跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.83) 您好!臺灣時間:2025/01/25 16:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王騰鴻
研究生(外文):Thun-hung Wang
論文名稱:銀奈米薄膜 SPR 光纖感測器之研究
論文名稱(外文):Investigation of the SPR fiber sensor based on silver nano thin film structure
指導教授:蔡五湖
指導教授(外文):Woo-Hu Tsai
口試委員:蔡五湖
口試委員(外文):Woo-Hu Tsai
口試日期:2017-07-27
學位類別:碩士
校院名稱:大同大學
系所名稱:光電工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:67
中文關鍵詞:銀薄膜SPR光纖
外文關鍵詞:Silver nano thin filmSPRfiber sensor
相關次數:
  • 被引用被引用:0
  • 點閱點閱:280
  • 評分評分:
  • 下載下載:58
  • 收藏至我的研究室書目清單書目收藏:0
在本論文中,我們以銀薄膜取代金薄膜,將銀奈米薄膜沉積在測磨光纖表面製作SPR光纖感測器,並做一系列的有系統的分析與討論,藉由不同的折射率的折射油來確定50nm的銀膜厚度具有最佳的靈敏度。基於銀在空氣中或溶液容易或硫化的現象,我們也進行了銀膜長時間暴露在空氣和水中的各種SPR光纖感測靈敏度帶來的衰減測量實驗,實驗結果顯示銀膜的SPR感測靈敏度比金膜的結果提高約50%的波長。銀膜老化的現象與金膜相比,在短時間內,銀膜的SPR感測其靈敏度就會出現明顯下降的現象,所以我們建議未來可以在銀膜上面濺鍍一層5~10nm的奈米金膜來改善此問題。
ABSTRACT

In this paper, we select silver to replace gold by depositing silver Nano thin film on ground fiber surface to produce SPR fiber optic sensor. Through a series of systematic analyses and discussions, and by using refractive oils of different reflective indexes, the SPR fiber optic sensor with 50 nm sliver thin film would be ascertained to be of the highest sensitivity.
Silver is easily vulcanized in the air or in the solution; therefore, we also performed the attenuation measurement experiments of different SPR fiber sensors by exposing them in the air or in the water for designed long durations. The results of the above experiments showed that the sensitivity of the SPR sensor with silver Nano thin film was increased about 50% comparing to the traditional SPR sensor with gold film. However, the aging phenomenon of silver film, comparing to gold film, decreased significantly the sensitivity of the SPR sensor in a short period of time. In the future, we suggest that a gold Nano thin film of 5-10 nm be sputtered on the silver film, which might be a possible solution to improve this problem.
目錄
第一章 緒論 1
1-1 前言 1
1-2 光纖感測器 2
1-3 研究動機與目的 4
1-4 表面電漿共振 6
第二章 原理 8
2-1 表面電漿共振 8
2-2 表面電漿波原理 10
2-3 漸逝波 15
2-4 測磨光纖 17
第三章 實驗架構 19
3-1製作光纖研磨載台 20
3-2測磨光纖 21
3-3金屬膜濺鍍沉積 23
3-4SPR量測 26
第四章 結果與討論 30
4-1 銀膜厚度 30
4-2 銀膜的衰減分析測試 38
4-3 金膜與銀膜的分析測試 49
4-4 濺鍍金膜與銀薄膜的表面親水性分析 54
第五章 未來展望 56
參考文獻 58


圖目錄
圖1-1 漸逝場形式結構3
圖1-2早期三菱鏡式SPR架構6
圖2-1電荷密度在金屬表面上發生集體式電偶極震盪電場分量圖9
圖2-2 電荷密度受到激發在金屬層及界電層之間發生震盪10
圖2-3光反射示意圖15
圖2-4 漸逝波原理16
圖2-5外界折射率跟光損失關係18
圖3-1 光纖研磨載台20
圖3-2 研磨機22
圖3-3從顯微鏡觀察光纖的寬度,初拋後寬度達到125µ22
圖3-4 經0.1µm鑽石細拋磨片拋光表面影像22
圖3-5 DC直流濺鍍機24
圖3-6金膜SPR光纖感測結構圖25
圖3-7銀膜SPR光纖感測結構圖25
圖3-8光譜分析儀(ANDO AQ-6315)27
圖3-9鹵素白光光源燈(ANDO 4303B)27
圖3-10 SPR系統量測示意圖28
圖3-11金膜SPR共振吸收下向響應曲線中心波長位置變化圖28
圖3-12銀膜SPR共振吸收下向響應曲線中心波長位置變化圖29
圖4-1 30分鐘銀膜濺鍍(35nm)31
圖4-2 40分鐘銀膜濺鍍(40nm)31
圖4-3 50分鐘銀膜濺鍍(50nm)32
圖4-4 銀膜厚度與濺鍍時間關係圖32
圖4-5 30nm銀膜厚度的SPR共振吸收白光頻譜響應圖33
圖4-6 30nm銀膜厚度SPR共振吸收下陷曲線中心位置波長變化圖33
圖4-7 40nm銀膜厚度的SPR共振吸收白光頻譜響應圖34
圖4-8 40nm銀膜厚度SPR共振吸收下陷曲線中心位置波長變化圖34
圖4-9 50nm銀膜厚度的SPR共振吸收白光頻譜響應圖35
圖4-10 50nm銀膜厚度SPR共振吸收下陷曲線中心位置波長位移變化圖35
圖4-11 60nm銀膜厚度的SPR共振吸收白光頻譜響應圖36
圖4-12 60nm銀膜厚度SPR共振吸收下陷曲線中心位置波長位移變化圖36
圖4-13 SPR共振吸收下陷曲線中心波長變化圖37
圖4-14 第一天銀膜的SPR共振吸收白光頻譜響應圖40
圖4-15 第一天SPR共振吸收下陷曲線中心波長與歸一光功率變化圖40
圖4-16 第二天銀膜的SPR共振吸收白光頻譜響應圖41
圖4-17 第二天SPR共振吸收下陷曲線中心波長與歸一光功率變化圖41
圖4-18 第三天銀膜的SPR共振吸收白光頻譜響應圖42
圖4-19 第三天SPR共振吸收下陷曲線中心波長與歸一光功率變化圖42
圖4-20 第四天銀膜的SPR共振吸收白光頻譜響應圖43
圖4-21 第四天SPR共振吸收下陷曲線中心波長與歸一光功率變化圖43
圖4-22 第五天銀膜的SPR共振吸收白光頻譜響應圖44
圖4-23 第五天SPR共振吸收下陷曲線中心波長與歸一光功率變化圖44
圖4-24 1.35折射率的折射油所測得的SPR共振吸收下陷曲線中心波長與歸一光功率變化比較圖45
圖4-25 50nm銀膜在折射率1.35所測得的歸一功率與天數變化圖...45
圖4-26 1.39折射率的折射油所測得的SPR共振吸收下陷曲線中心波長與歸一光功率變化比較圖46
圖4-27 50nm銀膜在折射率1.39所測得歸一光功率與天數變化圖46
圖4-28 4小時水的SPR共振吸收下陷曲線中心波長位移圖48
圖4-29銀膜浸泡於水中的歸一光功率變化圖48
圖4-30金膜的SPR共振吸收下陷曲線中心波長位移變化圖51
圖4-31 金膜的SPR共振吸收下陷曲線中心波長位移斜率圖51
圖4-32銀膜的SPR共振吸收下陷曲線中心波長變化圖52
圖4-33銀膜的SPR共振吸收下陷曲線中心波長位移斜率圖52
圖4-34銀膜水珠接觸角照片55
圖4-35 金膜水珠接觸角照片55

表目錄
表3-1 金與銀薄膜DC直流濺鍍參數23
表4-1置於空氣中SPR共振吸收下陷曲線中心波長37
表4-2 置於水中SPR共振吸收下陷曲線中心波長47
表4-3金膜與銀膜的SPR共振吸收中心波長位移斜率比較表53
[1]R.C. Jorgenson, and S.S. Yee, “A fiber-optic chemical sensor based on surface plasmon resonance,” Sensors Actuators B Chem, 12, pp. 213-220, (1993).
[2]E. Udd, “Fiber Optic Smart Structures,” IEEE Proceedings. Vol. 84, pp. 60–67, (1996).
[3]B. J.-C. Deboux, E. Lewis, P. J, Scully, and R. Edwards, “A Novel Technique for Optical Fiber pH Sensing Based on Methyllene Blue Adsorption,” J. Lightwave Technoloy, Vol. 13, NO. 7, JULY , (1995).
[4]M. A. Hughes and A. D. Drake, “A Fiber Optics Chemical Sensor,” Department of Electrical and Computer Engineering University of New Hampshire Durham, New Hampshire, pp. 3824-3591, (1995).
[5]J. M L. Higuera, A. Cobo, J. Echevarria, F. J. Madruga, and J. L. Arce, “Simultaneous temperature and acceleration optical fiber sensor system for large structures monitoring,” IEEE Lasers and Electro-Optics Society, Vol. 2, pp. 462–463, (2000).
[6]B. Guldimann, P. A. Clerc, and N. F. D. Rooij, “Fiber-optic accelerometer with micro-optical shutter modulation and integrated damping,” IEEE Optical MEMS, pp. 141–142, (2000).
[7]G. A. Cranch and P. J. Nash, “High-responsivity fiber-optic flexural disk accelerometers,” J. Lightwave Technol., Vol. 18, pp. 1233–1243, (2000).
[8]F. P. Corera, A. Gaston, and J. Sevilla, “Relative humidity sensor based on side-polished fiber optic,” IEEE Instrumentation and Measurement Technology Conference, Vol. 1, pp. 17–22, (2000).
[9]O. Suzuki, M. Miura, M. Morisawa, and S. Muto, “POF-type optic humidity sensor and its application as breathing-condition monitor,” Optical Fiber Sensors Conference Technical Digest, Vol. 1, pp. 447–450, (2002).
[10]F. J. Arregui, I. R. Matias, K. L. Cooper, and R. O. Claus, “Simultaneous measurement of humidity and temperature by combining a reflective intensity-based optical fiber sensor and a fiber Bragg grating,” IEEE J. Sensors, Vol. 2, pp. 482–487, (2002).
[11]K. Tajima and Y. Miyajima, “Viscosity-matched P2O5-SiO2 core single-mode fiber,” Optical Fiber Communication Conference, pp. 4–5, (1997).
[12]M. Ohashi, M. Tateda, K. Shiraki, and K. Tajima, “Imperfection loss reduction in viscosity-matched optical fibers,” IEEE Photon. Technol. Lett., Vol. 5, pp. 812–814, (1997).
[13]M. Vries, B. D. Zimmermann, A. M. Vengsarkar, and R. O. Claus, “Liquid core optical fiber temperature sensors,” IEEE Southeastcon, Vol. 2, pp. 1135–1138, (1991).
[14]Brambilla and H. Rutt, “Fiber Bragg gratings with ultra-high temperature-stability,” Optical Fiber Communication Conference, pp. 660–662, (2002).
[15]J. Senosiain, I. Diaz, A. Gaston, and J. Sevilla, “High sensitivity temperature sensor based on side-polished optical fiber,” IEEE Instrumentation and Measurement, Vol. 50, pp. 1656 –1660, (2001).
[16]F.Chiadini, A.Paolillo, and A.Scaglione, “A reflectometric optical fiber temperature sensor,” IEEE J. Sensors, Vol.3, pp. 80–86, (2003).
[17]L. Wang, G. C. Lin, and C. C. Yang, “Thermal performance of a solder-coated optical fiber Bragg grating sensor,” IEEE Lasers and Electro-Optics Society Annual Meeting, Vol. 2, pp. 560–561, (1997).
[18]C. P. A. Pennisi, L. Leija, W. H. Fonseca, and A. Vera, “Fiber optic temperature sensor for use in experimental microwave hyperthermia,” IEEE Sensors, Vol. 2, pp. 1028–1031, (2002).
[19]A. Herrero, H. Guerrero, T. Belenguer, and D. Levy, “High-sensitivity temperature sensor based on overlay on side-polished fibers,” IEEE Photon. Technol. Lett., Vol. 12, pp. 1043–1045, (2000).
[20]A. Wang, S. He, X. Fang, X. Jin, and J. Lin, “Optical fiber pressure sensor based on photoelasticity and its application,” J. Lightwave Technol., Vol. 10, pp. 1466–1472, (1992).
[21]E. Cibula, D. Donlagic, and C. Stropnik, “Miniature fiber optic pressure sensor for medical applications,” IEEE Sensors, Vol. 1, pp. 711–714, (2002).
[22]S. Kreger, S. Calvert, and E. Udd, “High pressure sensing using fiber Bragg gratings written in birefringent side hole fiber,” Optical Fiber Sensors Conference Technical Digest, Vol. 1, pp. 355–358, (2002).
[23]M. J. Gander, W. N. MacPherson, J. S. Barton, R. L. Reuben, J. D .C. Jones, and Stevens, “Embedded micromachined fiber-optic Fabry-Perot pressure sensors in aerodynamics applications,” IEEE J. Sensors, Vol. 3, pp. 102–107, (2003).
[24]R. R. J. Maier, J. S. Barton, J. D .C. Jones, S. McCulloch, G. Burnell, and I. Davis, “T-shaped" fiber Bragg grating sensor geometry for strain based metrology,” Optical Fiber Sensors Conference, Vol.1, pp. 351–354, (2002).
[25]J. C. C. Silva and H. J. Kalinowski, “Strain studies in electrical energy transmission cables using an optical fiber Bragg grating sensor,” Microwave and Optoelectronics, Vol. 1, pp. 313–316, (2001).
[26]J. Lim, Q. P. Yang, B. E. Jones, and P. R. Jackson, “Strain and temperature sensors using multimode optical fiber Bragg gratings and correlation signal processing,” IEEE trumentation and Measurement Technology Conference, Vol. 3, pp. 1463–1466, (2001).
[27]H. J. Kwon, J. O. Spiker, H. Balcer, and K. A. Kang, “A kinetic study on fiber optic immunosensor for the detection of protein C,” BMES/EMBS Conference, Vol. 2, p. 807, (1999).
[28]C. C. Wang, “Studies of optical fiber biosensors,” BMES/EMBS Conference, Vol. 2, p. 827, (1999).
[29]W. H. Tsai, K. C. Lin, S. M. Yang, Y. C. Tsao, and P. J. Ho, “Fiber-optic surface plasmon resonance-based sensor with AZO/Au bilayered sensing layer, ” Chinese Optics Letters, Vol 12, 042801, (2014).
[30]C. C Chang, Y. J. Pan, and W. H. Tsai, “A field emission light source using reflective metal groove anode and long narrow stripe cathode,” Applied Mechanics and Materials, Vol. 284-287, pp 2784-2788, (2013).
[31]T. V. Tulaikova, “New kind of sensors based on amalgamation of fiber optic and seaweed to control pollution in a water,” Microtechnologies in Medicine and Biology Conference, pp. 370–374, (2000).
[32]D. Jiang, E. Liu, X. Chen, and J. Huang, “Study on a new fiber optic glucose biosensor,” Optical Fiber Sensors Conference, Vol. 1, pp. 451–454, (2002).
[33]K. Kurihara, H. Ohkawa, Y. Iwasaki, T. Tobita, O. Niwa, and K. Suzuki, “A fiber-optic microdevice for surface plasmon resonance sensing using a chemically-etched single-mode fiber,” IEEE-EMB Microtechnologies in Medicine & Biology, pp. 384–385, (2002).
[34]L. Bansal, S. Khalil, and M. A. El-Sherif, “Fiber optic neurotoxin sensor,” IEEE Bioengineering Conference, pp. 221–222, (2002).
[35]M. Kimura and K. Toshima, “A new type optical fiber vibration-sensor,” Solid State Sensors and Actuators , Vol. 2, pp. 1225–1228, (1997).
[36]M. Kamiya and H. Ikeda, “Simultaneous transmission of vibration sensor position control data and measured vibration data in opposite directions through single plastic optical fiber,” IEEE EFTA, Vol. 1, pp. 82–86, (1996).
[37]C. A. Millar, M. C. Brierley, and S. R. Mallinson, “Exposed-core single-mode-fiber channel dropping filter using a high index overlay wave-guide,” Opt. Letter., Vol.12, pp. 284, (1987).
[38]W. V. Sorin, B. Y. Kin, and H. J. Shaw, “Highly selective evanescent modal filter for two-mode optical filters,” Opt. Lett., Vol. 11, pp. 581–583, (1986).
[39]S. Creaney, W. Johnstone, and K. McCallion, “Continuous-Fiber Modulator with High-Bandwidth Coplanar Strip Electrodes,” IEEE Photon. Technol. Lett., Vol. 8, No.3, pp. 355–357, (1996).
[40]W. Johnstone, S. Murray, G. Thrusby, M. Gill, A. McDonach, D. Moodie, and B. Culshaw, “Fiber optic Modulator using active multimode wavelength overlay,” Electron. Lett., Vol. 27, pp. 894–896, (1991).
[41]T. S. Min, and C. C. Lin, “Low voltage optical fiber switch,” Japanese Journal of Applied Physics, Vol.37, pp. L42–L45, (1998).
[42]K. McCallion, W. Johnstone, and G. Thrusby, “Investigation of optical fiber switch using electro-optic interlays,” Electron. Lett., Vol. 28, pp. 410–411, (1992).
[43]A. Gloag, N. Langford, K. McCallion, and W. Johnstone, “Tunable er-bium fiber laser using a novel overlay bandpass,” Opt. Lett., Vol. 19, pp. 801–803, (1994).
[44]S. Pin Ma and S. Min Tseng, “High-performance side-polished fiber and applications as liquid crystal clad fiber polarizers,” J. Lightwave Technology Journal, Vol.15, pp. 1554–1558, (1997).
[45]R. Vallee, and G. He, “Polarizing properties of a high index birefringent waveguide on top of a polished fiber coupler,” J. Lightwave Technol, Vol.11, pp. 1196–1203, (1993).
[46]W. Johnstone, G. Stewart, T. Hart, and B. Clushaw, “Surface plasmon polaritons in thin metal films and their role in fiber optic polarizing devices,” J. Lightwave Technol, Vol. 8, pp. 538–544, (1990).
[47]S. Min Tseng, Member, IEEE, K. Hu Hsu. H. Sco wer and Kun-Fa Chen, “Analysis and experiment of thin metal-clad fiber polarizer with index overlay,” J. Lightwave Technol, Vol. 9, pp. 628–630, (1997).
[48]A. W. Snyder, and A.J. Stevenson, “Polished type couplers acting as polarizing splitter,” Opt. Lett., Vol. 12, pp. 254–256, (1986).
[49]J. A. Ferrari, E. M. Frins, and W. Dultz, “Optical fiber vibration sensor using (Pancharatnam) phase step interferometry,” J. Lightwave Technol., Vol. 15, pp. 968–971, (1997).
[50]K. A. Murphy, B. R. Fogg, R. O. Claus, and A. M. Vengsarkar, “Spatially-weighted Vibration Sensors Using Tapered Two-mode Optical Fibers,” J. Lightwave Technol., Vol. 10, pp. 1680–1687, (1992).
[51]許沁威 “利用金奈米粒子改善SPR光纖改測器靈敏度之研究”大同大學光電工程研究所碩士論文,(2011)。
[52]https://zh.wikipedia.org/wiki/%E9%8A%80.
[53]R. W. Wood, ‘On a remarkable care of uneven distributiom of light in a diffraction grating spectrum’, Philos. Mag. 4, pp. 396-402, (1902).
[54]E. Kretschmann and H. Raether, ‘Radiative decay of non-radiative
surface plasmons excited by light’, Z. Naturforsch. 23a, pp. 2135, (1968).
[55]A. Otto, ‘Excitation of nonradiative surface plasma waves in silver
by the method of frustrated total reflection’ , Z. Naturforsch. 23a, pp.
2135, (1968).
[56]K J Kasunic ,‘Comparison of Kretschmann-Raether angular regimes for measuring changes in bulk refractive index’ ,Sandia National Laboratories, Albuquerque, New Mexico 87185, USA.
[57]Andreas Otto,‘Excitations of Surface Plasmon Polaritons by Attenuated Total Reflection, revisited’, Universit´e de Technologie de Troyes, 10010 Troyes Cedex, France, Union europ´eenne 12 rue Marie Curie-BP 2060
[58]C. Nylander, B. Liedberg and T. Lind, ‘Gas detection by means of
surface plasmons resonance’, Sensors and Actuators 3, pp. 79-88,
(1982).
[59]B. Liedberg, C. Nylander and I. Lundstrom, ‘Surface
plasmonsresonance for gas detection and biosensing’, Sensnors and
Actuators 4, pp. 299-304, (1983).
[60]吳朗 、沈煜棠,表面聲波 SAW 化學感測器,CHEMISTRY (THE CHINESE CHEM. SOC., TAIPEI) Vol. 59, No. 2, pp. 279~286, (2001).
[61]L. Rayleigh, Proc. London Math. Soc. 17, 4, (1885)
[62]Rajan Iha, and Goncal Badenes, “Effect of fiber core dopant concentration on the performance of surface plasmon resonance-basd fiber optic sensor,” Sensors and Actuators A 150 , pp. 212 -217, (2009).
[63]http://www.biacore.com/lifesciences/history/index.html
[64]Jorgenson, R. C. and Yee, S. S., A fiber-optic chemical sensor
based on surface plasmon resonance, Sens Actuators B Chem, 12,
pp. 213-220, (1993).
[65]K. A. Murphy, B. R. Fogg, O. Claus, and M. Vengsarkar, “Spatially –weighted vibration sensors using tapered two-mode optical fibers,” J. Lightwave Technol, Vol. 10, pp.1680 -1687, (1992).
[66]J. A. Ferri, E. M. Frins, and W. Dultz, “Optical fiber vibration sensor using(Pancharatnam) phase step interferometry,” J. Lightwave Technol, ,Vol. 15, pp.968-971, (1997).
[67]Chii -Wann Lin, Shi Ming Lin, Ying-Tsuen Lion, “The fabrication of fiber surface plasmon resonance microsensor for biomedical application,” Institute of engineering N.T.U, (2002).
[68]W. H. Tsai, Y. C. Tsao, H. Y. Lin, and B. C. Sheu, Opt. Lett. 30,
2209, (2005).
[69]W.-H. Tsai, "Fiber optic vibration sensor," Journal of the
Acoustical Society of America, Vol. 121, Isuue 4, pp. 1838, (2007).
[70]余宣鋒,「利用酒精表面改植增強有機/金雙層薄膜結構光纖式表面電漿共振感測器靈敏度之研究」,大同大學光電工程研究所碩士論文,(2013)。
[71]蕭耀宗,「磁性流體在外加垂直磁場下形成有序結構之光子晶體效應研究」,國立台灣師範大學光電科技研究所碩士論文,(2004)。
[72]趙贇新,「磁性流體可調性折射率特性之研究與應用」臺灣2004年國際科學展覽會 ,(2004)。
[73]Jiri Homola, Sinclair S. Yee, Gunter Gauglitz, ”Surface Plasmon resonance sensors: review”, Sensors and Actuators B Vol. 54, pp. 3-15, (1999).
[74]Hyuk Rok Gwon and Seong Hyuk Lee,‘Spectral and Angular       Responses of Surface Plasmon Resonance Based on the Kretschmann Prism Configuration’, The Japan Institute of Metals. (2010).
[75]L. Dong, P. Hua, T. A. Birks, Reekie and St. J.Russel, “Novel add / drop filters for wavelength-division -multiplexing fiber systems using a bragg grating assisted mismatched coupled, ”J Lightwave Te , Vol.8, pp.1656-1658, (1996).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊