跳到主要內容

臺灣博碩士論文加值系統

(44.200.169.3) 您好!臺灣時間:2022/12/05 19:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:駱允中
研究生(外文):Yun-Chun Lo
論文名稱:飲食中脂肪酸飽和度對小鼠類憂鬱行為及腸道菌相之影響
論文名稱(外文):Effects of Dietary Fatty Acid-saturated Degree on Depressive-like Behaviour and Gut Microbiota in Mice
指導教授:黃士懿黃士懿引用關係
指導教授(外文):Shih-Yi Huang
口試委員:黃啟彰楊素卿
口試委員(外文):Chi-Chang HuangYang, Suh-Ching
口試日期:2017-06-22
學位類別:碩士
校院名稱:臺北醫學大學
系所名稱:保健營養學研究所
學門:醫藥衛生學門
學類:營養學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:67
中文關鍵詞:脂肪酸曠野實驗強迫游水實驗腸道菌相類憂鬱行為
外文關鍵詞:fatty acidsopen field testforced swim testgut microbiotadepressive-like behaviour
相關次數:
  • 被引用被引用:0
  • 點閱點閱:59
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
憂鬱症在近代是極需被關注的公衛議題,相關研究透過動物行為實驗已證實脂肪酸與動物行為之間的關聯;其中不乏富含n-3多元不飽和脂肪酸(n-3 polyunsaturated fatty acid, n-3 PUFA)之魚油改善憂鬱症狀的臨床結果,而有關其他脂肪酸來源的研究相對較少,故本篇探討不同食用油脂肪酸飽和度對小鼠腸道菌相及行為的影響。實驗使用60隻BALB/c小鼠,飼料分成:一般組(N)、藥物組(NP)、藥物組(NI)、豬油組(L)、魚油組(F)、椰油組(C)及茶油組(T),飼料餵食12週,第13及14週進行行為實驗後犧牲。行為實驗結果顯示L組小鼠在曠野實驗(OFT)中有類焦慮行為的表現,並在強迫游水實驗(FST)中有類憂鬱行為的表現;腸道菌相分析結果則發現飼料中油脂來源的不同會產生腸道菌相差異;脂肪酸組成分析亦發現攝取不同油脂之飼料會改變小鼠體內細胞膜脂肪酸組成。根據結果推論,飼料中不同種類的油脂來源,會影響小鼠在行為實驗中的表現、腸道菌相的組成以及細胞膜脂肪酸的組成。是否能透過改變人類飲食中油脂來源來達到改善憂鬱症狀的功效;以及飼料中不同油脂來源的種類對小鼠行為及腸道菌相兩者間的影響是否具相關性,仍需進一步的研究。
Depression is a major public health issue in the modern world. Relative research reveals the connection between dietary fatty acids and animal behaviour through animal behavioural tests, especially fish oil which rich in n-3 polyunsaturated fatty acid (n-3 PUFA) improve the depressive symptoms in clinical studies. However, lack of studies discuss the effectiveness of other fatty acids. Therefore, this study explored the effects of dietary fatty acid saturation on the gut microbiota and behaviour in mice. Sixty mice were divided into the normal group (N), the Prozac group (NP), the imipramine group (NI), the lard group (L), the fish oil group (F), the coconut oil group (C), and the tea oil group (T). After a 12-weeks dietary intervention, the open field test (OFT) was performed in week 13 and the forced swim test (FST) was conducted in week 14.The results showed that the mice in L group performed the anxiety-like behaviour in the OFT, and the depressive-like behaviour in the FST. According to next-generation sequencing (NGS) results, the mice ingested different dietary lipids lead to the gut microbial composition difference. Results also showed that the fatty acid composition of the cell membrane was altered in different lipid-treated groups. According to the results, different types of dietary lipids may affect the behaviour, gut microbiota composition and fatty acid composition of the cell membrane in mice.
中文摘要 II
英文摘要 III
致謝 IV
目錄 V
圖目次 VIII
表目次 X
縮寫表 XI
第一章 緒論 1
第一節 動機與目的 1
第二節 假說 2
第二章 文獻回顧 3
第一節 憂鬱症 3
一、 憂鬱症的影響 4
二、 憂鬱症的治療 6
第二節 飲食中的脂肪酸 9
一、 實驗飲食油脂來源 9
二、 多元不飽和脂肪酸 11
第三節 腸道菌相 13
一、 飲食型態與腸道菌相 14
二、 腸道通透性與腸道菌相 15
三、 腦─腸─微生物軸 15
四、 腦─腸─微生物軸之訊息傳遞 17
第三章 材料與方法 18
第一節 動物實驗 18
一、 分組 18
二、 飼料 21
三、 抗憂鬱藥物 21
四、 樣本採集 22
第二節 曠野實驗 24
第三節 強迫游水實驗 25
第四節 腸道菌相 26
第五節 脂肪酸組成 27
第六節 生物化學分析 28
一、 血清皮質酮 28
二、 大腦血清素 28
三、 腦源性神經滋養因子 28
四、 酪胺酸激酶受器 28
第七節 統計分析 29
第四章 結果 30
第一節 體重及攝食量 30
第二節 曠野實驗 31
第三節 強迫游水實驗 32
第四節 腸道菌相 33
第五節 脂肪酸組成 34
一、 飲食脂肪酸組成 34
二、 糞便中脂肪酸組成 34
三、 血清中脂肪酸組成 35
四、 大腦組織細胞膜組成 35
第六節 生物化學分析 36
一、 皮質酮 36
二、 血清素 36
三、 腦源性神經滋養因子 36
四、 酪胺酸激酶受器 36
第五章 討論 37
第一節 體重及攝食量 37
第二節 曠野實驗 38
第三節 強迫游水實驗 41
第四節 腸道菌相 42
第五節 脂肪酸組成 44
第六節 生化指標 46
第六章 結論 47
參考資料 61
附錄一 實驗動物照護及使用委員會審查同意書 67
Betsholtz, C. (2015). Lipid transport and human brain development. Nat Genet 47, 699-701.
Blier, P., and de Montigny, C. (1994). Current advances and trends in the treatment of depression. Trends Pharmacol Sci 15, 220-226.
Braniste, V., Al-Asmakh, M., Kowal, C., Anuar, F., Abbaspour, A., Toth, M., Korecka, A., Bakocevic, N., Ng, L.G., Kundu, P., et al. (2014). The gut microbiota influences blood-brain barrier permeability in mice. Sci Transl Med 6, 263ra158.
Can, A., Dao, D.T., Arad, M., Terrillion, C.E., Piantadosi, S.C., and Gould, T.D. (2012). The mouse forced swim test. J Vis Exp, e3638.
Cani, P.D., Everard, A., and Duparc, T. (2013). Gut microbiota, enteroendocrine functions and metabolism. Curr Opin Pharmacol 13, 935-940.
Chao, A. (1984). Non-parametric estimation of the number of classes in a population. Scand J Stat 11, 43.
Chao, A., and Lee, S.M. (1992). Estimating the Number of Classes Via Sample Coverage. JASA 87, 210-217.
Crumeyrolle-Arias, M., Jaglin, M., Bruneau, A., Vancassel, S., Cardona, A., Dauge, V., Naudon, L., and Rabot, S. (2014). Absence of the gut microbiota enhances anxiety-like behavior and neuroendocrine response to acute stress in rats. Psychoneuroendocrinology 42, 207-217.
DALYs, G.B.D., Collaborators, H., Murray, C.J., Barber, R.M., Foreman, K.J., Abbasoglu Ozgoren, A., Abd-Allah, F., Abera, S.F., Aboyans, V., Abraham, J.P., et al. (2015). Global, regional, and national disability-adjusted life years (DALYs) for 306 diseases and injuries and healthy life expectancy (HALE) for 188 countries, 1990-2013: quantifying the epidemiological transition. Lancet 386, 2145-2191.
Dash, S.R., O''Neil, A., and Jacka, F.N. (2016). Diet and Common Mental Disorders: The Imperative to Translate Evidence into Action. Front Public Health 4, 81.
David, L.A., Maurice, C.F., Carmody, R.N., Gootenberg, D.B., Button, J.E., Wolfe, B.E., Ling, A.V., Devlin, A.S., Varma, Y., Fischbach, M.A., et al. (2014). Diet rapidly and reproducibly alters the human gut microbiome. Nature 505, 559-563.
Deol, P., Evans, J.R., Dhahbi, J., Chellappa, K., Han, D.S., Spindler, S., and Sladek, F.M. (2015). Soybean Oil Is More Obesogenic and Diabetogenic than Coconut Oil and Fructose in Mouse: Potential Role for the Liver. PLoS One 10, e0132672.
Donato, F., de Gomes, M.G., Goes, A.T., Filho, C.B., Del Fabbro, L., Antunes, M.S., Souza, L.C., Boeira, S.P., and Jesse, C.R. (2014). Hesperidin exerts antidepressant-like effects in acute and chronic treatments in mice: possible role of l-arginine-NO-cGMP pathway and BDNF levels. Brain Res Bull 104, 19-26.
Folch, J., Lees, M., and Sloane Stanley, G.H. (1957). A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 226, 497-509.
Frost, G., Sleeth, M.L., Sahuri-Arisoylu, M., Lizarbe, B., Cerdan, S., Brody, L., Anastasovska, J., Ghourab, S., Hankir, M., Zhang, S., et al. (2014). The short-chain fatty acid acetate reduces appetite via a central homeostatic mechanism. Nat Commun 5, 3611.
Fu, T.S., Lee, C.S., Gunnell, D., Lee, W.C., and Cheng, A.T. (2013). Changing trends in the prevalence of common mental disorders in Taiwan: a 20-year repeated cross-sectional survey. Lancet 381, 235-241.
Gibson, G.R., and Roberfroid, M.B. (1995). Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J Nutr 125, 1401-1412.
Grenham, S., Clarke, G., Cryan, J.F., and Dinan, T.G. (2011). Brain-gut-microbe communication in health and disease. Front Physiol 2, 94.
Grey, A., and Bolland, M. (2014). Clinical trial evidence and use of fish oil supplements. JAMA Intern Med 174, 460-462.
Guo, Y.R., Hsu, Y.H., Liang, A., Lu, W.J., Wu, C.H., Lee, H.C., and Huang, S.Y. (2015). n-3 Polyunsaturated fatty acids ameliorate cognitive age-related impairments and depressive behaviour in unchallenged aged prediabetic rats. J Funct Foods 19, 522-536.
Jiang, H., Ling, Z., Zhang, Y., Mao, H., Ma, Z., Yin, Y., Wang, W., Tang, W., Tan, Z., Shi, J., et al. (2015). Altered fecal microbiota composition in patients with major depressive disorder. Brain Behav Immun 48, 186-194.
Kelly, J.R., Kennedy, P.J., Cryan, J.F., Dinan, T.G., Clarke, G., and Hyland, N.P. (2015). Breaking down the barriers: the gut microbiome, intestinal permeability and stress-related psychiatric disorders. Front Cell Neurosci 9, 392.
Keszthelyi, D., Troost, F.J., Jonkers, D.M., van Eijk, H.M., Lindsey, P.J., Dekker, J., Buurman, W.A., and Masclee, A.A. (2014). Serotonergic reinforcement of intestinal barrier function is impaired in irritable bowel syndrome. Aliment Pharmacol Ther 40, 392-402.
Lin, Y.E., Lin, S.H., Chen, W.C., Ho, C.T., Lai, Y.S., Panyod, S., and Sheen, L.Y. (2016). Antidepressant-like effects of water extract of Gastrodia elata Blume in rats exposed to unpredictable chronic mild stress via modulation of monoamine regulatory pathways. J Ethnopharmacol 187, 57-65.
Lopez, A.D., and Murray, C.C. (1998). The global burden of disease, 1990-2020. Nat Med 4, 1241-1243.
Macfarlane, G.T., and Macfarlane, S. (2012). Bacteria, colonic fermentation, and gastrointestinal health. J AOAC Int 95, 50-60.
Malisch, J.L., Saltzman, W., Gomes, F.R., Rezende, E.L., Jeske, D.R., and Garland, T., Jr. (2007). Baseline and stress-induced plasma corticosterone concentrations of mice selectively bred for high voluntary wheel running. Physiol Biochem Zool 80, 146-156.
Muller, C.P., Reichel, M., Muhle, C., Rhein, C., Gulbins, E., and Kornhuber, J. (2015). Brain membrane lipids in major depression and anxiety disorders. Biochim Biophys Acta 1851, 1052-1065.
Nair, A.B., and Jacob, S. (2016). A simple practice guide for dose conversion between animals and human. J Basic Clin Pharm 7, 27-31.
Naseribafrouei, A., Hestad, K., Avershina, E., Sekelja, M., Linlokken, A., Wilson, R., and Rudi, K. (2014). Correlation between the human fecal microbiota and depression. Neurogastroenterol Motil 26, 1155-1162.
Nguyen, L.N., Ma, D., Shui, G., Wong, P., Cazenave-Gassiot, A., Zhang, X., Wenk, M.R., Goh, E.L., and Silver, D.L. (2014). Mfsd2a is a transporter for the essential omega-3 fatty acid docosahexaenoic acid. Nature 509, 503-506.
Noriega, B.S., Sanchez-Gonzalez, M.A., Salyakina, D., and Coffman, J. (2016). Understanding the Impact of Omega-3 Rich Diet on the Gut Microbiota. Case Rep Med 2016, 3089303.
O''Mahony, S.M., Clarke, G., Borre, Y.E., Dinan, T.G., and Cryan, J.F. (2015). Serotonin, tryptophan metabolism and the brain-gut-microbiome axis. Behav Brain Res 277, 32-48.
O''Mahony, S.M., Felice, V.D., Nally, K., Savignac, H.M., Claesson, M.J., Scully, P., Woznicki, J., Hyland, N.P., Shanahan, F., Quigley, E.M., et al. (2014). Disturbance of the gut microbiota in early-life selectively affects visceral pain in adulthood without impacting cognitive or anxiety-related behaviors in male rats. Neuroscience 277, 885-901.
Olivares-Nazario, M., Fernandez-Guasti, A., and Martinez-Mota, L. (2016). Age-related changes in the antidepressant-like effect of desipramine and fluoxetine in the rat forced-swim test. Behav Pharmacol 27, 22-28.
Osso, L., Carmassi, C., Mucci, F., and Marazziti, D. (2016). Depression, serotonin and tryptophan. Curr Pharm Des 22, 949-954.
Parker, H.E., Habib, A.M., Rogers, G.J., Gribble, F.M., and Reimann, F. (2009). Nutrient-dependent secretion of glucose-dependent insulinotropic polypeptide from primary murine K cells. Diabetologia 52, 289-298.
Post, A.M., Weyers, P., Holzer, P., Painsipp, E., Pauli, P., Wultsch, T., Reif, A., and Lesch, K.P. (2011). Gene-environment interaction influences anxiety-like behavior in ethologically based mouse models. Behav Brain Res 218, 99-105.
Reeves, P.G., Nielsen, F.H., and Fahey, G.C., Jr. (1993). AIN-93 purified diets for laboratory rodents: final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. J Nutr 123, 1939-1951.
Robertson, R.C., Seira Oriach, C., Murphy, K., Moloney, G.M., Cryan, J.F., Dinan, T.G., Paul Ross, R., and Stanton, C. (2017). Omega-3 polyunsaturated fatty acids critically regulate behaviour and gut microbiota development in adolescence and adulthood. Brain Behav Immun 59, 21-37.
Saad, A., Nguyen, P., and Belagaje, S.R. (2016). Selective Serotonin Reuptake Inhibitors. In Ischemic Stroke Therapeutics: A Comprehensive Guide, B. Ovbiagele, ed. (Cham: Springer International Publishing), pp. 209-216.
Salari, A.A., Fatehi-Gharehlar, L., Motayagheni, N., and Homberg, J.R. (2016). Fluoxetine normalizes the effects of prenatal maternal stress on depression- and anxiety-like behaviors in mouse dams and male offspring. Behav Brain Res 311, 354-367.
Sanchez-Villegas, A., Martinez-Gonzalez, M.A., Estruch, R., Salas-Salvado, J., Corella, D., Covas, M.I., Aros, F., Romaguera, D., Gomez-Gracia, E., Lapetra, J., et al. (2013). Mediterranean dietary pattern and depression: the PREDIMED randomized trial. BMC Med 11, 208.
Senphan, T., and Benjakul, S. (2017). Comparative Study on Virgin Coconut Oil Extraction Using Protease from Hepatopancreas of Pacific White Shrimp and Alcalase. Journal of Food Processing and Preservation 41, e12771.
Shannon, C.E. (1997). The mathematical theory of communication. 1963. MD Comput 14, 306-317.
Simpson, E.H. (1949). Measurement of Diversity. Nature 163, 688-688.
Thomas, T., Gilbert, J., and Meyer, F. (2012). Metagenomics - a guide from sampling to data analysis. Microb Inform Exp 2, 1-12.
Vijay, N., and Morris, M.E. (2014). Role of monocarboxylate transporters in drug delivery to the brain. Curr Pharm Des 20, 1487-1498.
Wang, L., Zhang, J., Guo, Z., Kwok, L., Ma, C., Zhang, W., Lv, Q., Huang, W., and Zhang, H. (2014). Effect of oral consumption of probiotic Lactobacillus planatarum P-8 on fecal microbiota, SIgA, SCFAs, and TBAs of adults of different ages. Nutrition 30, 776-783 e771.
Weitz, E.S., Hollon, S.D., Twisk, J., van Straten, A., Huibers, M.J., David, D., DeRubeis, R.J., Dimidjian, S., Dunlop, B.W., Cristea, I.A., et al. (2015). Baseline Depression Severity as Moderator of Depression Outcomes Between Cognitive Behavioral Therapy vs Pharmacotherapy: An Individual Patient Data Meta-analysis. JAMA Psychiatry 72, 1102-1109.
Whiteford, H.A., Degenhardt, L., Rehm, J., Baxter, A.J., Ferrari, A.J., Erskine, H.E., Charlson, F.J., Norman, R.E., Flaxman, A.D., Johns, N., et al. (2013). Global burden of disease attributable to mental and substance use disorders: findings from the Global Burden of Disease Study 2010. Lancet 382, 1575-1586.
Williamson, L.L., McKenney, E.A., Holzknecht, Z.E., Belliveau, C., Rawls, J.F., Poulton, S., Parker, W., and Bilbo, S.D. (2016). Got worms? Perinatal exposure to helminths prevents persistent immune sensitization and cognitive dysfunction induced by early-life infection. Brain Behav Immun 51, 14-28.
Zhou, L., Ma, S.L., Yeung, P.K., Wong, Y.H., Tsim, K.W., So, K.F., Lam, L.C., and Chung, S.K. (2016). Anxiety and depression with neurogenesis defects in exchange protein directly activated by cAMP 2-deficient mice are ameliorated by a selective serotonin reuptake inhibitor, Prozac. Transl Psychiatry 6, e881.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊