跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.170) 您好!臺灣時間:2024/12/08 13:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:曾建霖
研究生(外文):Jian-Lin Zeng
論文名稱:合成具氧化還原促進劑功能之單體及其在凝膠製備上之應用
論文名稱(外文):Study on the synthesis of redox accelerator monomer and its application in the preparation of hydrogel.
指導教授:李文福李文福引用關係
指導教授(外文):Wen-Fu Lee
口試委員:李文福
口試委員(外文):Wen-Fu Lee
口試日期:2017-07-28
學位類別:碩士
校院名稱:大同大學
系所名稱:化學工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:68
中文關鍵詞:過硫酸鹽水凝膠氧化還原開環反應甲基丙烯酸缩水甘油酯
外文關鍵詞:redoxring opening reactionperoxydisulfateGlycidyl methacrylatehydrogel.
相關次數:
  • 被引用被引用:0
  • 點閱點閱:419
  • 評分評分:
  • 下載下載:15
  • 收藏至我的研究室書目清單書目收藏:0
本研究以自行合成之3-(3-(dimethylamino)propylamino)-2-hydroxypr-opyl methacrylate (G-D),一種同時含雙鍵及二甲基胺的單體,與三種水溶性單體:丙烯酰胺(AmGx體系)、N-異丙基丙烯酰胺(NGx體系)、丙烯酸鈉(SAGx體系)製備成水凝膠,與固定量的交聯劑N,N'-亞甲基雙丙烯酰胺(NMBA),及熱起始劑過硫酸銨(APS)。G-D的功能為取代還原劑四甲基乙二胺(TEMED),與APS反應進行氧化還原反應生成自由基,並在常溫下進行自由基聚合。本研究主要探討兩部份,第一部份是藉由不同G-D的比例、反應溫度進行測量,所測量出的反應時間進一步計算出3種不同水溶性單體之凝膠活化能;第二部分為觀察三種不同凝膠在添加G-D後之膨潤度、刺激應答特性、機械性質與藥物釋放實驗等影響。實驗結果顯示,在第一部份中,在同溫度下,G-D的比例越高,催化APS的速度越快,其反應時間越短;同一組成下,溫度越高,反應速率越快,反應時間越短。在第二部份中,親水性的G-D添加並製備成凝膠後,膨潤度表現上,丙烯酰胺、N-異丙基丙烯酰胺系列之凝膠隨著G-D比例的提高而成正相關;反之丙烯酸鈉系列凝膠隨著G-D比例的提高而則呈負相關。應答特性方面,丙烯酰胺在溶劑影響實驗中,當丙酮比例占40%時,所有凝膠的膨潤度均大幅下降,不易觀察其外觀;N-異丙基丙烯酰胺在CGTT實驗中,對照組的CGTT在32℃,隨著G-D的比例提高,CGTT最多提升至44℃;丙烯酸鈉在pH實驗中,在酸性環境下變化不明顯,逐漸提高pH值後,隨著G-D比例的提高,其膨潤度會逐漸下降,此結果代表G-D多寡對於酸鹼性實驗沒有明顯幫助。可逆性實驗中,AmG7.5與AmG10兩組之△SR有逐漸減少的趨勢;NIPAAm在整體上沒有太大變化,NG10因CGTT遠高於37℃,其△SR僅比對照組高;SA因酸鹼轉換之膨潤速率過快,均有凝膠碎裂之問題,無法測量其可逆性。機械性質方面,添加G-D的AAm及NIPAAm凝膠之交聯密度均有提升,但G、E值沒有隨著G-D的比例提升而呈現相關性,其中以AmG5及NG5有最大值。藥物釋放方面,膨潤度最高之NG10,其咖啡因吸藥量可達到535 ppm/g,釋放百分比最高的為NG7.5,其釋放率達98.1%。
In this thesis, 3-(3-(dimethylamino)propylamino)-2-hydroxypropyl methacrylate (G-D) was synthesized by glycidyl methacrylate (GMA) and 3-Dimethylaminopropyl amine (DMPA) at first. Next G-D was used to prepared hydrogel with acrylamide (AmGx series), N-isopropyl acrylamide (NGx series) and sodium acrylate (SAGx series), where x represents the molar ratio of G-D. The effects of G-D on the hydrogel properties such as activation energy of gelation, swelling ratio, the impact of specific conditions, mechanical properties and drug releasing was investigated. G-D was expected to replace the accelerator: TEMED in the thermal polymerization in this study, and the results showed that the activation energy of gelation decreased with an increase of the G-D content for all hydrogels, and the results also indicated that acrylamide had the lowest activation energy of gelation and N-isopropyl acrylamide had the highest activation energy. The swelling ratios of hydrogels increased with an increase of the G-D content for acrylamide and N-isopropyl acrylamide hydrogels, but the sodium acrylate hydrogel showed the opposite. In terms of stimulus-response behavior, the swelling ratio of acrylamide hydrogel was decreased significantly at acetone content of 40 wt%. The critical gel transition temperature (CGTT) is at 32 ℃ for N-isopropyl acrylamide hydrogel, but the CGTT was increased with the increasing content of G-D. The highest CGTT was uptake to 44 ℃. For the pH-responsive of sodium acrylate hydrogels, the swelling ratio of sodium acrylate hydrogel increased with an increase of pH, but decreased with an increase of the G-D content. For the mechanical properties, crosslinking densities (ρX) were all increased when G-D was introduced into acrylamide and N-isopropyl acrylamide hydrogel, but AmG5 and NG5 hydrogel had the maximum mechanical strength. For drug-releasing, NG10 hydrogel had the highest drug-absorption which could reach 535 ppm caffeine /g. And the NG7.5 hydrogel had the highest releasing rate of 98.1%.
ACKNOWLEDGEMENTI
ABSTRACTII
摘要IV
ContentsVI
Table ListVIII
Figure ListIX
SCHEME LISTXII
CHAPTER 1 INTRODUCTION1
CHAPTER 2 EXPERIMENTAL6
2.1 Materials6
2.2 Synthesis of 3-(3-(dimethylamino)propylamino)- 2-hydroxypropyl methacrylate (G-D)7
2.3 Preparation of copolymer Hydrogels9
2.4 Effect of G-D on the Gelation Activation Energy17
2.5 Kinetics of Swelling19
2.6 Effect of different conditions on Swelling Ratio of Copolymer Hydrogels 20
2.6.1 Effect of Solvent on Swelling Ratio20
2.6.2 Effect of Temperature on Swelling Ratio21
2.6.3 Effect of pH on Swelling Ratio21
2.6.4 Measurement of Diffirent Reversibility of Three Hydrogels22
2.7 Physical Properties Measurement23
2.8 Drug Release Experiment24
CHAPTER 3 RESULTS and DISCUSSION25
3.1 Characterization of 3-(3-(dimethylamino)propylamino)-
2-hydroxypropyl methacrylate (G-D)25
3.2 Effect of G-D on the Gelation Activation Energy28
3.3 Effect of Different Composition Hydrogels on Kinetics of Swelling40
3.4 Effect of different conditions on Swelling Ratio of Hydrogels44
3.4.1 Effect of Solution on Swelling Ratios of Poly(AAm-co-G-D) Hydrogels44
3.4.2 Effect of Temperature on Swelling Ratios of Poly(NIPAAm-co-G-D) Hydrogels46
3.4.3 Effect of pH on Swelling Ratios Poly(SA-co-G-D) Hydrogels48
3.4.4 Different Conditions Reversible of Three Hydrogels50
3.5 Mechanical Properties59
3.6 Drug Release Behavior of the hydrogels63
CHAPTER 4 CONCLCUSSION66
Reference68
[1] T. Tanaka, D. J. Fillmore, S. T. Sun, I. Nishio, G. Swislow, and A. Shah, Phys. Rev. Lett., 1980, 45, 1636.
[2] A. Suzuki, and T. Tanaka, Nature, 1990, 346, 345.
[3] M. Myoga, and S. Katayama, Polym. Prep Japan., 1987, 36, 2852.
[4] E. C. Muniz, M. R. Guilherme, R. da Silva, A. F. Rubira, and G. Geuskens, Reactive & Functional Polymers, 2004, 61, 233–243.
[5] H. L. Wang, C. C. He, Z. W. Zheng, D. Zhao, J. Q. Liu, and J. OuYang, Soft Matter., 2013, 9, 2837
[6] S. R. Raghavan, B. H. Cipriano, S. J. Banik, R. Sharma, D. Rumore, W. Hwang, and R. M. Briber, Macromolecules., 2014, 47, 4445−4452.
[7] M. Tian, S. Zhang, Z.X. Shi, H. J. Xu, X. D. Ma, and J. Yin, Soft Matter., 2016, 12, 2575-2582.
[8] J. H. Wu, J. M. Lin, M. Zhou, and C. G. Wei, Macromol. Rapid Commun., 2000, 21, 1032–1034.
[9] K. R. Samit, B. Ruma, and M. Bidyadhar, Journal of Industrial and Engineering Chemistry., 2013, 19, 1191–1203.
[10] P. J. Flory, Principles of Polymer chemistry. Universisidad de Cornell, Ithaca, NY, 1953.
[11] D. C. L. Greenfield, J. M. Barton, and K. Hodd, Polymer., 1992, 33, 1177-1186.
[12] P. A. Oyanguren, and R. J. J. Williams, Appl Polym Sci., 1993, 47, 1361-1371.
[13] I. Mondragon, B. Fernández, M. A. Corcuera, and C. Marieta, European Polymer Journal., 2001, 37, 1863-1869.
[14] Y. C. Huang, Studies on the preparetion and properties of the silver complex hydrogels (master’s, thesis) Tatung University, Taiwan, 2006.
[15] H. B. Tan, Y. P. Ding, and J. F. Yang, Journal of Alloys and Compounds., 2010, 492, 396–401.
[16] Y. Tanaka, and T. Yamamoto, Journal of Non-Crystalline Solids., 2012, 358, 1687–1698.
[17] A. A. Hamouda, and H. A. Akhlaghi Amiri, Energies., 2014, 7, 568-590.
[18] C. D. Munialo, E. Linder, and H. Jongh, Food Hydrocolloids., 2016, 55 163-171.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top