跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.80) 您好!臺灣時間:2025/01/24 22:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:邢向文
研究生(外文):Hsiang-Wen Hsing
論文名稱:以頭戴式VR建構駕駛模擬系統之實用性研究
論文名稱(外文):THE USABILITY STUDY OF APPLYING A HEAD-MOUNTED VR DISPLAY TO A DRIVING SIMULATION SYSTEM
指導教授:陳立杰陳立杰引用關係
指導教授(外文):Li-Chieh Chen
口試委員:陳立杰
口試委員(外文):Li-Chieh Chen
口試日期:2017-06-26
學位類別:碩士
校院名稱:大同大學
系所名稱:工業設計學系(所)
學門:設計學門
學類:產品設計學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:61
中文關鍵詞:駕駛模擬虛擬實境HTC VIVE
外文關鍵詞:driving simulation systemvirtual realityHTC VIVE
相關次數:
  • 被引用被引用:1
  • 點閱點閱:1624
  • 評分評分:
  • 下載下載:276
  • 收藏至我的研究室書目清單書目收藏:1
近年來,虛擬場景和3D虛擬實境相關產品及技術快速發展。虛擬實境的應用範圍廣泛,舉凡如遊戲、駕訓、救援演練、醫療模擬及產品展示等,為了追求真實感設計者常常第一個想到在模型及材質上追求其細膩度及擬真度,鮮少在互動方面的真實感下功夫。虛擬實境運用越來越多變,則將來必定深入家庭,使用者與媒體環境的互動都是使用者經驗的重點。故此,為本研究探討的主要項目。
本研究欲探討VR頭戴式顯示器在體驗虛擬實境時, 使用者的體驗或動暈症的觸發,是否與媒體環境、視角或執行任務等有相關性。實驗設置利用UINTY3D建構場景,搭配HTC VIVE及STEAMVR套件,以50吋TV為比較之基準製作出支援虛擬實境的3D駕駛遊戲。視角包含第一人稱、第三人稱,顯示器分為50吋平面電視以及VR頭戴式顯示器。
實驗研究後發現:(1)暈眩程度在不同人稱視角有顯著性,且不同顯示器也有顯著性差異,至於兩因素間則無交互作用。根據受測者意見反應,在速度快及轉彎處容易發生暈眩。(2)使用者績效表現方面,不同人稱視角無顯著性差異。而在不同顯示器則有顯著性差異。兩因素間亦有顯著的交互作用。在第三人稱視角及使用TV時失誤次數特別明顯,在入彎時常會提早入彎發生失誤。
本研究了解到不同人稱視角與不同顯示器對於使用者體驗及表現是有影響的。頭戴式虛擬實境駕駛模擬,以第一人稱視角較佳。第一人稱視角不但暈眩現象較少發生,使用者表現也較優秀。
In recent years, virtual reality related products and technology have rapidly developed. Virtual reality have a wide range of applications, such as games, training, rescue drills, medical simulation and product display. In order to pursue immersion, designers often consider the realism of the model or material used first, few explore the interactive sense of reality. Virtual reality in the future will be make its way into families, which will mostly be entertainment or shopping. The interaction between the users and the media will be pivotal of its experience. Therefore, is the main goal of this study.
This study explores when experiencing virtual reality, whether the user's experience or VR sickness is relevant to the media environment, perspective, or task when the wearing a VR headset. The experiment setup uses the UINTY3D to construct the virtual scene, and with the HTC VIVE and STEAMVR kit, created a 3D driving simulation system that supports virtual reality. The perspective includes first person, third person, display is divided into 50-inch flat-screen TV and VR head-mounted display with the 50 "TV used as a baseline of measure.
Study shows: (1) In the VR sickness, the data show that the degree of VR sickness in different perspective has significant difference. And in different displays also has significant difference. There is no significant difference between the two factors. Subjects responded that VR sickness occurred at fast speed or when turning. (2) In user performance, shows that the number of mistakes in the different perspective does not have significant difference. In different displays however, it does have significant difference. The interaction between the two factors also has significant difference. In the third person perspective and TV display the number of mistakes is particularly evident, subjects frequently turn too fast resulting in mistakes.
This study shows that the perspective and the display are influential to the user experience and user performance, in terms of a HMD VR driving simulation system, first person view is better. The first person not only has a lower chance to trigger VR sickness, the user performance is also better.
第壹章 緒論 1
1.1 研究背景與動機 1
1.2 研究目的 5
第貳章 文獻探討 8
2.1 頭戴式顯示器比較 8
2.2 VR相關研究 10
2.3 視角研究 11
2.4 VR動暈症 12
2.5 小結 15
第參章 研究方法 16
3.1 系統建置 18
3.1.1 硬體介紹 18
3.1.2 UNITY3D 19
3.1.3 視角設定 21
3.1.4 任務設定 25
3.2 系統測試 26
3.3 實驗設計 28
3.3.1 受測者資料 29
3.3.2 實驗場景 30
3.3.3 方向盤調整 32
3.3.4 實驗順序與人稱視角 33
3.3.5 問卷設計與失誤統計 39
第肆章 實驗結果與討論 40
4.1 暈眩程度分析 41
4.2 速度偏好分析 47
4.3 物體遠近判斷分析 48
4.4 轉彎幅度判斷分析 49
4.5 畫面雜亂程度分析 50
4.6 失誤次數分析 51
4.7 其餘意見回饋 53
第伍章 結論與建議 54
5.1 結論 54
5.1 未來研究建議 55
參考文獻 56
附錄一 受試者問卷 59
附錄二 論文數據 60
1.Avila, L.; Bailey, M. (2014). Virtual reality for the masses. IEEE Comp Graph Appl. 2014;34(5):103-4
2.Alonso, F. M.; Kajastila, R.; Takala, T.; Matvinen, M.; Kytö, M.; Hämäläinen, P. (2016). Virtual ball catching performance in different camera views. AcademicMindtrek '16 Proceedings of the 20th International Academic Mindtrek Conference,,104-112
3.Baldominos, A.; Saez, Y.; Del Pozo, C. G. (2015). An approach to physical rehabilitation using state-of-the-art virtual reality and motion tracking technologies. Procedia Computer Science, 64, 10-16
4.Barrett, J. (2004). Side effects of virtual environments: A review of the literature. Edinburgh, Australia: Defense Sciences and Technology Organization Information Sciences Laboratory.
5.Bateman, S.; Doucette, A.; Xiao, R.; Gutwin, C.; Mandryk, R. L.; Cockburn, A. (2011). Effects of view, input device, and track width on video game driving. Graphics Interface 2011,,207-214.
6.Brooks, J. O.; Goodenough, R. R.; Crisler, M. C.; Klein, N. D.; Alley, R. L.; Koon, B. L.; ...; Wills, R. F. (2010). Simulator sickness during driving simulation studies. Accident Analysis & Prevention. 42: 788–769.
7.Chittaro, L.; Sioni, R.; Crescentini, C.; Fabbro, F. (2017). Morality salience in virtual reality experiences and its effect on users’ attitudes towards risk. International Journal of Human-Computer Studies. 101: 10-22.
8.Choi, H, S.; Kim, S, H. (2017). A content service deployment plan for metaverse museum exhibitions-Centering on the combination of beacons and HMDs. International Journal of Information Management. 37 (1): 1519-1527.
9.Crowley, J. S. (1987). Simulator sickness: A problem for Army Aviation. Aviation, Space, and Environmental Medicine. 58 (4): 355–357.
10.Czerwinski, M.; Tan, D. S.; Robertson, G. G. (2002). Women take a wider view. Proc CHI 2002,,195-202.
11.Groen, E.; Bos, J. (2008). "Simulator sickness depends on frequency of the simulator motion mismatch: An observation". Presence. 17 (6): 584–593.
12.Issacs, P., Shrag, J., & Strauss, P. S. (2002). The design and implementation of direct manipulation in 3D. ACM SIGGRAPH
13.Johnson, D. (2005). Introduction to and Review of Simulator Sickness Research (Research Report 1832). U.S. Army Research Institute for the Behavioral and Social Sciences.
14.Kennedy, R. S.; Frank, L. H. (1983). A review of motion sickness with special reference to simulator sickness. Paper presented at the National Academy of Sciences/National Research Council Committee on Human Factors. Monterey, CA.
15.Kolasinski, E. M.; Jones, S. A.; Kennedy, R. S.; Gilson, R. D. (1994). Postural stability and its relation to simulator sickness. Poster presented at the 38th annual meeting of the Human Factors and Ergonomics Society.
16.Kuliga, S. F.; Thrash, T.; Dalton, R.C.; Hölscher, C. (2015). Virtual reality as an empirical research tool — Exploring user experience in a real building and a corresponding virtual model. Computers, Environment and Urban Systems. 54: 363–375
17.LaViola, J. J. Jr (2000). A discussion of cybersickness in virtual environments. ACM SIGCHI Bulletin. 32: 47–56.
18.Lin, J. H (2017). Fear in virtual reality (VR): Fear elements, coping reactions, immediate and next-day fright responses toward a survival horror zombie virtual reality game. Computers in Human Behavior. 72: 350-361.
19.Merhi, O.; Faugloire, E.; Flanagan, M.; Stoffregen, T. A. (2007). Motion sickness, video games, and head-mounted displays. Human Factors. 49: 920–934.
20.Mortimer, M.; Horan, B.; Joordens, M. ( 2016). Kinect with ROS, interact with Oculus: Towards Dynamic User Interfaces for robotic teleoperation. 2016 11th System of Systems Engineering Conference.: 1–6
21.Palmisan, S.; Mursic, R.; Kim, J. (2017). Vection and cybersickness generated by head-and-display motion in the Oculus Rift. Displays. 46: 1-8.
22.Parker, D. E.; Harm, D. L. (1992). Mental rotation: A key to mitigation of motion sickness in the virtual environment?. Presence. 1(3): 329–333.
23.Pelargos, P. E.; Nagasawa, D.T.; Lagman, C.; Tenn, S.; Demos, J. V.; Lee, S. J.; Bui, T. T.; Barnette, N. E.; Bhatt, N. S.; Ung, N.; Bari, A.; Martin, N. A.; Yang, I.(2016). Utilizing virtual and augmented reality for educational and clinical enhancements in neurosurgery. Journal of Clinical Neuroscience. In press. Available online 27 October 2016
24. Reason, J. T.; Brand, J. J. (1975). Motion sickness. London: Academic Press.
25.Rouse, R. III. (1999). What’s your perspective? SIGGRAPH 1999, 33(3), 9-12.
26.Salamin, P.; Thalmann, D.; Vexo, F. (2006). The benefits of third-person perspective in virtual and augmented reality? VRTS ’06,, 27-30.
27.Sharma, K; Aparna (1997). Prevalence and correlates of susceptibility to motion sickness. Acta Geneticae Medicae et Gemellologiae. 46(2): 105–121.
28. Smart, L. J.; Stoffregen, T. A. & Bardy, B. G. (2002). Visually induced motion sickness predicted by postural instability. Human Factors. 44 (3): 451–465.
29.Stanney, K. M.; Kennedy, R. S.; Drexler, J. M. (1997). Cybersickness is not simulator sickness. Proceedings of the Human Factors and Ergonomics Society Annual Meeting. 41: 1138–1142.
30.Steuer J. Defining virtual reality: dimensions determining telepresence. J Commun. 1992;42(4):73-93.
31.Stoffregen, T. A.; Riccio, G. E. (1998). An ecological theory of orientation and the vestibular system. Psychological Review, 95, 3-14.
32.Uliano, K. C.; Lambert, E. Y.; Kennedy, R. S.; Sheppard, D. J. (1987). The effects of asynchronous visual delays on simulator flight performance and the development of simulator sickness symptomatology (NAVTRASYSCEN 85-D-0026-1). Orlando, FL: Naval Training Systems Center.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊