知 61
圖23.病患可選擇向特定的家庭照護者求助 62
圖24.病患DASHBOARD畫面 64
圖25.病患每日血糖值及每日測量次數時間趨勢圖 65
圖26.病患各測量類型平均血糖值 65
圖27.病患測量結果等級、測量類型次數及每日測量頻率圓餅圖 66
圖28.REPORT功能 68
圖29.以“周一至周日”及“測量類型”為單位的統計資料 69
圖30.每日測量時間折線圖 70
圖31.測量值列表畫面 71
圖32.手動新增測量資料 72
圖33.IMHS行事曆畫面呈現 73
圖34.新增行事曆事件功能 74
圖35.利用拖曳功能修改事件時間 75
圖36.病患綁定邀請畫面呈現 77
圖37.家庭照護者DASHBOARD頁面 78
圖38.病患年齡及糖尿病類型列表與統計圖 79
圖39.患者類型分布情況 80
圖40.患者血糖值情況 81
圖41.異常測量情況 82
圖42.提醒訊息發送 83
圖43.追蹤病患列表及相關病患資訊 84
圖44.各別病患測量概況 85
圖45.病患相關資訊呈現 86
圖46.照護者發送即時提醒 87
圖47.搜尋附近醫療診所及利用APP下載近期測量資訊 88
圖48.病患可選擇向最近的家庭照護者求助 89
圖49.家庭照護者可利用LBS功能查詢病患目前位置 90
圖50.當病患設備不在網路上時,IMHS會告知家庭照護者真實情況 91
表目錄
表1.依據糖尿病類型將先行區分為7個的血糖區段 37
表2.IOT-AAS根據ADE異常等級執行的後續動作 43
表3.IOT-AAS根據MSE異常等級執行的後續動作 44
1.Aguiree, F., et al., IDF diabetes atlas. 2013.
2.Nathan, D.M. and D.E.R. Group, The diabetes control and complications trial/epidemiology of diabetes interventions and complications study at 30 years: overview. Diabetes care, 2014. 37(1): p. 9-16.
3.Group, U.P.D.S., Tight blood pressure control and risk of macrovascular and microvascular complications in type 2 diabetes: UKPDS 38. BMJ, 1998. 317(7160): p. 703-713.
4.Control, T.D. and C.T.R. Group, The Effect of Intensive Treatment of Diabetes on the Development and Progression of Long-Term Complications in Insulin-Dependent Diabetes Mellitus. New England Journal of Medicine, 1993. 329(14): p. 977-986.
5.Group, U.P.D.S.U., Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). The Lancet. 352(9131): p. 837-853.
6.Henkemans, O.A.B., et al., An online lifestyle diary with a persuasive computer assistant providing feedback on self-management. Technol. Health Care, 2009. 17(3): p. 253-267.
7.Mattila, E., et al., Empowering citizens for well-being and chronic disease management with wellness diary. Trans. Info. Tech. Biomed., 2010. 14(2): p. 456-463.
8.Castillejo, P., et al., Integration of wearable devices in a wireless sensor network for an E-health application. Wireless Communications, IEEE, 2013. 20(4): p. 38-49.
9.Mi, Z. and A.A. Sawchuk, Human Daily Activity Recognition With Sparse Representation Using Wearable Sensors. Biomedical and Health Informatics, IEEE Journal of, 2013. 17(3): p. 553-560.
10.Tobo, et al., Context awareness in WBANs: a survey on medical and non-medical applications. Wireless Communications, IEEE, 2013. 20(4): p. 30-37.
11.Yuan-Fa, L., Personal Medical Monitoring System: Addressing Interoperability. IT Professional, 2013. 15(5): p. 31-37.
12.ACCU-CHEK. Accu-Chek Active Blood Glucose Meter. Feb 05, 2015; Available from: https://www.accu-chek.in/webapp/wcs/stores/servlet/Category_101_101_-1_103_103_Y_Products.
13.Sheu, Y.H., Y.P. Dai, and D.S. Fu. Embedded USB homecare internet system. in Circuits and Systems (APCCAS), 2010 IEEE Asia Pacific Conference on. 2010.
14.Yip, B., et al. Blood Pressure Management with Data Capturing in the Cloud among Hypertensive Patients: A Monitoring Platform for Hypertensive Patients. in 2015 IEEE International Congress on Big Data. 2015.
15.Gonza, et al., Mobility Support for Health Monitoring at Home Using Wearable Sensors. Information Technology in Biomedicine, IEEE Transactions on, 2011. 15(4): p. 539-549.
16.Triantafyllidis, A.K., et al., A Pervasive Health System Integrating Patient Monitoring, Status Logging, and Social Sharing. Biomedical and Health Informatics, IEEE Journal of, 2013. 17(1): p. 30-37.
17.Waluyo, A.B., et al. Utilising push and pull mechanism in wireless e-health environment. in e-Technology, e-Commerce and e-Service, 2004. EEE ''04. 2004 IEEE International Conference on. 2004.
18.Baker, M.K., et al., Behavioral strategies in diabetes prevention programs: a systematic review of randomized controlled trials. Diabetes Res Clin Pract, 2011. 91(1): p. 1-12.
19.Long, G.H., et al., Healthy behavior change and cardiovascular outcomes in newly diagnosed type 2 diabetic patients: a cohort analysis of the ADDITION-Cambridge study. Diabetes Care, 2014. 37(6): p. 1712-20.
20.van Puffelen, A.L., et al., Living with diabetes: a group-based self-management support programme for T2DM patients in the early phases of illness and their partners, study protocol of a randomised controlled trial. BMC Health Serv Res, 2014. 14: p. 144.
21.Valenzuela, J.M., et al., Shared decision-making among caregivers and health care providers of youth with type 1 diabetes. J Clin Psychol Med Settings, 2014. 21(3): p. 234-43.
22.Davis, R.M., et al., TeleHealth improves diabetes self-management in an underserved community: diabetes TeleCare. Diabetes Care, 2010. 33(8): p. 1712-7.
23.Rosland, A.-M. and J.D. Piette, Emerging Models for Mobilizing Family Support for Chronic Disease Management: A Structured Review. Chronic illness, 2010. 6(1): p. 7-21.
24.Subramanian, M., et al. Healthcare@Home: Research Models for Patient-Centred Healthcare Services. in Modern Computing, 2006. JVA ''06. IEEE John Vincent Atanasoff 2006 International Symposium on. 2006.
25.Kamarudin, N. and S. Salam. Enabling mobile Location Based Services for emergency cases. in Research and Innovation in Information Systems (ICRIIS), 2011 International Conference on. 2011.
26.Chi-Huang, H., B. Ying-Wen, and T. Ren-Yi, Design of blood pressure measurement with a health management system for the aged. Consumer Electronics, IEEE Transactions on, 2012. 58(2): p. 619-625.
27.Philips Survey Reveals One in 10 Americans Believe Online Health Information Saved Their Life. 2012 [cited 2014 May 10th]; Available from: http://www.newscenter.philips.com/us_en/standard/news/press/2012/20121212_philips_survey_health_info_tech.wpd#.U4Mg7fmSzMs.
28.Zhou, J., et al., Securing m-healthcare social networks: challenges, countermeasures and future directions. Wireless Communications, IEEE, 2013. 20(4).
29.Liang, X., et al., Enable pervasive healthcare through continuous remote health monitoring. IEEE Wireless Communications, 2012. 19(6): p. 10-18.
30.Rui, W., N. Guangli, and S. Yong. Multiple Criteria Quadratic Programming for Fund Customer Churn Analysis. in Computational Sciences and Optimization (CSO), 2011 Fourth International Joint Conference on. 2011.
31.Heskett, J., C. Hart, and W. E. Sasser Jr., Service Breakthroughs: Changing the Rules of the Game. . 1990: NY: Free Press.
32.Family Caregivers are Wired for Health. 2013 [cited 2014 May 09th]; Available from: http://www.pewinternet.org/2013/06/20/family-caregivers-are-wired-for-health/.
33.Mayberry, L.S. and C.Y. Osborn, Family Support, Medication Adherence, and Glycemic Control Among Adults With Type 2 Diabetes. Diabetes Care, 2012. 35(6): p. 1239-1245.
34.Association, A.D. Diabetes Basics. 2016; Available from: http://www.diabetes.org/.
35.World Health Organization, G. Diabetes Fact sheet. 2016; Available from: http://www.who.int/dg/speeches/2016/obesity-diabetes-disaster/en/.
36.Association, A.D., Executive Summary: Standards of Medical Care in Diabetes—2014. Diabetes Care, 2014. 37(Supplement 1): p. S5-S13.
37.Tripathy, B., H.B. Chandalia, and A.K. Das, RSSDI textbook of diabetes mellitus. 2012: JP Medical Ltd.
38.Gardner, D.G.S. and D. Greenspan, Greenspan''s basic & clinical endocrinology. 2007: McGraw-Hill Medical.
39.American Diabetes, A., Standards of Medical Care in Diabetes—2013. Diabetes Care, 2013. 36(Suppl 1): p. S11-S66.
40.Association, A.D., Executive Summary: Standards of Medical Care in Diabetes—2011. Diabetes Care, 2011. 34(Suppl 1): p. S4-S10.
41.Association, A.D., Standards of Medical Care in Diabetes—2016: Summary of Revisions. Diabetes Care, 2016. 39(Supplement 1): p. S4-S5.
42.Bergenstal, R.M., et al., Recommendations for Standardizing Glucose Reporting and Analysis to Optimize Clinical Decision Making in Diabetes: The Ambulatory Glucose Profile. Journal of Diabetes Science and Technology, 2013. 7(2): p. 562-578.
43.Stumvoll, M., B.J. Goldstein, and T.W. van Haeften, Type 2 diabetes: principles of pathogenesis and therapy. The Lancet. 365(9467): p. 1333-1346.
44.Leahy, J.L., Pathogenesis of Type 2 Diabetes Mellitus. Archives of Medical Research. 36(3): p. 197-209.
45.Nolan, C.J., P. Damm, and M. Prentki, Type 2 diabetes across generations: from pathophysiology to prevention and management. The Lancet. 378(9786): p. 169-181.
46.Diagnosis and Classification of Diabetes Mellitus. Diabetes Care, 2004. 27(suppl 1): p. s5-s10.
47.Kumar, P.J. and M.L. Clark. Kumar & Clark''s clinical medicine. 2012; Available from: http://www.clinicalkey.com/dura/browse/bookChapter/3-s2.0-C20100662948.
48.林心薇, 規則引擎專家系統 : 以糖尿病為例 Rule base expert system : a case study on diabetes mellitus 淡江大學, 2014.
49.Ashton, K., That ‘internet of things’ thing. RFiD Journal, 2009. 22(7): p. 97-114.
50.DaCosta, F., Rethinking the Internet of Things: a scalable approach to connecting everything. 2013: Apress.
51.Atzori, L., A. Iera, and G. Morabito, The internet of things: A survey. Computer networks, 2010. 54(15): p. 2787-2805.
52.Gubbi, J., et al., Internet of Things (IoT): A vision, architectural elements, and future directions. Future Generation Computer Systems, 2013. 29(7): p. 1645-1660.
53.Asadullah, M. and A.R. Celik, An Effective Approach to Build Smart Building Based on Internet of Things (IoT). 2016.
54.詹文男. [專欄]從智慧交通案例看物聯網成功關鍵. 2015; Available from: https://www.ctimes.com.tw/DispCols/tw/1503031725DI.shtml.
55.Alex Blanter Partner, M.H.P., Internet of Things 2020: A Glimpse into the Future. 2014, Silicon Valley Thought Leaders Series: A.T. Kearney.
56.Want, R., An introduction to RFID technology. IEEE Pervasive Computing, 2006. 5(1): p. 25-33.
57.劉麗惠, 歐美日中 積極投資加速發展-全球IoT應用百花齊放. 2014, 台北市進出口公會.
58.Hunkeler, U., H.L. Truong, and A. Stanford-Clark. MQTT-S — A publish/subscribe protocol for Wireless Sensor Networks. in Communication Systems Software and Middleware and Workshops, 2008. COMSWARE 2008. 3rd International Conference on. 2008.
59.Al-Fuqaha, A., et al., Internet of Things: A Survey on Enabling Technologies, Protocols, and Applications. IEEE Communications Surveys & Tutorials, 2015. 17(4): p. 2347-2376.
60.Locke, D., Mq telemetry transport (mqtt) v3. 1 protocol specification. IBM developerWorks Technical Library], available at http://www.ibm.com/developerworks/webservices/library/ws-mqtt/index.html, 2010.
61.Kobayashi, S., et al., A geographical information system using the Google Map API for guidance to referral hospitals. Journal of medical systems, 2010. 34(6): p. 1157-1160.
62.Pan, B., J.C. Crotts, and B. Muller, Developing web-based tourist information tools using google map. Information and Communication Technologies in Tourism 2007, 2007: p. 503-512.
63.Longley, P., et al., Introduction to GIS. Instructor, 2009.
64.Svennerberg, G., Beginning Google Maps API 3. 2010: Apress.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top