跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.86) 您好!臺灣時間:2025/02/08 23:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:連佳策
研究生(外文):Chia-Tsu Lien
論文名稱:氫化鈦合金粉末燒結體之製作及特性分析
論文名稱(外文):The Processing and Characterization of Hydrogenated Titanium Alloy Powder Sinterings
指導教授:吳台一
指導教授(外文):Tair-I Wu
口試委員:吳台一
口試委員(外文):Tair-I Wu
口試日期:2017-06-14
學位類別:碩士
校院名稱:大同大學
系所名稱:材料工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:56
中文關鍵詞:元素分析CP-TiTi-64合金Ti-153合金熱壓
外文關鍵詞:CP-TiTi-64 alloyTi-153 alloyhot pressingelement analysis
相關次數:
  • 被引用被引用:0
  • 點閱點閱:160
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究將CP-Ti a型、Ti-6Al-4V (Ti-64) (a+b)型及Ti-15V-3Al-3Sn-3Cr (Ti-153)b型等三種不同結構之鈦合金板材以氣相滲氫法製備粉末,接續將合金粉末與NH4HCO3及TiH2等空間預留的粉末進行混粉,接著將粉末熱壓成燒結體,而後再利用SEM觀察燒結體形貌、XRD分析燒結體的相變化、EA檢測燒結體之氫含量、結構性則利用洛式硬度 (HR15T) 。結果顯示於相同壓力下800oC的燒結體結構皆比700oC的燒結體佳,800oC-20MPa-2hrs製程參數所製備出的燒結體結構最佳,CP-Ti燒結體的洛氏硬度 (HR15T) 為95.6、Ti-64燒結體的洛氏硬度 (HR15T) 為90.6、Ti-153燒結體的洛氏硬度 (HR15T) 為92.7,但因其密度緻密,於相同壓力下,提高溫度會使總孔隙率下降;700oC-10MPa-2hrs製程參數所製備出的燒結體結構性差,其結構鬆散,總孔隙率最高,CP-Ti燒結體的洛氏硬度 (HR15T) 為40.3、Ti-64燒結體的洛氏硬度(HR15T) 為19.6、Ti-153燒結體的洛氏硬度 (HR15T)為19.1。
CP-Ti (a type), Ti-64(a+b type), Ti-153 (b type) sheet specimens were adopted in this study to be treated by thermohydrogen processing to obtain the original alloy powder. The alloy powder was mixed with NH4HCO3 and TiH2 which were the space holder powder. Then, the powder was employed in producing porous sinterings. The microstructural changes were investigated by using X-ray diffractometry (XRD). Particle size, surface morphology variations and pore distribution were observed by employing scanning electron microscopy (SEM). Elemental analyzer (EA) was applied to obtain hydrogen contents of processed specimens. The structure were investigated by using Rockwell (HR15T). The optimal sinterings was acquired after Ti alloy specimens processed according to the 800oC parameters: hot press sintering (20MPa)-800oC-2hrs. The Rockwell (HR15T) of CP-Ti sintering is 95.6, the Rockwell (HR15T) of Ti-64 sintering is 90.6, and the Rockwell (HR15T) of Ti-153 sintering is 95.6. Even though they have high density, increasing the temperature will let the porosity of sintering decrease. The highest porosity sinterings was acquired after Ti alloy specimens processed according to this parameters: hot press sintering (10MPa)-700oC-2hrs. The Rockwell (HR15T) of CP-Ti sintering is 40.3, the Rockwell (HR15T) of Ti-64 sintering is 19.6, and the Rockwell (HR15T) of Ti-153 sintering is 19.1.
誌謝i
摘要ii
ABSTRACTiii
目錄iv
表目錄vii
圖目錄viii
第一章 緒論1
1.1 前言1
1.2 研究目的2
第二章 文獻探討3
2.1 鈦合金分類3
2.1.1 a型、近a型鈦合金3
2.1.2 a+b型鈦合金4
2.1.3 b型、近b型鈦合金4
2.2 熱氫製程5
2.3 空間預留技術6
2.4 粉末冶金熱壓製程6
第三章 實驗方法與流程9
3.1 實驗流程9
3.1.1 CP-Ti粉末製備9
3.1.2 Ti-6Al-4V粉末製備9
3.1.3 Ti-15V-3Al-3Sn-3Cr粉末製備9
3.1.4 CP-Ti 粉末熱壓成型9
3.1.5 Ti-6Al-4V 粉末熱壓成型10
3.1.6 Ti-15V-3Al-3Sn-3Cr 粉末熱壓成型10
3.2 實驗儀器與分析設備10
3.2.1 X光繞射分析術 (X-RAY DIFFRACTOMETRY; XRD) 10
3.2.2 視孔隙率胚體視密度和測量11
3.2.3 掃描式電子顯微術11
3.2.4 非金屬元素分析術12
3.2.5 拉曼散射光譜儀12
3.2.6 ROCKWELL 硬度試驗機12
3.2.7 熱機械分析儀12


第四章 結果與討論21
4.1 材料微觀結構變化21
4.1.1 X光繞射分析21
4.1.2 粉末表面形貌與粒徑分析23
4.1.3 粉冶材表面形貌23
4.2 材料機械性質研究25
4.2.1 粉冶材視密度與孔隙率25
4.2.2 重量變化26
4.2.3 非金屬元素分析26
4.2.4 拉曼散射光譜分析27
4.2.5 硬度27
4.2.6 熱機械分析27
第五章 結論50
參考文獻 52
[1]Li Miaoquan, Zhang Weifu, Zhu Tangkui, Hou Hongliang, and Li Zhiqiang, “Effect of Hydrogen on Microstructure of Ti-6Al-4V Alloys”, Metal Materials and Engineering Volume 39, 2010, pp.1-5.
[2]Li Zhou, Duo Liu, Huijie Liu, and Linzhi Wu, “Effect of hydrogen as a temporary alloying element on the microstructure and mechanical properties of Ti-6Al-4V titanium alloy”, Mechanics and Materials, Volume 395-396, 2013, pp 243–250.
[3]Zhao Jing-wei, Ding Hua, Zhao Wen-juan, Tian Xue-feng, Hou Hong-liang, and Wang Yao-qi, “Influence of hydrogenation on microstructures and microhardness of Ti6Al4V alloy”, Nonferrous Met. Soc. Volume 18, 2007, pp 506–511.
[4]F.H. Froes, O.N. Senkov, and J.I. Qazi, “Hydrogen as a temporary alloying element in titanium alloys: thermohydrogen processing”, International Materials Reviews, Volume 49, 2004, pp 227–245.
[5]W. R. Kerr, “The effect of hydrogen as a temporary alloying element on the microstructure and tensile properties of Ti-6Al-4V”, Metallurgical Transactions A., Volume 16, 1985, pp 1077–1087.
[6]M. Mitkov, and D. BoZiC, “Hydride-dehydride conversion of solid Ti6Al4V to powder form”, Materials Characterization, Volume 37, 1996, pp. 53–60.
[7]Jingwei Zhao, Hua Ding, Zhengyi Jiang, Mingli Huang, and Hongliang Hou, “Hydrogen-induced hardening of Ti–6Al–4V alloy in b phase field”, Materials & Design, Volume 54, 2014, pp.967–972.
[8]Y. Mahajan, S. Nadiv, and W. R. Kerr, “Studies of hydrogenation in Ti-6Al-4V alloy”, Scripta Metallurgica, Volume 13, pp. 695-699, 1979.
[9]H. Yoshimura, and J. Nakahigashi, “Tensile and impact properties of mesoscopic-grained +-type titanium alloys obtained through hydrogen treatments”, JAC, Volume 293-295, 1999, pp.858-861.
[10]C. C. Shen, and C. M. Wang, “Effects of hydrogen loading and type of titanium hydride on grain refinement and mechanical properties of Ti-6Al-4V”, JAC, Volume 601, 2014, pp.440-444.
[11]W. L. Chen, and T. I. Wu, “Surface hardening of Ti-6Al-4V and SP700 alloys by multiple electrolytic hydrogenation and post-solution heat treatment”, 礦冶,Volume 60, 2016, pp.83-90.
[12]Hugo Ricardo Zschommler Sandim, Bruno Vieira Morante, and Paulo Atsushi Suzuki, “Kinetics of Thermal Decomposition of Titanium Hydride Powder Using in situ High-temperature X-ray Diffraction (HTXRD) ”, Materials Research, Volume 8, 2005, pp.293-297.
[13]H Daniel P. Barbis, Robert M. Gasior, Graham P. Walker, Joseph A. Capone, and Teddi S. Schaeffer, “Titanium powders from the hydride–dehydride process”, Titanium Powder Metallurgy, 2015, pp.101-106.
[14]N. A. Braga, N. G. Ferreira, and M. R. Baldan, “Hydrogen effect on the morphology and structure of 3D porous titanium in the HFCVD-diamond growth environment”, Materials Characterization, Volume 62, 2011, pp.995-999.
[15]Bo-qiong LI, Zhi-qiang LI, and Xing LU, “Effect of sintering processing on property of porous Ti using space holder technique”, Nonferrous Met. Soc. Volume 25, 2015, pp.2965-2973.
[16]Ahmed Ibrahim, Faming Zhangb, Eileen Ottersteinb, and Eberhard Burkelb, “Processing of porous Ti and Ti5Mn foams by spark plasma sintering”, Materials & Design, Volume 32, 2011, pp.146–153.
[17]H. Paydas, A.Mertens, R. Carrus, J. Lecomte-Beckers, and J. Tchoufang Tchuindjang, “Laser cladding as repair technology for Ti–6Al–4V alloy: Influence of building strategy on microstructure and hardness”, Materials & Design, Volume 85, 2015, pp.497–510.
[18]C. Leyens, and M. Peters, Titanium and titanium alloys: Wiley Online Library, 2003.
[19]E. K. Molchanova, Phase diagrams of titanium alloys: Israel Program for Scientific Translations, 1965.
[20]O. n. Senkov, and F. H. Froes, “Thermohydrogen processing of titanium alloys”, International Journal of Hydrogen Energy, Volume 24, no. 6, 1999, pp. 565-576.
[21]V. A. Goltsov, “Hydrogen treatment (processing) of materials: current status and prospects”, Journal of Alloys and Compounds, Volume 293–295, no. 0, 1999, pp. 844-857.
[22]F. H. Froes, D. Eylon, and C. Suryanarayana, “Thermochemical processing of titanium alloys”, JOM, Volume42, no. 3, 1990, pp. 26-29.
[23]S. Pillot, and L. Coudreuse, “2 - Hydrogen-induced disbonding and embrittlement of steels used in petrochemical refining”, Gaseous Hydrogen Embrittlement of Materials in Energy Technologies, R. P. Gangloff and B. P. Somerday, eds., 2012, pp. 51-93: Woodhead Publishing.
[24]D. Eliezer, N. Eliaz, O. N. Senkov, and F. H. Froes, “Positive effects of hydrogen in metals”, Materials Science and Engineering: A, Volume 280, no. 1, 2000, pp. 220-224.
[25]T. N. Veziroǧlu, and V. A. Goltsov, “A new aspect of hydrogen movement”, International Journal of Hydrogen Energy, Volume 22, pp. 113, 1997.
[26]C. C. Shen, and C. M. Wang, “Pressure–composition isotherms and reversible hydrogen-induced phase transformations in Ti–6Al–4V”, Acta Materialia, Volume 55, 2007, pp. 1053-1058.
[27]W. Kerr, “The effect of hydrogen as a temporary alloying element on the microstructure and tensile properties of Ti-6Al-4V”, Metallurgical Transactions A, Volume 16, 1985, pp. 1077-1087.
[28]W. R. Kerr, P. R. Smith, M. E. Rosenblum, F. J. Gurney, Y. R. Mahajan, and L. R. Bidwell, “Hydrogen as a Temporary Alloying Element in Titanium.”, pp. 2477-2486.
[29]Changshu Xiang, Yan Zhang, Zengfeng Li, Hanliang Zhang, Yuanping Huang, and Huiping Tang, “Preparation and compressive behavior of porous titanium prepared by space holder sintering process”, Procedia Engineering, Volume 27, 2012, pp.768-774.
[30]Wang Yue-Qing, Tao Jie, Zhang Jin-Long, and Wang Tao, “Effects of addition of NH4HCO3 on pore characteristics and compressive properties of porous Ti-10%Mg composites”, Nonferrous Met. Soc., Volume 21, 2011, pp.2049-2056.
[31]Niu Wenjuan, Bai Chenguang, Qiu GuiBao, and Wang Qiang, “Processing and properties of porous titanium using space holder technique”, Materials Science and Engineering, Volume 506, 2009, pp.148-151.
[32]Z. Esen, and S . Bor, “Processing of titanium foams using magnesium spacer particles”, Materials Science and Engineering, Volume 56, 2007, pp.341-344.
[33]C. Torres-Sanchez, F.R.A. Al Mushref, M. Norrito, K. Yendall, Y. Liu, and P.P. Conway, “The effect of pore size and porosity on mechanical properties and biological response of porous titanium scaffolds” , Materials Science & Engineering Volume 77, 2017, pp.219-228.
[34]Ahmed Ibrahim, Faming Zhang, Eileen Otterstein, and Eberhard Burkel, “Processing of porous Ti and Ti5Mn foams by spark plasma sintering” , Materials and Design, Volume 32, 2011, pp.146-153.
[35]Bo-qiong LI, Zhi-qiang LI, and Xing LU, “Effect of sintering processing on property of porous Ti using space holder technique” , Nonferrous Met. Soc., Volume 25, 2015, pp.2965-2973.
[36]R. L. Coble, “Hot Consolidation of Rapidly Solidified Powders: Sinterings, Hot Pressing (HP) and Hot Isostatic Pressing (HIP) in Relation to the Superalloys”, Powder Metall. Int., 1978, Volume 10, pp. 128-130.
[37]Fei Cao, Pankaj Kumar, Mark Koopman, Chenluh Lin, Z. Zak Fang, and K.S. Ravi Chandran, “Understanding competing fatigue mechanisms in powder metallurgy Ti–6Al–4V alloy: Role of crack initiation and duality of fatigue response”, Materials Science and Engineering, 2015, Volume 10, pp. 139-145.
[38]李怡婷, “Ti-153粉末冶金合電極吸放氫特性研究,碩士論文”, 私立大同大學材料工程研究所, 2014.
[39]J. C. Slater, “Atomic Shielding Constants”, Phys, 1930, Volume 36, pp. 57-64.
[40]M.V. Oliveiraa, L.C. Pereirab, and C.A.A. Cairoc, “Porous Structure Characterization in Titanium Coating for Surgical Implants”, Mat. Res., 2002, Volume 5, pp. 269-273.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top