跳到主要內容

臺灣博碩士論文加值系統

(44.220.44.148) 您好!臺灣時間:2024/06/14 10:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:劉紹正
研究生(外文):Shao-Cheng Liu
論文名稱:類固醇與抗組織胺對氣管與鼻黏膜的效應
論文名稱(外文):Effects of glucocorticoids and H1-antihistamines on tracheal and nasal mucosa
指導教授:王興萬
指導教授(外文):Hsing-Won Wang
學位類別:博士
校院名稱:臺北醫學大學
系所名稱:臨床醫學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:72
中文關鍵詞:潑尼松龍;抗組織胺;組織胺受體;呼吸道重塑性;冷受體;鼻黏膜張力;呼吸道阻力
外文關鍵詞:glucocorticoid;antihistamine;histamine receptor;airway remodeling;TRPM8;nasal mucosa tension;airway resistance
相關次數:
  • 被引用被引用:0
  • 點閱點閱:437
  • 評分評分:
  • 下載下載:16
  • 收藏至我的研究室書目清單書目收藏:0
動機與目的:類固醇與抗組織胺均為治療慢性呼吸道疾病的常用藥物,但過去抗組織胺被認為只提供短效拮抗組織胺受體活化而引起的細胞組織水腫與腺體分泌,類固醇則以抗發炎為主,少有文獻探討此二類藥物在呼吸道重塑中之直接與間接效應。另一方面「冷」是引起呼吸道疾病的重要因子之一,但冷受體在呼吸道上皮的表現與其病、生理角色仍不明。因此,本研究主要以離體組織與鼻黏膜上皮培養模型來探討類固醇與抗組織胺的基因與非基因之調控模式,我們假設在呼吸道上皮黏膜有冷受體,當冷受體被活化時,呼吸道的張力與分泌物會隨之改變。
研究方法:使用離體大白鼠氣管與張力實驗,我們探討類固醇與抗組織胺對呼吸道的非基因調控模式,分析類固醇與抗組織胺對氣管因methocholine收縮的影響。同時也測試薄荷對離體鼻黏膜張力的影響。另一方面,我們建立鼻黏膜上皮培養模型,並對鼻黏膜切片與培養之上皮施予免疫染色來驗證冷受體的表現。隨後將培養之上皮分組,分別給予類固醇或抗組織胺治療,在治療1週後,對各組染色與使用西方墨點法觀察hismamine-1-receptor (H1R)、muscarinic-1-receptor(M1R)、M3R受體之變化;另給予組織胺與methocholine誘發過敏反應,比較各組黏液分泌量之差異。此外給予冷受體致效劑與拮抗劑,探討細胞分泌黏液的差異性。
研究結果:張力實驗顯示,在以methacholine刺激氣管收縮後,單獨使用類固醇(Kidsolone)或是抗組織胺(Xyzal)對張力變化無顯著影響,但同時給予兩項藥物會產生協同增效作用,張力顯著下降。在基因調控模式之研究中,類固醇(budesonide)與抗組織胺(azelastine)均能抑制上皮增生速度,且azelastine抑制的效果明顯大於budesonide,合併使用此兩項藥物的抑制效果大於單獨使用任一藥物,西方墨點法顯示budesonide可明顯上調H1R、M1R與M3R之表現量;而azelastine則明顯下調;另在給予組織胺或methacholine刺激後,接受budesonide治療的上皮分泌黏液的量明顯比對照組與接受azelastine之組高,接受azelastine組的上皮分泌黏液量則明顯的比對照組低。在鼻黏膜切片中,我們首度發現冷受體在鼻上皮與腺體組織呈現明顯的免疫染色反應。另一方面,薄荷與冷刺激可明顯誘發培養之上皮分泌黏液,且這效應可被冷受體拮抗劑所抑制。而薄荷刺激對鼻黏膜基礎張力沒有明顯影響,但可抑制鼻黏膜對交感神經致效劑的反應而舒張鼻黏膜。
結論:本研究顯示類固醇與抗組織胺對呼吸道重塑性同時存在基因與非基因調控模式,類固醇與抗組織胺會產生協同增效作用以放鬆氣管,抗組織胺則具有下調上皮增長速率與組織胺受體表現的效果,在治療慢性呼吸道疾病中,抗組織胺可減少由於長期使用類固醇所引起的副作用,因此,合併使用此兩個藥物,比單獨使用更可產生明顯的效益。另一方面,我們首次呈現了冷受體在鼻黏膜的分佈與作用,人使用薄荷後會覺得鼻部通暢,但鼻張力無明顯變化;且長期曝露於冷空氣中,冷受體活化後會拮抗交感神經作用,因此造成黏膜舒張與黏液分泌增加,引發過敏或氣喘發作。針對這些呼吸道疾病,冷受體拮抗劑可能有臨床上的療效。
Objective: Both glucocorticoids and H1-antihistamines are widely used on patients with chronic airway diseases. H1-antihistamines are well known for their short-term effect, by rapidly inhibiting allergic symptoms. Glucocorticoids work primarily through their anti-inflammatory properties. However, their genomic and non-genomic effects against airway remodeling have not been fully explored. On the other hand, exposure to cold air is a major environmental factor exacerbating chronic inflammatory airway diseases, but the distribution and physiological role of the cold receptor in the nose is not clear. Therefore, the aim of this study is to explore the genomic and non-genomic effects of glucocorticoids and H1-antihistamines and its implications for airway remodeling. Meanwhile, we hypothesize the cold receptor, transient receptor potential channel melastatin 8 (TRPM8), exists in nasal airway epithelial cells. When TRPM8 is activated, the tone of the airway and the secretion productions corresponding to stimulants will be changed.
Methods: Using isometric contraction ex-vivo studies, we tested the genomic effects of glucocorticoids (Kidsolone) and H1-antihistamines (Xyzal) on isolated rat trachea. Changes in contractility in response to the application of parasympathetic mimetic agents were measured. We also tested the effectiveness of the TRPM8 agonist, menthol, on nasal mucosa. The human nasal epithelial cells (HNEpC) primary cultures were established and immunohistology was used to examine the expression of TRPM8, as well as in the nasal mucosa strips. Then, HNEpC were cultivated with/without glucocorticoids (budesonide) and H1-antihistamines (azelastine). The histamine1-receptor (H1R), muscarinic1-receptor (M1R) and M3R were measured using immunocytochemistry and western blotting after 7-days treatment. We used histamine and methacholine to stimulate the mucus secretion from HNEpC and observed the MUC5AC expression in culture supernatants. Meanwhile, we also explored the physiological role of TRPM8 for mucus production in the nose, with/without its agonist and antagonist.
Results: Sole use of Kidsolone or Xyzal elicited no significant effect or only a minor relaxation response on tracheal tension following methacholine treatment. However, a significant synergetic spasmolytic effect was observed following co-administration of Kidsolone and Xyzal. As for the genomic effects of those two drugs, concentration-dependent treatment induced-inhibition of the HNEpC growth rate was observed. Cells incubated with azelastine proliferated significantly slower than that with budesonide and the combined use of those drugs significantly inhibited HNEpC proliferations. Western-blotting revealed budesonide could significantly up-regulate the H1R, M1R and M3R level while azelastine had the opposite effects. Histamine and methacholine stimulated MUC5AC secretion was greater in cells treated with budesonide but less in those treated with azelastine, as compared to controls. On the other hand, for the first time we demonstrated TRPM8 was expressed by the nasal mucosa epithelium and glandular tissue. Both menthol and cold at 24oC induced a statistically significant increased level of mucins production by HNEpC. The TRPM8 antogonist had a statistically significant inhibitory effect in mucins production induced by menthol and cold. Menthol had a negligible effect on the basal tension of the nasal mucosa, but higher doses of menthol had a significant spasmolytic effect on nasal mucosa precontracted with methoxamine.
Conclusions: We confirmed both glucocorticoids and H1-antihistamines exert their effects via both genomic and non-genomic mechanisms, which are beneficial in reducing airway remodeling. Glucocorticoids could be synergized with H1-antihistamines to dramatically relax the trachea smooth muscle. H1-antihistamines offer benefit in reducing airway hyper-reactivity symptoms and reducing mucus productions, by regulating the H1R, M1R and M3R levels, and might offset the side effects resulting from glucocorticoids. Therefore, combined use of glucocorticoids and H1-antihistamines in patients with chronic inflammatory airway diseases is recommended. We also for the first time demonstrated the TRPM8 immunoreactivity and its physiologic role in the human nose. The subjective clear feeling after menthol inhalation might be an illusion because menthol has no direct effect on the basal tension of nasal mucosa. Meanwhile, the prolonged exposure to cold will lead to the activation of TRPM8, mucin hypersecretion, and increase in airway resistance, which is thought to increase the risk of acute exacerbation of nasal allergy and asthma. Therefore, TRPM8 antagonists deserve consideration for treatment of chronic inflammatory airway diseases.
中文摘要(Abstract in Chinese):p. i ~ ii
英文摘要(Abstract in English):p. iii ~ iv
緒論(Introduction):p. 1 ~ 6
研究方法與材料(Materials and Methods):p. 7 ~ 16
結果(Results):p. 17 ~ 22
討論(Discussion): p. 23 ~ 45
結論與展望(Conclusion and Perspective):p. 46 ~ 47
參考文獻(References):p. 48 ~ 54
圖表(Tables and Figures) : p. 55 ~ 65
附錄(Appendix):p. 66 ~ 72
1.Jones RL, Noble PB, Elliot JG, James AL. Airway remodelling in COPD: It''s not asthma! Respirology 2016;21:203-204.
2.Bergeron C, Tulic MK, Hamid Q. Airway remodelling in asthma: from benchside to clinical practice. Can Respir J 2010;17:e85-93.
3.Barnes PJ. Biochemical basis of asthma therapy. J Biol Chem 2011;286:32899-32905.
4.Schmidt M, Michel MC. How can 1 + 1 = 3? beta2-adrenergic and glucocorticoid receptor agonist synergism in obstructive airway diseases. Mol Pharmacol 2011;80:955-958.
5.Benninger MS, Ferguson BJ, Hadley JA, Hamilos DL, Jacobs M, Kennedy DW, Lanza DC, Marple BF, Osguthorpe JD, Stankiewicz JA, Anon J, Denneny J, Emanuel I, Levine H. Adult chronic rhinosinusitis: definitions, diagnosis, epidemiology, and pathophysiology. Otolaryngol Head Neck Surg 2003;129:S1-32.
6.Bachert C. Persistent rhinitis - allergic or nonallergic? Allergy 2004;59 Suppl 76:11-15; discussion 15.
7.Baroody FM. Allergic rhinitis: broader disease effects and implications for management. Otolaryngol Head Neck Surg 2003;128:616-631.
8.Hisamatsu K, Kudo I, Makiyama K. The effect of compound nasal surgery on obstructive sleep apnea syndrome. Am J Rhinol Allergy 2015;29:e192-196.
9.Dekkers BG, Pehlic A, Mariani R, Bos IS, Meurs H, Zaagsma J. Glucocorticosteroids and beta(2)-adrenoceptor agonists synergize to inhibit airway smooth muscle remodeling. J Pharmacol Exp Ther 2012;342:780-787.
10.Mendes ES, Rebolledo P, Wanner A. Acute effects of salmeterol and fluticasone propionate alone and in combination on airway blood flow in patients with asthma. Chest 2012;141:1184-1189.
11.Yick CY, Zwinderman AH, Kunst PW, Grunberg K, Mauad T, Fluiter K, Bel EH, Lutter R, Baas F, Sterk PJ. Glucocorticoid-induced changes in gene expression of airway smooth muscle in patients with asthma. Am J Respir Crit Care Med 2013;187:1076-1084.
12.Wang C, Li YJ, Zheng YQ, Feng B, Liu Y, Cao JM. Glucocorticoid decreases airway tone via a nongenomic pathway. Respir Physiol Neurobiol 2012;183:10-14.
13.Larsen JS. Do antihistamines have a role in asthma therapy? Pharmacotherapy 2001;21:28S-33S.
14.Cruz AA, Popov T, Pawankar R, Annesi-Maesano I, Fokkens W, Kemp J, Ohta K, Price D, Bousquet J. Common characteristics of upper and lower airways in rhinitis and asthma: ARIA update, in collaboration with GA(2)LEN. Allergy 2007;62 Suppl 84:1-41.
15.Simons FE. Advances in H1-antihistamines. N Engl J Med 2004;351:2203-2217.
16.Walsh GM. Second-generation antihistamines in asthma therapy: is there a protective effect? Am J Respir Med 2002;1:27-34.
17.Canonica GW, Blaiss M. Antihistaminic, anti-inflammatory, and antiallergic properties of the nonsedating second-generation antihistamine desloratadine: a review of the evidence. World Allergy Organ J 2011;4:47-53.
18.Babes A, Ciobanu AC, Neacsu C, Babes RM. TRPM8, a sensor for mild cooling in mammalian sensory nerve endings. Curr Pharm Biotechnol 2011;12:78-88.
19.Bautista DM, Siemens J, Glazer JM, Tsuruda PR, Basbaum AI, Stucky CL, Jordt SE, Julius D. The menthol receptor TRPM8 is the principal detector of environmental cold. Nature 2007;448:204-208.
20.Bharate SS, Bharate SB. Modulation of thermoreceptor TRPM8 by cooling compounds. ACS Chem Neurosci 2012;3:248-267.
21.Olsson P, Bende M. Influence of environmental temperature on human nasal mucosa. Ann Otol Rhinol Laryngol 1985;94:153-155.
22.Lundqvist GR, Pedersen OF, Hilberg O, Nielsen B. Nasal reaction to changes in whole body temperature. Acta Otolaryngol 1993;113:783-788.
23.Sabnis AS, Shadid M, Yost GS, Reilly CA. Human lung epithelial cells express a functional cold-sensing TRPM8 variant. Am J Respir Cell Mol Biol 2008;39:466-474.
24.Banner KH, Igney F, Poll C. TRP channels: emerging targets for respiratory disease. Pharmacol Ther 2011;130:371-384.
25.Li M, Li Q, Yang G, Kolosov VP, Perelman JM, Zhou XD. Cold temperature induces mucin hypersecretion from normal human bronchial epithelial cells in vitro through a transient receptor potential melastatin 8 (TRPM8)-mediated mechanism. J Allergy Clin Immunol 2011;128:626-634 e621-625.
26.Naclerio RM, Proud D, Kagey-Sobotka A, Lichtenstein LM, Thompson M, Togias A. Cold dry air-induced rhinitis: effect of inhalation and exhalation through the nose. J Appl Physiol (1985) 1995;79:467-471.
27.Eccles R. Menthol and related cooling compounds. J Pharm Pharmacol 1994;46:618-630.
28.Cho Y, Jang Y, Yang YD, Lee CH, Lee Y, Oh U. TRPM8 mediates cold and menthol allergies associated with mast cell activation. Cell Calcium 2010;48:202-208.
29.McDougall CM, Blaylock MG, Douglas JG, Brooker RJ, Helms PJ, Walsh GM. Nasal epithelial cells as surrogates for bronchial epithelial cells in airway inflammation studies. Am J Respir Cell Mol Biol 2008;39:560-568.
30.Noruddin NA, Saim AB, Chua KH, Idrus R. Human nasal turbinates as a viable source of respiratory epithelial cells using co-culture system versus dispase-dissociation technique. Laryngoscope 2007;117:2139-2145.
31.Keh SM, Facer P, Yehia A, Sandhu G, Saleh HA, Anand P. The menthol and cold sensation receptor TRPM8 in normal human nasal mucosa and rhinitis. Rhinology 2011;49:453-457.
32.Wang HW, Wu CC. Effects of oxymetazoline on isolated rat''s tracheal smooth muscle. Eur Arch Otorhinolaryngol 2008;265:695-698.
33.Wang HW, Chou YL, Chu YH. Azelastine nasal spray inhibiting parasympathetic function of tracheal smooth muscle. Rhinology 2010;48:211-215.
34.Bachert C, Claeys SE, Tomassen P, van Zele T, Zhang N. Rhinosinusitis and asthma: a link for asthma severity. Curr Allergy Asthma Rep 2010;10:194-201.
35.Mosler K, Coraux C, Fragaki K, Zahm JM, Bajolet O, Bessaci-Kabouya K, Puchelle E, Abely M, Mauran P. Feasibility of nasal epithelial brushing for the study of airway epithelial functions in CF infants. J Cyst Fibros 2008;7:44-53.
36.Comer DM, Elborn JS, Ennis M. Comparison of nasal and bronchial epithelial cells obtained from patients with COPD. PLoS One 2012;7:e32924.
37.Yoo JW, Kim YS, Lee SH, Lee MK, Roh HJ, Jhun BH, Lee CH, Kim DD. Serially passaged human nasal epithelial cell monolayer for in vitro drug transport studies. Pharm Res 2003;20:1690-1696.
38.Endres M, Leinhase I, Kaps C, Wentges M, Unger M, Olze H, Ringe J, Sittinger M, Rotter N. Changes in the gene expression pattern of cytokeratins in human respiratory epithelial cells during culture. Eur Arch Otorhinolaryngol 2005;262:390-396.
39.Holgate ST. Epithelium dysfunction in asthma. J Allergy Clin Immunol 2007;120:1233-1244; quiz 1245-1236.
40.Roth M, Johnson PR, Rudiger JJ, King GG, Ge Q, Burgess JK, Anderson G, Tamm M, Black JL. Interaction between glucocorticoids and beta2 agonists on bronchial airway smooth muscle cells through synchronised cellular signalling. Lancet 2002;360:1293-1299.
41.Black JL, Oliver BG, Roth M. Molecular mechanisms of combination therapy with inhaled corticosteroids and long-acting beta-agonists. Chest 2009;136:1095-1100.
42.Feng YM, Feng CW, Chen SY, Hsieh HY, Chen YH, Hsu CD. Cyproheptadine, an antihistaminic drug, inhibits proliferation of hepatocellular carcinoma cells by blocking cell cycle progression through the activation of P38 MAP kinase. BMC Cancer 2015;15:134.
43.Kasurka CB, Sekeroglu ZA, Sekeroglu V. Evaluation of the genotoxicity and cytotoxicity of fexofenadine in cultured human peripheral blood lymphocytes. Toxicol In Vitro 2011;25:1480-1484.
44.Das AK, Yoshimura S, Mishima R, Fujimoto K, Mizuguchi H, Dev S, Wakayama Y, Kitamura Y, Horio S, Takeda N, Fukui H. Stimulation of histamine H1 receptor up-regulates histamine H1 receptor itself through activation of receptor gene transcription. J Pharmacol Sci 2007;103:374-382.
45.Iwata K, Luo J, Penn RB, Benovic JL. Bimodal regulation of the human H1 histamine receptor by G protein-coupled receptor kinase 2. J Biol Chem 2005;280:2197-2204.
46.Hamano N, Terada N, Maesako K, Ikeda T, Fukuda S, Wakita J, Yamashita T, Konno A. Expression of histamine receptors in nasal epithelial cells and endothelial cells--the effects of sex hormones. Int Arch Allergy Immunol 1998;115:220-227.
47.Mori H, Matsuda K, Yamawaki M, Kawata M. Estrogenic regulation of histamine receptor subtype H1 expression in the ventromedial nucleus of the hypothalamus in female rats. PLoS One 2014;9:e96232.
48.Iriyoshi N, Takeuchi K, Yuta A, Ukai K, Sakakura Y. Increased expression of histamine H1 receptor mRNA in allergic rhinitis. Clin Exp Allergy 1996;26:379-385.
49.Tsao P, Cao T, von Zastrow M. Role of endocytosis in mediating downregulation of G-protein-coupled receptors. Trends Pharmacol Sci 2001;22:91-96.
50.Miyoshi K, Kawakami N, Das AK, Fujimoto K, Horio S, Fukui H. Heterologous up-regulation of the histamine H1 receptor by M3 muscarinic receptor-mediated activation of H1-receptor gene transcription. J Pharm Pharmacol 2007;59:843-848.
51.Miyoshi K, Kawakami N, Umehara H, Fujimoto K, Horio S, Fukui H. Down-regulation of histamine H1 receptors by beta2-adrenoceptor-mediated inhibition of H1 receptor gene transcription. J Pharm Pharmacol 2008;60:747-752.
52.De Backer MD, Loonen I, Verhasselt P, Neefs JM, Luyten WH. Structure of the human histamine H1 receptor gene. Biochem J 1998;335 ( Pt 3):663-670.
53.Smit MJ, Hoffmann M, Timmerman H, Leurs R. Molecular properties and signalling pathways of the histamine H1 receptor. Clin Exp Allergy 1999;29 Suppl 3:19-28.
54.Panettieri RA, Yadvish PA, Kelly AM, Rubinstein NA, Kotlikoff MI. Histamine stimulates proliferation of airway smooth muscle and induces c-fos expression. Am J Physiol 1990;259:L365-371.
55.Cheng SE, Lin CC, Lee IT, Hsu CK, Kou YR, Yang CM. Cigarette smoke extract regulates cytosolic phospholipase A2 expression via NADPH oxidase/MAPKs/AP-1 and p300 in human tracheal smooth muscle cells. J Cell Biochem 2011;112:589-599.
56.Thaikoottathil J, Chu HW. MAPK/AP-1 activation mediates TLR2 agonist-induced SPLUNC1 expression in human lung epithelial cells. Mol Immunol 2011;49:415-422.
57.Murata Y, Miyoshi A, Kitamura Y, Takeda N, Fukui H. Up-regulation of histamine H(1) receptors in an allergic rat nasal mucosa model. Inflamm Res 2004;53 Suppl 1:S11-12.
58.Miyoshi K, Das AK, Fujimoto K, Horio S, Fukui H. Recent advances in molecular pharmacology of the histamine systems: regulation of histamine H1 receptor signaling by changing its expression level. J Pharmacol Sci 2006;101:3-6.
59.Miyoshi K, Kawakami N, Wakayama Y, Izumi N, Horio S, Fukui H. Histamine H1 receptor down-regulation mediated by M3 muscarinic acetylcholine receptor subtype. J Pharmacol Sci 2004;95:426-434.
60.Pype JL, Xu H, Schuermans M, Dupont LJ, Wuyts W, Mak JC, Barnes PJ, Demedts MG, Verleden GM. Mechanisms of interleukin 1beta-induced human airway smooth muscle hyporesponsiveness to histamine. Involvement of p38 MAPK NF-kappaB. Am J Respir Crit Care Med 2001;163:1010-1017.
61.Holden NS, Gong W, King EM, Kaur M, Giembycz MA, Newton R. Potentiation of NF-kappaB-dependent transcription and inflammatory mediator release by histamine in human airway epithelial cells. Br J Pharmacol 2007;152:891-902.
62.Takahashi N, Tetsuka T, Uranishi H, Okamoto T. Inhibition of the NF-kappaB transcriptional activity by protein kinase A. Eur J Biochem 2002;269:4559-4565.
63.Masquilier D, Sassone-Corsi P. Transcriptional cross-talk: nuclear factors CREM and CREB bind to AP-1 sites and inhibit activation by Jun. J Biol Chem 1992;267:22460-22466.
64.Mak JC, Roffel AF, Katsunuma T, Elzinga CR, Zaagsma J, Barnes PJ. Up-regulation of airway smooth muscle histamine H(1) receptor mRNA, protein, and function by beta(2)-adrenoceptor activation. Mol Pharmacol 2000;57:857-864.
65.Emala CW, Clancy J, Hirshman CA. Glucocorticoid treatment decreases muscarinic receptor expression in canine airway smooth muscle. Am J Physiol 1997;272:L745-751.
66.Jacoby DB, Yost BL, Kumaravel B, Chan-Li Y, Xiao HQ, Kawashima K, Fryer AD. Glucocorticoid treatment increases inhibitory m(2) muscarinic receptor expression and function in the airways. Am J Respir Cell Mol Biol 2001;24:485-491.
67.Voynow JA, Gendler SJ, Rose MC. Regulation of mucin genes in chronic inflammatory airway diseases. Am J Respir Cell Mol Biol 2006;34:661-665.
68.Ebina M, Takahashi T, Chiba T, Motomiya M. Cellular hypertrophy and hyperplasia of airway smooth muscles underlying bronchial asthma. A 3-D morphometric study. Am Rev Respir Dis 1993;148:720-726.
69.Johnson PR, Burgess JK. Airway smooth muscle and fibroblasts in the pathogenesis of asthma. Curr Allergy Asthma Rep 2004;4:102-108.
70.Johnson PR. Role of human airway smooth muscle in altered extracellular matrix production in asthma. Clin Exp Pharmacol Physiol 2001;28:233-236.
71.Damera G, Tliba O, Panettieri RA, Jr. Airway smooth muscle as an immunomodulatory cell. Pulm Pharmacol Ther 2009;22:353-359.
72.Benayoun L, Druilhe A, Dombret MC, Aubier M, Pretolani M. Airway structural alterations selectively associated with severe asthma. Am J Respir Crit Care Med 2003;167:1360-1368.
73.Billington CK, Ojo OO, Penn RB, Ito S. cAMP regulation of airway smooth muscle function. Pulm Pharmacol Ther 2013;26:112-120.
74.Sin DD, Park HY. Steroids for treatment of COPD exacerbations: less is clearly more. JAMA 2013;309:2272-2273.
75.Chang PJ, Bhavsar PK, Michaeloudes C, Khorasani N, Chung KF. Corticosteroid insensitivity of chemokine expression in airway smooth muscle of patients with severe asthma. J Allergy Clin Immunol 2012;130:877-885 e875.
76.Abbinante-Nissen JM, Simpson LG, Leikauf GD. Corticosteroids increase secretory leukocyte protease inhibitor transcript levels in airway epithelial cells. Am J Physiol 1995;268:L601-606.
77.Culpitt SV, Maziak W, Loukidis S, Nightingale JA, Matthews JL, Barnes PJ. Effect of high dose inhaled steroid on cells, cytokines, and proteases in induced sputum in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 1999;160:1635-1639.
78.Chiappori A, Folli C, Riccio AM, Caci E, Descalzi D, De Ferrari L, Ingrassia E, Nicolini G, Canonica GW. Salbutamol: how does it enter smooth muscle cells? Int J Immunopathol Pharmacol 2012;25:541-546.
79.Mak JC, Nishikawa M, Shirasaki H, Miyayasu K, Barnes PJ. Protective effects of a glucocorticoid on downregulation of pulmonary beta 2-adrenergic receptors in vivo. J Clin Invest 1995;96:99-106.
80.Irusen E, Matthews JG, Takahashi A, Barnes PJ, Chung KF, Adcock IM. p38 Mitogen-activated protein kinase-induced glucocorticoid receptor phosphorylation reduces its activity: role in steroid-insensitive asthma. J Allergy Clin Immunol 2002;109:649-657.
81.Schramm CM. beta-adrenergic relaxation of rabbit tracheal smooth muscle: a receptor deficit that improves with corticosteroid administration. J Pharmacol Exp Ther 2000;292:280-287.
82.Bachert C, Maspero J. Efficacy of second-generation antihistamines in patients with allergic rhinitis and comorbid asthma. J Asthma 2011;48:965-973.
83.Liu H, Farley JM. Effects of first and second generation antihistamines on muscarinic induced mucus gland cell ion transport. BMC Pharmacol 2005;5:8.
84.Bousquet J, Van Cauwenberge P, Khaltaev N. Allergic rhinitis and its impact on asthma. J Allergy Clin Immunol 2001;108:S147-334.
85.Gosens R, Zaagsma J, Meurs H, Halayko AJ. Muscarinic receptor signaling in the pathophysiology of asthma and COPD. Respir Res 2006;7:73.
86.Kao CH, Chu YH, Wang HW. Effects of cetirizine on isolated rat''s tracheal smooth muscle. Eur Arch Otorhinolaryngol 2009;266:753-757.
87.Urbach V, Verriere V, Grumbach Y, Bousquet J, Harvey BJ. Rapid anti-secretory effects of glucocorticoids in human airway epithelium. Steroids 2006;71:323-328.
88.Sun HW, Miao CY, Liu L, Zhou J, Su DF, Wang YX, Jiang CL. Rapid inhibitory effect of glucocorticoids on airway smooth muscle contractions in guinea pigs. Steroids 2006;71:154-159.
89.Pahl A, Bauhofer A, Petzold U, Cnota PJ, Maus J, Brune K, Szelenyi S. Synergistic effects of the anti-cholinergic R,R-glycopyrrolate with anti-inflammatory drugs. Biochem Pharmacol 2006;72:1690-1696.
90.Nabishah BM, Morat PB, Kadir BA, Khalid BA. Effect of steroid hormones on muscarinic receptors of bronchial smooth muscle. Gen Pharmacol 1991;22:389-392.
91.Donaldson GC, Seemungal T, Jeffries DJ, Wedzicha JA. Effect of temperature on lung function and symptoms in chronic obstructive pulmonary disease. Eur Respir J 1999;13:844-849.
92.Larsson K, Tornling G, Gavhed D, Muller-Suur C, Palmberg L. Inhalation of cold air increases the number of inflammatory cells in the lungs in healthy subjects. Eur Respir J 1998;12:825-830.
93.Eccles R, Jones AS. The effect of menthol on nasal resistance to air flow. J Laryngol Otol 1983;97:705-709.
94.Fontanari P, Burnet H, Zattara-Hartmann MC, Jammes Y. Changes in airway resistance induced by nasal inhalation of cold dry, dry, or moist air in normal individuals. J Appl Physiol (1985) 1996;81:1739-1743.
95.Willatt DJ, Jones AS. The role of the temperature of the nasal lining in the sensation of nasal patency. Clin Otolaryngol Allied Sci 1996;21:519-523.
96.Berridge MJ, Lipp P, Bootman MD. The versatility and universality of calcium signalling. Nat Rev Mol Cell Biol 2000;1:11-21.
97.Pedersen SF, Owsianik G, Nilius B. TRP channels: an overview. Cell Calcium 2005;38:233-252.
98.Abe J, Hosokawa H, Okazawa M, Kandachi M, Sawada Y, Yamanaka K, Matsumura K, Kobayashi S. TRPM8 protein localization in trigeminal ganglion and taste papillae. Brain Res Mol Brain Res 2005;136:91-98.
99.McKemy DD, Neuhausser WM, Julius D. Identification of a cold receptor reveals a general role for TRP channels in thermosensation. Nature 2002;416:52-58.
100.Malkia A, Madrid R, Meseguer V, de la Pena E, Valero M, Belmonte C, Viana F. Bidirectional shifts of TRPM8 channel gating by temperature and chemical agents modulate the cold sensitivity of mammalian thermoreceptors. J Physiol 2007;581:155-174.
101.Peier AM, Moqrich A, Hergarden AC, Reeve AJ, Andersson DA, Story GM, Earley TJ, Dragoni I, McIntyre P, Bevan S, Patapoutian A. A TRP channel that senses cold stimuli and menthol. Cell 2002;108:705-715.
102.Rohacs T, Lopes CM, Michailidis I, Logothetis DE. PI(4,5)P2 regulates the activation and desensitization of TRPM8 channels through the TRP domain. Nat Neurosci 2005;8:626-634.
103.Daniels RL, Takashima Y, McKemy DD. Activity of the neuronal cold sensor TRPM8 is regulated by phospholipase C via the phospholipid phosphoinositol 4,5-bisphosphate. J Biol Chem 2009;284:1570-1582.
104.Puzianowska-Kuznicka M, Kuznicki J. The ER and ageing II: calcium homeostasis. Ageing Res Rev 2009;8:160-172.
105.Park JA, Crews AL, Lampe WR, Fang S, Park J, Adler KB. Protein kinase C delta regulates airway mucin secretion via phosphorylation of MARCKS protein. Am J Pathol 2007;171:1822-1830.
106.Chu YH, Wu CC, Wang HW. Effect of cooling on electrical field stimulation and norepinephrine-induced contraction in isolated hypertrophic human nasal mucosa. Am J Rhinol 2006;20:471-475.
107.Chu YH, Wu CC, Kao CH, Wang HW. Low temperature decreased tension in isolated hypertrophic human nasal mucosa. Am J Rhinol 2006;20:84-86.
108.Chu YH, Wu CC, Wu CH, Wang HW. Low temperature results in decreased tension in decellularized human nasal mucosa. Am J Rhinol Allergy 2009;23:162-166.
109.Nishino T, Tagaito Y, Sakurai Y. Nasal inhalation of l-menthol reduces respiratory discomfort associated with loaded breathing. Am J Respir Crit Care Med 1997;156:309-313.
110.Eccles R, Griffiths DH, Newton CG, Tolley NS. The effects of menthol isomers on nasal sensation of airflow. Clin Otolaryngol Allied Sci 1988;13:25-29.
111.Eccles R. Nasal airway resistance and nasal sensation of airflow. Rhinol Suppl 1992;14:86-90.
112.Lindemann J, Tsakiropoulou E, Scheithauer MO, Konstantinidis I, Wiesmiller KM. Impact of menthol inhalation on nasal mucosal temperature and nasal patency. Am J Rhinol 2008;22:402-405.
113.Thebault S, Lemonnier L, Bidaux G, Flourakis M, Bavencoffe A, Gordienko D, Roudbaraki M, Delcourt P, Panchin Y, Shuba Y, Skryma R, Prevarskaya N. Novel role of cold/menthol-sensitive transient receptor potential melastatine family member 8 (TRPM8) in the activation of store-operated channels in LNCaP human prostate cancer epithelial cells. J Biol Chem 2005;280:39423-39435.
114.Johnson CD, Melanaphy D, Purse A, Stokesberry SA, Dickson P, Zholos AV. Transient receptor potential melastatin 8 channel involvement in the regulation of vascular tone. Am J Physiol Heart Circ Physiol 2009;296:H1868-1877.
115.Hiki N, Kaminishi M, Yasuda K, Uedo N, Kobari M, Sakai T, Hiratsuka T, Ohno K, Honjo H, Nomura S, Yahagi N, Tajiri H, Suzuki H. Multicenter phase II randomized study evaluating dose-response of antiperistaltic effect of L-menthol sprayed onto the gastric mucosa for upper gastrointestinal endoscopy. Dig Endosc 2012;24:79-86.
116.Chu YH, Lu DW, Wang HW. Ambient cold air decreased nasal mucosa blood flow measured by laser Doppler flowmeter. Rhinology 2010;48:160-162.
117.Baraniuk JN, Lundgren JD, Shelhamer JH, Kaliner MA. Gastrin releasing peptide (GRP) binding sites in human bronchi. Neuropeptides 1992;21:81-84.
118.Li S, Westwick J, Poll C. Transient receptor potential (TRP) channels as potential drug targets in respiratory disease. Cell Calcium 2003;33:551-558.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top