跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.85) 您好!臺灣時間:2025/01/21 17:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張俊偉
研究生(外文):Chun-wei Chang
論文名稱:含芘基胺結構之新型螢光單體的合成及其智慧型凝膠材料之製備與性質研究
論文名稱(外文):Synthesis of Novel Fluorescent Monomers Containing Pyrenylamine and Preparation and Properties of Smart Hydrogels Materials
指導教授:李文福李文福引用關係
指導教授(外文):Wen-Fu Lee
口試委員:李文福
口試委員(外文):Wen-Fu Lee
口試日期:2017-07-25
學位類別:碩士
校院名稱:大同大學
系所名稱:化學工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:123
中文關鍵詞:光學性質光致發光水凝膠光致發光交聯劑DPEGMOAPAP-GMA
外文關鍵詞:photoluminescent crosslinkerphotoluminescent hydrogelsoptical propertiesAP-GMADPEGMOAP
相關次數:
  • 被引用被引用:0
  • 點閱點閱:136
  • 評分評分:
  • 下載下載:5
  • 收藏至我的研究室書目清單書目收藏:0
PART I
  本研究首先以芘和硝酸銅進行硝化反應合成1-nitropyrene,再以聯胺及碳鈀將1-nitropyrene還原成1-aminopyrene,接著將1-aminopyrene與對氟氰基苯進行親核取代反應,合成出N, N-Di (4-cyanophenyl)-1-aminopyrene,然後將N, N-Di (4-cyanophenyl)-1-aminopyrene進行水解及酸化,得到N, N-di-(4-carboxyphenyl)-1-amino pyrene,最後以DCC、DMAP及Poly(ethylene glycol) methacrylate (PEGMA) 進行酯化反應,得到含雙乙烯基結構的N, N- di [4-poly(ethylene glycol) methacryloyloxy oxycarbonyl phenyl]-1-aminopyrene (DPEGMOAP),其作為交聯劑使用。本研究是利用DPEGMOAP作為新型光致發光交聯劑以製備可光致發光及具熱敏感性之水凝膠。本系列係以N-isopropyl acrylamide (NIPAAm)為單體、DPEGMOAP為交聯劑及azobisisobutyronitrile (AIBN)為起始劑於80 ℃ 下反應24小時,製備一系列NCP水凝膠,同時與以N,N′-methylenebis (acrylamide) (NMBA)作為交聯劑製備的水凝膠進行比較。本研究主要探討不同交聯劑含量對凝膠材料的膨潤度、機械性質及光學性質的影響。結果顯示,膠體的膨潤度隨著凝膠中交聯劑含量的增加而降低,此乃凝膠的交聯密度變大,凝膠孔徑變小,導致膨潤度降低。另由於芘基胺結構疏水性強,以DPEGMOAP作為交聯劑之水凝膠,膨潤度遠低於以NMBA作為交聯劑之水凝膠。在機械性質方面,水凝膠的機械強度隨著交聯劑含量的增加而增加;另因DPEGMOAP單體的結構較為剛硬,故其機械性質則比以NMBA作為交聯劑之水凝膠高。在光學性質方面,NCP系列水凝膠的吸收峰在399 nm和429 nm,在λEx為429 nm時,有最強的PL,其最大放射波長位於475 nm。由結果顯示,NCP系列水凝膠具有高的發光強度,且隨著DPEGMOAP含量的增加而增強。

PART II
  本研究首先以芘和硝酸銅進行硝化反應合成1-nitropyrene,再以聯胺及碳鈀將1-nitropyrene還原成1-aminopyrene,接著將1-aminopyrene與glycidyl methacrylate (GMA) 進行反應,合成出(2-hydroxyl-3-aminopyrene) propyl methacrylate (AP-GMA)。本系列係以N-isopropyl acrylamide (NIPAAm)及不同比例之AP-GMA與N, N′-methylene-bis-acrylamide (NMBA)共聚合製備一系列水凝膠。本研究主要的目的係製備一系列可光致發光及具熱敏感性之水凝膠,其係以不同莫耳比的NIPAAm/AP-GMA為單體、NMBA為交聯劑及azobisisobutyronitrile (AIBN)為起始劑,在80 ℃ 下反應24小時,製備出NAG系列水凝膠,並與純NIPAAm作為單體之水凝膠進行比較。本研究主要探討不同AP-GMA含量對一系列水凝膠的膨潤度、機械性質、光學性質之影響。實驗結果顯示,因芘基胺結構疏水性強,故有加入AP-GMA之水凝膠,其膨潤度低於純NIPAAm之水凝膠;然而因為AP-GMA單體的結構更為剛硬,故水凝膠的機械強度隨著AP-GMA含量的增加而增加,且其機械強度則遠高於純NIPAAm之水凝膠。在光學性質方面,NAG系列水凝膠的吸收峰出現在276 nm和341 nm,在λEx為341 nm時,有最強的PL,其最大放射波長位於437 nm。由結果顯示,NAG系列水凝膠具有高的發光強度,且隨著AP-GMA含量的增加而增強。
PART I
In this study, pyrene derivative: N, N-di-(4-carboxyphenyl) -1-aminopy-
-rene was synthesized through a series of reaction. And esterification of N, N-di-(4-carboxyphenyl)-1-aminopyrene with poly (ethylene glycol) methacrylate was performed to obtain N, N- di [4-poly (ethylene glycol) methacryloyloxy oxycarbonyl phenyl]-1-aminopyrene (DPEGMOAP). Then a series of fluorescent and thermosensitive poly (NIPAAm) hydrogel (NCP hydrogel) with DPEGMOAP as crosslinking unit were prepared via free radical polymerization. These prepared hydrogels showed great fluorescent phenomenon with maximum PL emission wavelength at 475 nm (λEx =429 nm), and the fluorescent intensity could be changed via the control of temperature. The effects of DPEGMOAP on the swelling behavior and mechanical properties of hydrogel were also investigated in this study.   The results showed that the swelling ratios of hydrogel decreased with the increasing content of DPEGMOAP due to the higher crosslinking density and hydrophobicity of DPEGMOAP. As for the mechanical properties, the rigid structure of DPEGMOAP increased the mechanical properties of hydrogels remarkably.

PART II
  In this study, 1-nitropyrene was synthesized by nitration of pyrene firstly. Then 1-aminopyrene was synthesized via the reduction of 1-nitropyrene. Finally, (2-hydroxyl-3-aminopyrene) propyl methacrylate (AP-GMA) was synthesized by 1-aminopyrene and glycidyl methacrylate (GMA). AP-GMA was then used to prepared a series of hydrogels (NAG series hydrogels) which was copolymerized with N-isopropyl acrylamide (NIPAAm) and N, N'-methylene-bis-acrylamide (NMBA). The swelling behavior, optical properties and mechanical properties of were measured and investigated, and compared with the hydrogel prepared without AP-GMA. The results showed that the swelling ratios of hydrogels containing AP-GMA monomer were lower than NIPAAm hydrogel due to the hydrophobicity of pyrene structure. The mechanical properties of NAG hydrogels were greater than NIPAAm hydrogel, because the structure of AP-GMA monomer is more rigid. And the mechanical strengths of hydrogel increased with increasing of AP-GMA. For optical properties, the absorption peaks of NAG series hydrogels were 276 nm and 341 nm, and the maximum PL emission wavelength was 437 nm (λEx =341 nm). Moreover, the results indicated that NAG series hydrogels had strong emission intensity and the intensity increased with increasing of the AP-GMA contents.
CONTNETS

ACKNOWLEDGEMENT I
ABSTRACT II
摘要 V
CONTNETS VIII
LIST OF TABLES XI
LIST OF FIGURES XII
LIST OF SCHEMES XV

PART I
CHAPTER 1 INTRODUCTION 2
CHAPTER 2 EXPERIMENTAL 7
2.1 Materials 7
2.2 Monomer Synthesis 8
2.2.1 Synthesis of 1-nitropyrene 8
2.2.2 Synthesis of 1-aminopyrene 8
2.2.3 Synthesis of N, N-Di (4-cyanophenyl)-1-aminopyrene (DCyPAP) 9
2.2.4 Synthesis of N, N-Di (4-carboxyphenyl)-1-aminopyrene (DCbPAP) 10
2.2.5 Synthesis of N, N- di [4-poly(ethylene glycol) methacryloyloxy oxycarbonyl phenyl]-1-aminopyrene (DPEGMOAP) 11
2.3 Preparation of the Copolymeric Hydrogels 13
2.4 Measurement of Swelling Ratio 14
2.5 Measurement of Thermorevesibility for the Copolymeric Hydrogels 14
2.6 Physical Properties Measurement 14
2.7 UV/Vis and PL Spectroscopy Measurements 16
2.8 Drug Release Experiment 17
CHAPTER 3 RESULTS and DISCUSSION 18
3.1 Synthesis of DPEGMOAP and Characterization of NIPAAm/ DPEGMOAP Copolymeric Hydrogels 18
3.2 Effect of the contents of DPEGMOAP on Swelling Ratio Behaviors 39
3.3 Effect of Temperature on Swelling Ratios of NCP Series Hydrogels 42
3.4 Effect of the contents of DPEGMOAP on Mechanical Properties 47
3.5 UV-Vis and PL Spectroscopy Measurement 49
3.6 Drug Release Experiment 57
3.7 Effect of Temperature on PL spectra of NCP-6 Hydrogels 59
CHAPTER 4 CONCLUSIONS 61
REFERENCES 64

PART II

CHAPTER 1 INTRODUCTION 69
CHAPTER 2 EXPERIMENTAL 75
2.1 Materials 75
2.2 Monomer Synthesis 76
2.2.1 Synthesis of 1-nitropyrene 76
2.2.2 Synthesis of 1-aminopyrene 76
2.2.3 Synthesis of (2-Hydroxyl-3-aminopyrene) propyl methacrylate (AP-GMA) 78
2.3 Preparation of the Copolymeric Hydrogels 79
2.4 Measurement of Swelling Ratio 79
2.5 Measurement of Thermorevesibility for the Copolymeric Hydrogels 80
2.6 Physical Properties Measurement 80
2.7 UV/Vis and PL Spectroscopy Measurements 81
2.8 Drug Release Experiment 82
2.9 Copolymerization of NIPAAm and AP-GMA 83
CHAPTER 3 RESULTS and DISCUSSION 84
3.1 Synthesis of AP-GMA and Characterization of NIPAAm/ AP-GMA Copolymeric Hydrogels 84
3.2 Effect of the contents of AP-GMA on Swelling Ratio Behaviors 93
3.3 Effect of Temperature on Swelling Ratios of NAG Series Hydrogels 95
3.4 Effect of the contents of AP-GMA on Mechanical Properties 100
3.5 UV-Vis and PL Spectroscopy Measurement 102
3.6 Drug Release Experiment 110
3.7 Copolymerization of NIPAAm and AP-GMA 112
3.8 Effect of Temperature on PL spectra of NAG-1.0 Hydrogels 116
CHAPTER 4 CONCLUSIONS 118
REFERENCES 120

LIST OF TABLES

PART I

Table 1 Feed compositions of NIPAAm/ DPEGMOAP copolymeric hydrogels. 23
Table 2 Equilibrium swelling ratios and ΔSR for NCP series hydrogels at 25 ℃ and 37 ℃. 46
Table 3 Mechanical Properties of NCP series hydrogels. 48
Table 4 UV-Vis and PL emission wavelengths of NCP-6 in different solvents. 55
Table 5 The quantum yields (QY) of each monomers. 56

PART II

Table 1 Feed compositions of the AP-GMA series hydrogels. 87
Table 2 Equilibrium swelling ratios and ΔSR for NAG series hydrogels at 25℃ and 37℃. 99
Table 3 Mechanical Properties of NAG series hydrogels. 101
Table 4 UV-Vis and PL emission wavelengths of NAG-1.0 in different solvents. 108
Table 5 The quantum yields (QY) of each monomers. 109
Table 6 Feed compositions of Co-NAG-1.0 and Homo-AP-GMA. 114



LIST OF FIGURES

PART I

Figure 1 FT-IR spectra (KBr) of the 1-NP and 1-AP. 24
Figure 2 FT-IR spectra (KBr) of the 1-AP and DCyPAP. 25
Figure 3 FT-IR spectra (KBr) of the DCyPAP and DCbPAP. 26
Figure 4 FT-IR spectra (KBr) of the DCbPAP and DPEGMOAP. 27
Figure 5 1H-NMR spectra of 1-NP in DMSO-d6. 28
Figure 6 1H-NMR spectra of 1-AP in DMSO-d6. 29
Figure 7 1H-NMR spectra of DCyPAP in DMSO-d6. 30
Figure 8 13C-NMR spectra of DCyPAP in DMSO-d6. 31
Figure 9 H-H COSY spectra of DCyPAP in DMSO-d6. 32
Figure 10 C-H HSQC spectra of DCyPAP in DMSO-d6. 33
Figure 11 1H-NMR spectra of DCbPAP in DMSO-d6. 34
Figure 12 13C-NMR spectra of DCbPAP in DMSO-d6. 35
Figure 13 H-H COSY spectra of DCbPAP in DMSO-d6. 36
Figure 14 C-H HSQC spectra of DCbPAP in DMSO-d6. 37
Figure 15 1H-NMR spectra of DPEGMOAP in DMSO-d6. 38
Figure 16 Swelling ratios as a function of time for different contents of NMBA / DMEOAP hydrogels in deionized water at 25 ℃. 40
Figure 17 Swelling ratios as a function of time for NCP-3 and NCP-6 hydrogels in deionized water at 25 ℃. 41
Figure 18 Effect of temperature on equilibrium swelling ratio for NCP series hydrogels. 44
Figure 19 Swelling- deswelling kinetics for NCP series hydrogels by temperature modulation at 25 ℃ and 37 ℃ respectively. 45
Figure 20 (a) Different concentrations of DPEGMOAP monomer dissolved in DMSO (1.0, 1.5, 2.0, 2.5 and 3.0ppm) under UV light irradiated and (b) NCP series hydrogels in methanol before and after UV light irradiating. 51
Figure 21 UV/ Vis absorption and PL spectra (λEx=347 nm、Ex=1 mm、Em=2.5 mm) of DCbPAP in DMSO with different concentrations. 52
Figure 22 UV/ Vis absorption and PL spectra (λEx=331 nm、Ex=1 mm、Em=2.5 mm) of DPEGMOAP in DMSO with different concentrations. 53
Figure 23 (a) UV/ Vis absorption of NCP-6 hydrogels in methanol. (b) PL spectra (λEx=429 nm、Ex=2.5 mm、Em=2.5 mm) of NCP series hydrogels in methanol. 54
Figure 24 PL spectra of NCP-6 in different solvents. 55
Figure 25 Caffeine release profiles for NCP series hydrogels during loading in ethanol at 25 oC and releasing in deionized water at 37 oC. 58
Figure 26 PL spectra (λEx=429 nm、Ex=2.5 mm、Em=2.5 mm) of NCP-6 in ethanol from 20 oC to 40 oC. 60
Figure 27 PL spectra (λEx=429 nm、Ex=2.5 mm、Em=2.5 mm) of NCP-6 in ethanol with different temperature. 60

PART II

Figure 1 FT-IR spectra (KBr) of the 1-NP and 1-AP. 88
Figure 2 FT-IR spectra of the 1-AP and AP-GMA. 89
Figure 3 1H-NMR spectra of the 1-NP in DMSO-d6. 90
Figure 4 1H-NMR spectra of the 1-AP in DMSO-d6. 91
Figure 5 1H-NMR spectra of the AP-GMA in DMSO-d6. 92
Figure 6 Swelling ratios as a function of time for different contents of NIPAAm / AP--GMA hydrogels in deionized water at 25℃. 94
Figure 7 Effect of temperature on equilibrium swelling ratio for NAG series hydrogels. 97
Figure 8 Swelling- deswelling kinetics for NAG series hydrogels by temperature modulation at 25℃ and 37℃ respectively. 98
Figure 9 (a) Different concentrations of AP-GMA monomer dissolved in DMSO (1.0, 1.5, 2.0, 2.5 and 3.0ppm) under UV light irradiated and (b) NAG series hydrogels in methanol before and after UV light irradiating. 105
Figure 10 UV/ Vis absorption and PL spectra (λEx=376 nm、Ex=1 mm、Em=2.5 mm) of AP-GMA in DMSO with different concentrations. 106
Figure 11 (a) UV/ Vis absorption of NAG-0.15 hydrogels in methanol. (b) PL spectra (λEx=341 nm、Ex=1 mm、Em=2.5 mm) of NAG series hydrogels in methanol. 107
Figure 12 PL spectra of NAG-1.0 in different solvents. 108
Figure 13 Caffeine release profiles for NAG series hydrogels during loading in ethanol at 25 oC and releasing in deionized water at 37 oC. 111
Figure 14 UV/ Vis absorption and PL spectra (λEx=264 nm、Ex=5 mm、Em=5 mm) of Co-NAG-1.0 in DMSO with different concentrations. 115
Figure 15 UV/ Vis absorption and PL spectra (λEx=346 nm、Ex=5 mm、Em=5 mm) of Homo-AP-GMA in DMSO with different concentrations. 115
Figure 16 PL spectra (λEx=341 nm、Ex=1 mm、Em=2.5 mm) of NAG-1.0 in ethanol from 20 oC to 40 oC. 117
Figure 17 PL spectra (λEx=341 nm、Ex=1 mm、Em=2.5 mm) of NAG-1.0 in ethanol with different temperature. 117


LIST OF SCHEMES

PART I

Scheme 1 Synthesis of pyrene-based compound. 21
Scheme 2 Preparation of NIPAAm/ DPEGMOAP copolymeric hydrogels. 22

PART II

Scheme 1 Synthesis of pyrene-based compound. 85
Scheme 2 Preparation of NIPAAm/AP-GMA copolymeric hydrogels. 86
Scheme 3 Preparation of Co-NAG-1.0 copolymer. 113
Scheme 4 Preparation of Homo-AP-GMA homopolymer. 114
[1]F. Ullah, M. B. H. Othman, F. Javed, Z. Ahmad, and H. M. Akil, Materials Science and Engineering: C, vol. 57, pp. 414–433, 2015.
[2]A. Motealleh and N. S. Kehr, Advanced Healthcare Materials, vol. 6, no. 1, 2017.
[3]N. A. Peppas, P. Bures, W. Leobandung, and H. Ichikawa, European Journal of Pharmaceutics and Biopharmaceutics, vol. 50, no. 1, pp. 27–46, 2000.
[4]A. Richter, G. Paschew, S. Klatt, J. Lienig, K. F. Arndt, and H. J. P. Adler, Sensors, vol. 8, no. 1, pp. 561–581, 2008.
[5]F. Sabbagh and I. I. Muhamad, Journal of the Taiwan Institute of Chemical Engineers, vol. 72, pp. 182–193, 2017.
[6]E. A. Kamoun, E. R. S. Kenawy, and X. Chen, Journal of Advanced Research, vol. 8, no. 3, pp. 217–233, 2017.
[7]X. Q. Wang, S. Yang, C. F. Wang, L. Chen, and S. Chen, Macromolecular Rapid Communications, vol. 37, no. 9, pp. 759–768, 2016.
[8]E. S. Gil and S. M. Hudson, Progress in Polymer Science, vol. 29, no. 12, pp. 1173–1222, 2004.
[9]A. Thakur, R. K. Wanchoo, and P. Singh, Chemical and Biochemical Engineering Quarterly, vol. 25, no. 2, pp. 181–194, 2011.
[10]Y. Wang, Z. C. Yuan, and D. J. Chen, Journal of Materials Science, vol. 47, no. 3, pp. 1280–1288, 2012.
[11]D. J. Overstreet, R. Y. McLemore, B. D. Doan, A. Farag, and B. L. Vernon, Soft Materials, vol. 11, no. 3, pp. 294–304, 2013.
[12]S. S. Liow, Q. Dou, D. Kai, A. A. Karim, K. Zhang, F. Xu, X. J. Loh, ACS Biomaterials Science and Engineering, vol. 2, no. 3, pp. 295–316, 2016.
[13]K. P. Carter, A. M. Young, and A. E. Palmer, Chemical Reviews, vol. 114, no. 8, pp. 4564–4601, 2014.
[14]B. A. Köhler, J. S. Wilson, and R. H. Friend, Advanced Materials, vol. 14, no. 7, pp. 701–707, 2002.
[15]H. Jeong et al., Journal of Photonics for Energy, vol. 5, no. 1, pp. 57608-57630, 2015.
[16]B. Valeur and M. N. Berberan-Santos, Journal of Chemical Education, vol. 88, no. 6, pp. 731–738, 2011.
[17]L. Basabe-Desmonts, D. N. Reinhoudt, and M. Crego-Calama, Chemical Society Reviews, vol. 36, no. 6, pp. 993–1017, 2007.
[18]J. Li, X. Hong, Y. Liu, D. Li, Y. W. Wang, J. H. Li, Y.-B. Bai and T. J. Li, Journal of Advanced Materials, vol. 17, no. 2, pp. 163-166, 2005.
[19]C. Chang, J. Peng, L. Zhang and D. W. Pang, Journal of Materials Chemistry, no. 19, pp. 7771-7776, 2009.
[20]Y. Jiang, X. Yang, C. Ma, C. Wang, H. Li, F. Dong, X. Zhai, K. Yu, Q. Lin, and B. Yang, Journal of Small, vol. 6, no. 23, pp. 2673-2677, 2010.
[21]L. Zhou and F. Zhang, Materials Science and Engineering: C, vol. 31, no. 7, pp. 1429-1435, 2011.
[22]J. Y. Yang, X. Ma, C. Wang, C. Chen, Y. Dong, F. Yang, B. Yu, K. Lin, ACS Applied Materials and Interfaces, vol. 6, no. 7, pp. 4650-4657, 2014.
[23]C. Tan and Q. Wang, Journal of Fluorescence, vol. 22, no. 6, pp. 1581-1586, 2012.
[24]J. A. Kelly, A. M. Shukaliak, Clement C. Y. Cheung, K. E. Shopsowitz, W. Y. Hamad, and M. J. MacLachlan, Journal of Angewandte Chemie International Edition, vol. 52, no. 34, pp. 8912-8916, 2013.
[25]Y. J. Heo, H. Shibatab, T. Okitsu, T. Kawanishi, and S. Takeuchi, Proceedings of the National Academy of Sciences, vol. 108, no. 33, 13399-403, 2011.
[26]J. H. Kim, S. Y. Lim, D. H. Nam, J. R., Sook, H. Ku, C. B. Park, Biosensors and Bioelectronics, vol. 26, no. 5, pp. 1860-1865, 2011.
[27]C. Yanga, J. Xua, R. Zhang, Y. Zhang, Z. Li, Y. Li, L. Liang, M. Lu , Sensors and Actuators B: Chemical, vol. 177, pp. 437-444, 2013.
[28]Q. M. Wang, K. Ogawa, K. Toma, H. Tamiakia, Journal of Photochemistry and Photobiology A: Chemistry, vol. 20, pp. 87, 2009.
[29]I. Thivaiosa, I. Diamantisa, G. Bokiasa, J. K. Kallitsis, European Polymer Journal, vol. 48, no. 7, pp. 1256-1265, 2012.
[30]K. Iwai, K. Hanasaki and M. Yamamoto, Journal of Luminescence, vol. 87–89, 1289-1291, 2000.
[31]Y. C. Kung, S. H. Hsiao, Polymer Chemistry, vol. 2, no. 8 ,pp. 1720-1727, 2011.
[32]Y. C. Kung, S. H. Hsiao, Journal of Materials Chemistry, vol. 20, no. 26, pp. 5481-5492, 2010.
[33]Y. C. Kung, S. H. Hsiao, Journal of Materials Chemistry, vol. 21, no. 6, pp. 1746-1754, 2011.
[34]Y. C. Kung, S. H. Hsiao, Journal of Polymer Science Part A: Polymer Chemistry, vol. 49, no. 16, pp. 3475-3490, 2011.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top