[1]Li Miaoquan, Zhang Weifu, Zhu Tangkui, Hou Hongliang, and Li Zhiqiang, “Effect of Hydrogen on Microstructure of Ti-6Al-4V Alloys”, Metal Materials and Engineering Volume 39, 2010, pp.1-5.
[2]Li Zhou, Duo Liu, Huijie Liu, and Linzhi Wu, “Effect of hydrogen as a temporary alloying element on the microstructure and mechanical properties of Ti-6Al-4V titanium alloy”, Mechanics and Materials, Volume 395-396, 2013, pp 243–250.
[3]Zhao Jing-wei, Ding Hua, Zhao Wen-juan, Tian Xue-feng, Hou Hong-liang, and Wang Yao-qi, “Influence of hydrogenation on microstructures and microhardness of Ti6Al4V alloy”, Nonferrous Met. Soc. Volume 18, 2007, pp 506–511.
[4]F.H. Froes, O.N. Senkov, and J.I. Qazi, “Hydrogen as a temporary alloying element in titanium alloys: thermohydrogen processing”, International Materials Reviews, Volume 49, 2004, pp 227–245.
[5]W. R. Kerr, “The effect of hydrogen as a temporary alloying element on the microstructure and tensile properties of Ti-6Al-4V”, Metallurgical Transactions A., Volume 16, 1985, pp 1077–1087.
[6]M. Mitkov, and D. BoZiC, “Hydride-dehydride conversion of solid Ti6Al4V to powder form”, Materials Characterization, Volume 37, 1996, pp. 53–60.
[7]Jingwei Zhao, Hua Ding, Zhengyi Jiang, Mingli Huang, and Hongliang Hou, “Hydrogen-induced hardening of Ti–6Al–4V alloy in b phase field”, Materials & Design, Volume 54, 2014, pp.967–972.
[8]Y. Mahajan, S. Nadiv, and W. R. Kerr, “Studies of hydrogenation in Ti-6Al-4V alloy”, Scripta Metallurgica, Volume 13, pp. 695-699, 1979.
[9]H. Yoshimura, and J. Nakahigashi, “Tensile and impact properties of mesoscopic-grained +-type titanium alloys obtained through hydrogen treatments”, JAC, Volume 293-295, 1999, pp.858-861.
[10]C. C. Shen, and C. M. Wang, “Effects of hydrogen loading and type of titanium hydride on grain refinement and mechanical properties of Ti-6Al-4V”, JAC, Volume 601, 2014, pp.440-444.
[11]W. L. Chen, and T. I. Wu, “Surface hardening of Ti-6Al-4V and SP700 alloys by multiple electrolytic hydrogenation and post-solution heat treatment”, 礦冶,Volume 60, 2016, pp.83-90.
[12]Hugo Ricardo Zschommler Sandim, Bruno Vieira Morante, and Paulo Atsushi Suzuki, “Kinetics of Thermal Decomposition of Titanium Hydride Powder Using in situ High-temperature X-ray Diffraction (HTXRD) ”, Materials Research, Volume 8, 2005, pp.293-297.
[13]H Daniel P. Barbis, Robert M. Gasior, Graham P. Walker, Joseph A. Capone, and Teddi S. Schaeffer, “Titanium powders from the hydride–dehydride process”, Titanium Powder Metallurgy, 2015, pp.101-106.
[14]N. A. Braga, N. G. Ferreira, and M. R. Baldan, “Hydrogen effect on the morphology and structure of 3D porous titanium in the HFCVD-diamond growth environment”, Materials Characterization, Volume 62, 2011, pp.995-999.
[15]Bo-qiong LI, Zhi-qiang LI, and Xing LU, “Effect of sintering processing on property of porous Ti using space holder technique”, Nonferrous Met. Soc. Volume 25, 2015, pp.2965-2973.
[16]Ahmed Ibrahim, Faming Zhangb, Eileen Ottersteinb, and Eberhard Burkelb, “Processing of porous Ti and Ti5Mn foams by spark plasma sintering”, Materials & Design, Volume 32, 2011, pp.146–153.
[17]H. Paydas, A.Mertens, R. Carrus, J. Lecomte-Beckers, and J. Tchoufang Tchuindjang, “Laser cladding as repair technology for Ti–6Al–4V alloy: Influence of building strategy on microstructure and hardness”, Materials & Design, Volume 85, 2015, pp.497–510.
[18]C. Leyens, and M. Peters, Titanium and titanium alloys: Wiley Online Library, 2003.
[19]E. K. Molchanova, Phase diagrams of titanium alloys: Israel Program for Scientific Translations, 1965.
[20]O. n. Senkov, and F. H. Froes, “Thermohydrogen processing of titanium alloys”, International Journal of Hydrogen Energy, Volume 24, no. 6, 1999, pp. 565-576.
[21]V. A. Goltsov, “Hydrogen treatment (processing) of materials: current status and prospects”, Journal of Alloys and Compounds, Volume 293–295, no. 0, 1999, pp. 844-857.
[22]F. H. Froes, D. Eylon, and C. Suryanarayana, “Thermochemical processing of titanium alloys”, JOM, Volume42, no. 3, 1990, pp. 26-29.
[23]S. Pillot, and L. Coudreuse, “2 - Hydrogen-induced disbonding and embrittlement of steels used in petrochemical refining”, Gaseous Hydrogen Embrittlement of Materials in Energy Technologies, R. P. Gangloff and B. P. Somerday, eds., 2012, pp. 51-93: Woodhead Publishing.
[24]D. Eliezer, N. Eliaz, O. N. Senkov, and F. H. Froes, “Positive effects of hydrogen in metals”, Materials Science and Engineering: A, Volume 280, no. 1, 2000, pp. 220-224.
[25]T. N. Veziroǧlu, and V. A. Goltsov, “A new aspect of hydrogen movement”, International Journal of Hydrogen Energy, Volume 22, pp. 113, 1997.
[26]C. C. Shen, and C. M. Wang, “Pressure–composition isotherms and reversible hydrogen-induced phase transformations in Ti–6Al–4V”, Acta Materialia, Volume 55, 2007, pp. 1053-1058.
[27]W. Kerr, “The effect of hydrogen as a temporary alloying element on the microstructure and tensile properties of Ti-6Al-4V”, Metallurgical Transactions A, Volume 16, 1985, pp. 1077-1087.
[28]W. R. Kerr, P. R. Smith, M. E. Rosenblum, F. J. Gurney, Y. R. Mahajan, and L. R. Bidwell, “Hydrogen as a Temporary Alloying Element in Titanium.”, pp. 2477-2486.
[29]Changshu Xiang, Yan Zhang, Zengfeng Li, Hanliang Zhang, Yuanping Huang, and Huiping Tang, “Preparation and compressive behavior of porous titanium prepared by space holder sintering process”, Procedia Engineering, Volume 27, 2012, pp.768-774.
[30]Wang Yue-Qing, Tao Jie, Zhang Jin-Long, and Wang Tao, “Effects of addition of NH4HCO3 on pore characteristics and compressive properties of porous Ti-10%Mg composites”, Nonferrous Met. Soc., Volume 21, 2011, pp.2049-2056.
[31]Niu Wenjuan, Bai Chenguang, Qiu GuiBao, and Wang Qiang, “Processing and properties of porous titanium using space holder technique”, Materials Science and Engineering, Volume 506, 2009, pp.148-151.
[32]Z. Esen, and S . Bor, “Processing of titanium foams using magnesium spacer particles”, Materials Science and Engineering, Volume 56, 2007, pp.341-344.
[33]C. Torres-Sanchez, F.R.A. Al Mushref, M. Norrito, K. Yendall, Y. Liu, and P.P. Conway, “The effect of pore size and porosity on mechanical properties and biological response of porous titanium scaffolds” , Materials Science & Engineering Volume 77, 2017, pp.219-228.
[34]Ahmed Ibrahim, Faming Zhang, Eileen Otterstein, and Eberhard Burkel, “Processing of porous Ti and Ti5Mn foams by spark plasma sintering” , Materials and Design, Volume 32, 2011, pp.146-153.
[35]Bo-qiong LI, Zhi-qiang LI, and Xing LU, “Effect of sintering processing on property of porous Ti using space holder technique” , Nonferrous Met. Soc., Volume 25, 2015, pp.2965-2973.
[36]R. L. Coble, “Hot Consolidation of Rapidly Solidified Powders: Sinterings, Hot Pressing (HP) and Hot Isostatic Pressing (HIP) in Relation to the Superalloys”, Powder Metall. Int., 1978, Volume 10, pp. 128-130.
[37]Fei Cao, Pankaj Kumar, Mark Koopman, Chenluh Lin, Z. Zak Fang, and K.S. Ravi Chandran, “Understanding competing fatigue mechanisms in powder metallurgy Ti–6Al–4V alloy: Role of crack initiation and duality of fatigue response”, Materials Science and Engineering, 2015, Volume 10, pp. 139-145.
[38]李怡婷, “Ti-153粉末冶金合電極吸放氫特性研究,碩士論文”, 私立大同大學材料工程研究所, 2014.[39]J. C. Slater, “Atomic Shielding Constants”, Phys, 1930, Volume 36, pp. 57-64.
[40]M.V. Oliveiraa, L.C. Pereirab, and C.A.A. Cairoc, “Porous Structure Characterization in Titanium Coating for Surgical Implants”, Mat. Res., 2002, Volume 5, pp. 269-273.