參考文獻
一、中文部分
尹相志(2004)。資料採礦-網際網路應用與顧客價值管理。台北:維科。
吳緯閔(2008)。網際網路服務推薦系統。國立中央大學資訊工程研究所。桃園縣。
林慶德(2003)。資料庫管理與應用。台北:培生。
林建煌(2010)。行銷管理。台北市:智勝文化事業有限公司製作。
林真蒂(2015)。LINE貼圖表達情緒認知之研究。大葉大學設計暨藝術學院碩士班。彰化縣。翁慈宗(2009)。資料探勘的發展與挑戰。科學發展期刊(442),34-37。
陳怡如(2015)。探討社群媒體對智慧型手機遊戲行銷之影響因素。國立臺北教育大學數位科技設計學系碩士論文。臺北市。張秩綱(2013)。影響社群媒體持續使用意圖之研究-以國內航空公司粉絲專頁為例。逢甲大學運輸科技與管理學系研究所。台中市。
陶蓓麗、廖則竣、林政道(2004)。網際網路顧客關係之實證研究。資訊管理學報,第11卷第1期。頁167-194。廖述賢、溫志皓(2012)。資料探勘理論與應用:以IBM SPSS modeler為範例。新北市:博碩文化股份有限公司。
廖述賢(2007)。知識管理。台北市:雙葉書廊有限公司。
蔡碧鳳(2003)。策略創意軌迹之探討。國立清華大學科技管理研究所碩士班學位論文。新竹市。
二、英文部分
Agrawal, R., Imieliński, T., & Swami, A. (1993, June). Mining association rules between sets of items in large databases. In Acm sigmod record (Vol. 22, No. 2, pp. 207-216). ACM.
Armstrong, A., & Hagel, J. (2000). The real value of online communities. Knowledge and communities, 74(3), 85-95.
Berry, M. J., & Linoff, G. (1997). Data mining techniques: for marketing, sales, and customer support. John Wiley & Sons, Inc..
Cabena, P., Hadjinian, P., Stadler, R., Verhees, J., & Zanasi, A. (1998). Discovering data mining: from concept to implementation. Prentice-Hall, Inc..
Chen, T. Y., & Huang, J. H. (2013). Application of data mining in a global optimization algorithm. Advances in Engineering Software, 66, 24-33.
Coenen, F., Goulbourne, G., & Leng, P. (2004). Tree structures for mining association rules. Data Mining and Knowledge Discovery, 8(1), 25-51.
Fayyad, U., Piatetsky-Shapiro, G., & Smyth, P. (1996). From data mining to knowledge discovery in databases. AI magazine, 17(3), 37.
Fayyad, U., & Stolorz, P. (1997). Data mining and KDD: Promise and challenges. Future generation computer systems, 13(2-3), 99-115.
Frawley, W. J. (1991). Knowledge discovery in databases (Vol. 37). W. J. Frawley, & G. Piatetsky-Shapiro (Eds.). Menlo Park, CA: AAAI Press.
Goldberg, D., Nichols, D., Oki, B. M., & Terry, D. (1992). Using collaborative filtering to weave an information tapestry. Communications of the ACM, 35(12), 61-70.
Han, J., Pei, J., & Kamber, M. (2011). Data mining: concepts and techniques. Elsevier.
Häubl, G., & Murray, K. B. (2006). Double agents: assessing the role of electronic product recommendation systems. Sloan Management Review, 47(3), 8-12.
Hofacker, C. F., Malthouse, E. C., & Sultan, F. (2016). Big data and consumer behavior: Imminent opportunities. Journal of Consumer Marketing, 33(2), 89-97.
Hoffer, J. A., George, J. F., & Valacich, J. S. (2002). Modem Systems Analysis and Design Pearson Prentice Hall.
Hui, S. C., & Jha, G. (2000). Data mining for customer service support. Information & Management, 38(1), 1-13.
Hung, L. P. (2005). A personalized recommendation system based on product taxonomy for one-to-one marketing online. Expert systems with applications, 29(2), 383-392.
Kaplan, A. M., & Haenlein, M. (2010). Users of the world, unite! The challenges and opportunities of Social Media. Business horizons, 53(1), 59-68.
Kouris, I. N., Makris, C. H., & Tsakalidis, A. K. (2005). Using information retrieval techniques for supporting data mining. Data & Knowledge Engineering, 52(3), 353-383.
Markham, S. K., Kowolenko, M., & Michaelis, T. L. (2015). Unstructured text analytics to support new product development decisions. Research-Technology Management, 58(2), 30-39.
Middleton, S. E. (2002). Interface agents: A review of the field. arXiv preprint cs/0203012.
Padmanabhan, B., & Tuzhilin, A. (2002). Knowledge refinement based on the discovery of unexpected patterns in data mining. Decision Support Systems, 33(3), 309-321.
Piatetsky, G. (1991). Knowledge discovery in database: An overview. Knowledge Discovery in Database.
Rashid, A. M., Albert, I., Cosley, D., Lam, S. K., McNee, S. M., Konstan, J. A., & Riedl, J. (2002, January). Getting to know you: learning new user preferences in recommender systems. In Proceedings of the 7th international conference on Intelligent user interfaces (pp. 127-134). ACM.
Resnick, P., & Varian, H. R. (1997). Recommender systems. Communications of the ACM, 40(3), 56-58.
Ricci, F., Rokach, L., & Shapira, B. (2011). Introduction to recommender systems handbook (pp. 1-35). springer US.
Schafer, J. B., Konstan J. A. & Ried, J. (2001). E-commerce recommendation applications. Applications of data mining to electronic commerce, 5(1-2), 115-153.
Schafer, J. B., Konstan, J. A., & Riedl, J. (2001). E-commerce recommendation applications. In Applications of Data Mining to Electronic Commerce (pp. 115-153). Springer US.
Srikant, R., Vu, Q., & Agrawal, R. (1997, August). Mining association rules with item constraints. In KDD (Vol. 97, pp. 67-73).
Toroslu, I. H., & Yetisgen-Yildiz, M. (2005). Data mining in deductive databases using query flocks. Expert Systems with Applications, 28(3), 395-407.
Xiao, B., & Benbasat, I. (2007). E-commerce product recommendation agents: use, characteristics, and impact. MIS quarterly, 31(1), 137-209.
Zhang, Z., Lin, H., Liu, K., Wu, D., Zhang, G., & Lu, J. (2013). A hybrid fuzzy-based personalized recommender system for telecom products/services. Information Sciences, 235, 117-129.
三、網路資料
看雜誌(2012年7月) 。「App LINE爆紅崛起」。賴宛琳撰文,2017年4月18日,取自:
https://www.watchinese.com/article/2012/4402
數位時代(2016年10月)。「1,700萬台灣人都在用!三張圖看LINE的使用者分析」。2017年4月18日,取自: https://www.bnext.com.tw/article/41433/line-user-in-taiwan-is-more-than-90-percent
INSIDE(2016年12月)。「LINE 怎麼成為全球最賺錢的 App 之一」。2017年4月18日,取自: https://www.inside.com.tw/2016/12/12/how-did-line-become-one-of-the-apps-that-earn-most-money