|
[1] K.Tanaka and H. O.Wang, Fuzzy Control Systems Design and Analysis: A Linear Matrix Inequality Approach. New York, NY, USA: Wiley,2001 [2] G. Feng, ”A survey on analysis and design of model-based fuzzy control systems,” IEEE Trans. Fuzzy Syst.,vol. 14, no.5, pp.676-697, Oct. 2006. [3] H. O. Wang, K. Tanaka and M. F. Griffin, ”An approach to fuzzy control of nonlinear systems,” IEEE Trans. Fuzzy Syst., vol. 4, no. 1, pp. 14-23, 1996 [4] K.Tanaka, H.Yoshida, H.O.Wang, ”A sum of squares approach to stability analysis of polynomial fuzzy systems,” in Proc.Am.Control Conf., New York, Jul.2007, pp.4071-4076. [5] H. K. Lam; M. Narimani; H. Li; H. Liu, ”Stability Analysis of Polynomial-Fuzzy-Model-Based Control Systems switching Polynomial Lyapunov Function,” IEEE Trans. Fuzzy Syst., vol.21, no. 5, pp.800-813, Oct. 2013. [6] K.Tanaka, H.Yoshida, H.O.Wang, ”A New Sum-of-Squares Design Framework for Robust Control of Polynomial Fuzzy Systems With Uncertainties,” in IEEE Trans. Fuzzy Syst., Feb.2016, pp.94-110. 45 [7] K. Tanaka, and H. O. Wang, ”Guaranteed Cost Control of Polynomial Fuzzy Systems via a Sum of Squares Approach,” in Proc. Int. Conf., vol. 39, no. 2, pp. 561-567, Apr. 2009. [8] K. Tanaka, T. Komatsu, H. Ohtake, H. O. Wang, ”Micro helicopter control: LMI approach vs SOS approach”, in Proc. IEEE Int. Conf. Fuzzy Syst.,Hong Kong, Jun. 2008,pp.47-353 [9] M. Narimani; H. K. Lam, ”SOS-Based Stability Analysis of Polynomial Fuzzy-Model-Based Control Systems Via Polynomial Membership Functions”, IEEE Trans. Fuzzy Syst., vol.18, no. 5, pp.862-871, Oct. 2010. [10] S.Prajna, A.Papachristodoulou, P. Seiler, and P.A. Parrilo, SOSTOOLS: Sum of Squares Optimization Toolbox for Matlab,Version 2.00, 2004 [11] S.Prajna(Aug. 2013), SOSOPT: A toolbox for polynomial optimization.[Online]. Available:http://arxiv.org/pdf/1308.1889v1.pdf [12] G.Balas, A, Packard, P. Seiler, and U. Topcu.(Jul. 2013), Robustness analysis of nonlinear systems.[Online]. Available:http://www.aem.umn.edu/ AerospaceControl/ [13] Y. Nesterov and A. Nemirovskii, Interior-Point Polynomial Algorithms in Convex Programming. Philadelphia, PA, USA: SIAM, 1994. 46 [14] D. Tikk, P. Baranyi, and R. J. Patton, ”Approximation properties of TP model forms and its consequences to TPDC esign framework,” Asian J. Control, vol. 9, no. 3, pp. 221-231, Sep. 2007. [15] S. S. L. Chang and T. K. C. Peng, ”Adaptive guaranteed cost control of systems with uncertain parameters”, IEEE Trans. Autom. Control, vol. 17, no. 4, pp. 474–483, Aug. 1972. [16] B. Chen, X. Liu, S. Tong, and C. Lin, ”Guaranteed cost control of T-S fuzzy systems with state and input delays”, Fuzzy Sets Syst., vol. 158, no. 20, pp. 2251–2267, 2007. [17] J. Yoneyama, ”Robust guaranteed cost control of uncertain fuzzy systems under time-varying sampling”, Appl. Soft Comput., vol. 11, no. 1, pp. 249–255, 2011. [18] Z. P. Wang and H. N. Wu, ”Fuzzy impulsive control for uncertain nonlinear systems with guaranteed cost,” Fuzzy Sets Syst., vol. 302, pp. 143–162, Nov. 2016. [19] Shin, K. and Mckay, N., Minimum-time control of robotic manipulators with geometric path constraints, Automatic Control, IEEE Transactions on, vol. 30, no. 6, pp. 531-541, 1985. [20] K. Tanaka, H. Yoshida, H. Ohtake, and H. O. Wang, ”Stabilization of polynomial fuzzy systems via a sum of squares approach,” in Proc. IEEE Int. Symp. Intell. 47 Control, Singapore, Oct. 2007, pp. 160-165. [21] G. R. Yu and H. T. Huang, ”A sum-of-squares approach to synchronization of chaotic systems with polynomial fuzzy systems,” in Proc. Int. Conf. Fuzzy Theory Appl., Taichung, Taiwan, Nov. 2012, pp. 175 - 180. [22] C. C. Sun, B. Y. Zhu, Q. C. Xu, Y. Ai, ”Stabilization of a Polynomial Chaotic System Based on T-S Fuzzy Model”, IEEE Control and Decision Conf.,Yinchuan, China, Aug. 2016, pp.1071-1075 [23] J. Gallier (2010), The Schur complement and symmetric positive semidefinite (and definite) matrices. [Online]. Available: http://www.academia.edu/download/30748223/schur-comp.pdf
|