跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2024/12/14 17:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳涵榆
研究生(外文):Han-yu Chen
論文名稱:以固定於多巴胺包覆的奈米磁性粒子之Rhodosporidium toruloides D型胺基酸氧化酶和催化酶生產4-甲硫基-2-氧丁酸
論文名稱(外文):Production of 4-methylthio-2-oxobutyric acid by Rhodosporidium toruloides D-amino acid oxidase and catalaseimmobilized onto polydopamine-coated magnetic naoparticles
指導教授:官宜靜
指導教授(外文):I-ching Kuan
口試委員:官宜靜
口試委員(外文):I-ching Kuan
口試日期:2017-07-31
學位類別:碩士
校院名稱:大同大學
系所名稱:生物工程學系(所)
學門:工程學門
學類:生醫工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:71
中文關鍵詞:4-甲硫基-2-氧丁酸奈米磁性粒子D型胺基酸氧化酶多巴胺
外文關鍵詞:4-methylthio-2-oxobutyric acidpolydopamine-coated magnetic naoparticlesD-amino acid oxidase
相關次數:
  • 被引用被引用:0
  • 點閱點閱:96
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
D型胺基酸氧化酶(D-amino acid oxidase; EC 1.4.3.3;DAO)是以flavin adenine dinucleotide(FAD)作為輔酶的氧化酶。D型胺基酸氧化酶以D型胺基酸為基質,進行氧化脫胺作用(oxidative deamination),產生相對應的α酮酸和氨氣,並伴隨過氧化氫的產生。先前研究顯示,固定在聚多巴胺包覆磁珠的Rhodosporidum toruloides D型胺基酸氧化酶(RtDAO)具有較佳的熱和氧化穩定性。本研究使用磁性奈米粒子(MNP)或經聚多巴胺包覆的磁性奈米粒子(PDMNP),將RtDAO和商業購買的催化酶進行固定化,以評估其消除DAO反應產生的過氧化氫,減少DAO受氧化傷害,而增加酵素活性的效能。催化酶固定於MNP或PD-MNP的固定率約為50%以及40%,但分別保有80和40%的原始比活性。將RtDAO和催化酶固定於磁珠,RtDAO的活性分別上升1.9倍和2.1倍。
The flavoenzyme D-Amino acid oxidase(EC 1.4.3.3;DAO)can utilize various D-Amino acids as substrates to catalyze oxidative deamination to produce the corresponding α-keto acids and release ammonia, and concurrent production of hydrogen peroxidase. Previous studies demonstrated that yeast Rhodosporidum toruloides D-amino acid oxidase (RtDAO) immobilized onto polydopamine-coated magnetic nanoparticles (PD-MNP) exhibited better thermal stability and resistance against hydrogen peroxide. In this study, magnetic nanoparticles (MNP) and polydopamine-coated MNP (PD-MNP)were used for immobilization of RtDAO and commercial catalase to evaluate the efficacy of immobilized catalase to eliminate hydrogen peroxide generated during DAO catalysis, thus alleviating the oxidative damage and improving the DAO activity. The immobilization efficiencies of catalases onto MNP and PD-MNP were 50% and 40%, while retaining 80% and 40% of the original specific activities, respectively. In the presence of catalase immobilized onto MNP and PD-MNP, DAO activities were improve by 1.9 and 2.1, respectively.
致謝 I
摘要 II
Abstract III
目錄 IV
第一章 前言 1
1.1 D型胺基酸氧化酶 1
1.1.1 催化反應 1
1.1.2 來源 2
1.1.3 蛋白質結構 3
1.1.4 基質特異性 4
1.1.5 應用 5
1.2 催化酶 6
1.2.1 催化反應 6
1.2.2 蛋白質結構 7
1.2.3 來源 8
1.2.4 應用 9
1.3 酵素固定化 9
1.3.1 固定化使用的載體 10
1.3.2 固定的方法 10
1.3.3 利用多巴胺進行表面修飾 11
1.4研究目的 12
第二章 材料與方法 13
2.1實驗架構 13
2.2 菌體 13
2.3 質體 14
2.4 DAO的誘導表現 14
2.5 DAO純化 15
2.6 DAO的活性測定 17
2.6.1 利用過氧化氫的生成量測定DAO的活性 17
2.6.2 利用丙酮酸的生成量測定DAO的活性 18
2.7 DAO的定量 18
2.8 DAO固定化 19
2.8.1 製備磁性奈米粒子 19
2.8.2 磁性奈米粒子表面修飾 20
2.8.3. RtDAO固定化 20
2.8.4 固定效率評估 21
2.8.5過氧化氫耐受性檢測 21
2.10催化酶固定化 22
2.10.1催化酶的定量 22
2.10.2催化酶的活性測定 22
2.10.3催化酶固定化 23
2.11 催化酶消除DAO產生的過氧化氫 23
2.11.1 催化酶消除過氧化氫檢測 23
2.11.2 催化酶消除過氧化氫對DAO活性的影響 24
第三章 結果與討論 25
3.1 RtDAO固定化 25
3.1.1 磁性奈米粒子和酵素比例 25
3.1.2固定化反應體積 26
3.1.3過氧化氫耐受性檢測 27
3.2催化酶固定化 28
3.2.1磁性奈米粒子和酵素比例 28
3.2.2 固定化反應時間及溫度 29
3.2.3 固定化反應體積 30
3.3以催化酶消除DAO反應產生的過氧化氫 31
3.3.1 催化酶消除過氧化氫檢測 31
3.3.2 催化酶消除過氧化氫對DAO活性影響 32
第四章 結論 33
第五章 圖表 35
第六章 參考資料 57
附錄 67






圖表索引
表一 不同來源的DAO參與的生理作用 35
表二 不同來源D型胺基酸氧化酶的基質特異性 36
表三 磁珠和RtDAO比例對固定化DAO比活性和固定化效率的影響 37
表四 不同反應體積對固定化DAO比活性和固定化效率影響 38
表五 磁珠和催化酶比例對固定化催化酶比活性和固定化效率的影響 39
表六 不同反應時間及溫度對固定化催化酶比活性和固定化效率影響 40
表七 不同反應體積對固定化催化酶比活性和固定化效率影響 41
表八 催化酶消除RtDAO產生的過氧化氫對DAO活性的影響 42
圖1-1 DAO反應機制 44
圖1-2 不同來源的D型胺基酸氧化酶一級結構的比較 45
圖1-3 不同DAO的單體和接合方式 46
圖1-4 人類D型胺基酸氧化酶 47
圖1-5 7-ACA的製備 48
圖1-6 過氧化氫酶三種不同的結構 49
圖1-7 由胺基酸片段將113種過氧化氫酶分類的譜系學分析樹 50
圖1-8 多巴胺的機制 51
圖1-9 兩步驟固定脂質酶於PD-MNP 52
圖2-1 DAO的活性檢測原理 53
圖3-1 過氧化氫耐受性檢測 54
圖3-2 以未固定催化酶消除固定DAO反應產生的過氧化氫 55
圖3-3 以固定催化酶降解固定RtDAO產生的過氧化氫 56
張盛原,2013,Rhodosporidium toruloides D型胺基酸氧化酶於磁性奈米粒子的固定化,碩士論文,生物工程研究所,大同大學,臺北。
陳怡靜,2012,以 SILAFFIN 引導仿生矽化固定 TRIGONOPSIS VARIABILIS D 型胺基酸氧化酶,碩士論文,生物工程研究所,大同大學,臺北。
Achouri Y., Noel G. and Van Schaftingen E. 2007. 2-Keto-4-methylthiobutyrate, an intermediate in the methioninesalvage pathway, is a good substrate for CtBP1. Biochem. Biophys. Res. Commun. 352:903-906.
Abdel-Mageed HM, El-Laithy HM, Mahran LG, Fahmy AS, Mäder K, Mohamed SA. 2012. Development of novel flexible sugar ester vesicles as carrier systems for the antioxidant enzyme catalase for wound healing applications. Process biochemistry. 47: 1155-62.
Alves D, Sileika T, Messersmith PB, Pereira MO. 2016. Polydopamine‐Mediated Immobilization of Alginate Lyase to Prevent P. aeruginosa Adhesion. Macromolecular bioscience. 16: 1301-10.
Baird-Parker A. 1963. A classification of micrococci and staphylococci based on physiological and biochemical tests. Microbiology. 30: 409-27.
Betancor L, Hidalgo A, Fernández‐Lorente G, Mateo C, Rodríguez V, Fuentes M, López‐Gallego F, Fernández‐Lafuente R, Guisan JM. 2003. Use of Physicochemical Tools to Determine the Choice of Optimal Enzyme: Stabilization of d‐Amino Acid Oxidase. Biotechnology progress. 19: 784-88.
Bol DK, Yasbin RE. 1991. The isolation, cloning and identification of a vegetative catalase gene from Bacillus subtilis. Gene. 109: 31-37.
Çetinus ŞA, Öztop HN. 2003. Immobilization of catalase into chemically crosslinked chitosan beads. Enzyme and Microbial Technology. 32: 889-94.
Clark JB. 1952. Catalase activity in Escherichia coli. Journal of bacteriology. 64: 527.
Cline MJ, Lehrer RI. 1969. D-amino acid oxidase in leukocytes: a possible D-amino-acid-linked antimicrobial system. Proceedings of the National Academy of Sciences. 62: 756-63.
Conlon HD, Baqai J, Baker K, Shen YQ, Wong BL, Noiles R, Rausch CW. 1995. Two‐step immobilized enzyme conversion of cephalosporin C to 7‐aminocephalosporanic acid. Biotechnology and bioengineering. 46: 510-13.
Costa SA, Tzanov T, Paar A, Gudelj M, Gübitz GM, Cavaco-Paulo A. 2001. Immobilization of catalases from Bacillus SF on alumina for the treatment of textile bleaching effluents. Enzyme and Microbial Technology. 28: 815-19.
Datta S, Christena LR, Rajaram YRS. 2013. Enzyme immobilization: an overview on techniques and support materials. 3 Biotech. 3: 1-9.
De la Mata I, Ramón F, Obregón V, Castillón MP, Acebal C. 2000. Effect of hydrogen peroxide on d-amino acid oxidase from Rhodotorula gracilis. Enzyme and Microbial Technology. 27: 234-39.
Dumri K, Hung Anh D. 2014. Immobilization of lipase on silver nanoparticles via adhesive polydopamine for biodiesel production. Enzyme research. 2014
El Sayed S, El-Magd RA, Shishido Y, Yorita K, Chung S, Tran D, Sakai T, Watanabe H, Kagami S, Fukui K. 2012a. D-Amino acid oxidase-induced oxidative stress, 3-bromopyruvate and citrate inhibit angiogenesis, exhibiting potent anticancer effects. Journal of bioenergetics and biomembranes. 44: 513-23.
El Sayed S, El-Magd RMA, Shishido Y, Yorita K, Chung S, Tran D, Sakai T, Watanabe H, Kagami S, Fukui K. 2012b. D-Amino acid oxidase-induced oxidative stress, 3-bromopyruvate and citrate inhibit angiogenesis, exhibiting potent anticancer effects. Journal of bioenergetics and biomembranes. 1-11.
Fischer L, Gabler M, Horner R, Wagner F. 1996. Microbial D‐Amino Acid Oxidases (EC 1.4. 3.3). Annals of the New York Academy of Sciences. 799: 683-88.
Fuglsang CC, Johansen C, Christgau S, Adler-Nissen J. 1995. Antimicrobial enzymes: applications and future potential in the food industry. Trends in Food Science & Technology. 6: 390-96.
Gabler M, Fischer L. 1999. Production of a new D-amino acid oxidase from the fungus Fusarium oxysporum. Applied and environmental microbiology. 65: 3750-53.
Gabler M, Hensel M, Fischer L. 2000. Detection and substrate selectivity of new microbial D-amino acid oxidases. Enzyme and Microbial Technology. 27: 605-11.
Goldstein DB. 1966. d‐AMINO ACID OXTDASE IN BRAIN: DISTRIBUTION IN SEVERAL SPECIES AND INHIBITION BY PENTOBARBITONE. Journal of neurochemistry. 13: 1011-16.
Grigoras AG. 2017. Catalase immobilization—A review. Biochemical Engineering Journal. 117: 1-20.
Hamilton T, Dobie-Galuska A, Wietstock S. 1999. The o-phenylenediamine-horseradish peroxidase system: enzyme kinetics in the general chemistry laboratory. J. Chem. Educ. 76: 642.
Hsieh H-C, Kuan I-C, Lee S-L, Tien G-Y, Wang Y-J, Yu C-Y. 2009. Stabilization of d-amino acid oxidase from Rhodosporidium toruloides by immobilization onto magnetic nanoparticles. Biotechnology letters. 31: 557-63.
Iida T, Maruyama D, Fukunaga K. 2000. Stabilization of entrapped catalase using photo‐crosslinked resin gel for use in wastewater containing hydrogen peroxide. Journal of Chemical Technology and Biotechnology. 75: 1026-30.
Isogai T, Ono H, Ishitani Y, Kojo H, Ueda Y, Kohsaka M. 1990. Structure and expression of cDNA for D-amino acid oxidase active against cephalosporin C from Fusarium solani. The Journal of Biochemistry. 108: 1063-69.
Jiang Y, Guo C, Xia H, Mahmood I, Liu C, Liu H. 2009. Magnetic nanoparticles supported ionic liquids for lipase immobilization: Enzyme activity in catalyzing esterification. Journal of Molecular Catalysis B: Enzymatic. 58: 103-09.
Kawamoto S, Kobayashi M, Tanaka A, Fukui S. 1977. Production of D-amino acid oxidase by Candida tropicalis. Journal of Fermentation Technology. 55: 13-18.
Kikuchi-Torii K, HAYASHI S, NAKAMOTO H, NAKAMURA S. 1982. Properties of Aspergillus niger catalase. Journal of biochemistry. 92: 1449-56.
Kirkman HN, Gaetani GF. 1984. Catalase: a tetrameric enzyme with four tightly bound molecules of NADPH. Proceedings of the National Academy of Sciences. 81: 4343-47.
Krebs HA. 1935. Metabolism of amino-acids: Deamination of amino-acids. Biochemical Journal. 29: 1620.
Kuan I-C, Chen S-Y, Chang S-Y, Yu C-Y. 2017. Immobilization of d-amino acid oxidase via a biomimetic coating and its application for the production of 4-methylthio-2-oxobutyric acid. Journal of the Taiwan Institute of Chemical Engineers.
Lee H, Dellatore SM, Miller WM, Messersmith PB. 2007. Mussel-inspired surface chemistry for multifunctional coatings. science. 318: 426-30.
Lončar N, Fraaije MW. 2015. Catalases as biocatalysts in technical applications: current state and perspectives. Applied microbiology and biotechnology. 99: 3351-57.
Maral J, Puget K, Michelson A. 1977. Comparative study of superoxide dismutase, catalase and glutathione peroxidase levels in erythrocytes of different animals. Biochemical and biophysical research communications. 77: 1525-35.
Mitsuda H, Yasumatsu K. 1955. Crystallization of animal catalase and studies on its optimum temperature. Journal of the Agricultural Chemical Society of Japan. 19: 200-07.
Mizutani H, Miyahara I, Hirotsu K, Nishina Y, Shiga K, Setoyama C, Miura R. 1996. Three-dimensional structure of porcine kidney D-amino acid oxidase at 3.0 Å resolution. The Journal of Biochemistry. 120: 14-17.
Mohamad NR, Marzuki NHC, Buang NA, Huyop F, Wahab RA. 2015. An overview of technologies for immobilization of enzymes and surface analysis techniques for immobilized enzymes. Biotechnology & Biotechnological Equipment. 29: 205-20.
Nadler V, Goldberg I, Hochman A. 1986. Comparative study of bacterial catalases. Biochimica et Biophysica Acta (BBA)-General Subjects. 882: 234-41.
Nagata Y, Akino T, Ohno K. 1985. Microdetermination of serum D-amino acids. Analytical biochemistry. 150: 238-42.
Nicholls P, Fita I, Loewen PC. 2000. Enzymology and structure of catalases. Advances in Inorganic Chemistry. 51: 51-106.
Ono K, Shishido Y, Park HK, Kawazoe T, Iwana S, Chung SP, Abou El-Magd RM, Yorita K, Okano M, Watanabe T. 2009. Potential pathophysiological role of D-amino acid oxidase in schizophrenia: immunohistochemical and in situ hybridization study of the expression in human and rat brain. Journal of neural transmission. 116: 1335-47.
Parmar A, Kumar H, Marwaha S, Kennedy J. 1998. Recent trends in enzymatic conversion of cephalosporin C to 7-aminocephalosporanic acid (7-ACA). Critical reviews in biotechnology. 18: 1-12.
Pilone M. 2000. D-Amino acid oxidase: new findings. Cellular and molecular life sciences. 57: 1732-47.
Pollegioni L, Langkau B, Tischer W, Ghisla S, Pilone MS. 1993. Kinetic mechanism of D-amino acid oxidases from Rhodotorula gracilis and Trigonopsis variabilis. Journal of Biological Chemistry. 268: 13850-57.
Pollegioni L, Molla G. 2011. New biotech applications from evolved D-amino acid oxidases. Trends in biotechnology. 29: 276-83.
Pollegioni L, Molla G, Sacchi S, Rosini E, Verga R, Pilone MS. 2008. Properties and applications of microbial D-amino acid oxidases: current state and perspectives. Applied microbiology and biotechnology. 78: 1-16.
Pollegioni L, Piubelli L, Sacchi S, Pilone M, Molla G. 2007. Physiological functions of D-amino acid oxidases: from yeast to humans. Cellular and molecular life sciences. 64: 1373.
Pollegioni L, Rosini E, Molla G. 2013. Cephalosporin C acylase: dream and (/or) reality. Applied microbiology and biotechnology. 97: 2341.
Puiu M, Constantinovici M, Babaligea I, Raducan A, Olmazu C, Oancea D. 2010. Detecting operational inactivation of horseradish peroxidase using an isoconversional method. Chemical Engineering & Technology. 33: 414-20.
Ren Y, Rivera JG, He L, Kulkarni H, Lee D-K, Messersmith PB. 2011. Facile, high efficiency immobilization of lipase enzyme on magnetic iron oxide nanoparticles via a biomimetic coating. BMC biotechnology. 11: 63.
Sacchi S. 2013. D-Serine metabolism: new insights into the modulation of D-amino acid oxidase activity. Portland Press Limited
Sarower MG, Okada S, Abe H. 2003. Molecular characterization of D-amino acid oxidase from common carp Cyprinus carpio and its induction with exogenous free D-alanine. Archives of biochemistry and biophysics. 420: 121-29.
Shi X-l, Shi Z-h, Huang H, Zhu H-g, Zhou P, Ju D. 2010. Therapeutic effect of recombinant human catalase on H1N1 influenza-induced pneumonia in mice. Inflammation. 33: 166-72.
Simonetta MP, Vanoni MA, Casalin P. 1987. Purification and properties of d-amino-acid oxidase, an inducible flavoenzyme from Rhodotorula gracilis. Biochimica et Biophysica Acta (BBA)-Protein Structure and Molecular Enzymology. 914: 136-42.
Spahn C, Minteer SD. 2008. Enzyme immobilization in biotechnology. Recent patents on engineering. 2: 195-200.
Takahashi S, Abe K, Kera Y. 2015. Bacterial d-amino acid oxidases: Recent findings and future perspectives. Bioengineered. 6: 237-41.
Tishkov V, Khoronenkova S. 2005. D-Amino acid oxidase: structure, catalytic mechanism, and practical application. Biochemistry (Moscow). 70: 40-54.
Underkofler L, Barton R, Rennert S. 1958. Production of microbial enzymes and their applications. Applied microbiology. 6: 212.
Veenhuis M, Wendelaar Bonga S. 1977. The cytochemical demonstration of catalase and D-amino acid oxidase in the microbodies of teleost kidney cells. The Histochemical Journal. 9: 171-81.
Wakayama M, Takeuchi Y, Tasaka K, Sakai K, Moriguchi M. 1996. Production of D-amino acid oxidase from Aspergillus sojae. Journal of fermentation and bioengineering. 82: 177-79.
Wdzieczak J, Zaleśna G, Bartkowiak A, Witas H, Leyko W. 1981. Comparative studies on superoxide dismutase, catalase and peroxidase levels in erythrocytes of different fish species. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry. 68: 357-58.
Willekens H, Inzé D, Van Montagu M, Van Camp W. 1995. Catalases in plants. Molecular Breeding. 1: 207-28.
Yurimoto H, Hasegawa T, Sakai Y, Kato N. 2000. Physiological role of the D‐amino acid oxidase gene, DAO1, in carbon and nitrogen metabolism in the methylotrophic yeast Candida boidinii. Yeast. 16: 1217-27.
Zamocky M, Furtmüller PG, Obinger C. 2008. Evolution of catalases from bacteria to humans. Antioxidants & redox signaling. 10: 1527-48.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top