|
1.H.J. Round, “A Note on Carborundum,” Electrical World, 49 309-310 (1907). 2.N. Holonyak, and S.F. Bevacqua, “Coherent (Visible) Light Emission from Ga (AS1−xPx) Junctions,” Appl. Phys. Lett., 4 82-83 (1962). 3.E.F. Schubert, Light-Emitting Diodes; p.22. Cambridge, NY, 2006. 4.Silica Lighting, http://www.silicalighting.eu/home-image/, 2012 5.E.F. Schubert, and J.K. Kim, “Solid-State Light Sources Getting Smart,” Science, 308 1274-1278 (2005). 6.N. Kimura, K. Sakuma, S. Hirafune, K. Asano, N. Hirosaki, and R.J. Xie, “Extrahigh Color Rendering White Light-Emitting Diode Lamps using Oxynitride and Nitride Phosphors Excited by Blue Light-Emitting Diode,” Appl. Phys. Lett., 90 1-3 (2007). 7.楊素華, 螢光粉在發光上的應用; p.358. 科學發展 358期, 2002. 8.王書任、林仁鈞, 讓LED發光的功臣-螢光粉; p.22-27. 科學發展435期, 2009. 9.V. Sivakumar and U.V. Varadaraju, “Intense Red-Emitting Phosphors for White Light Emitting-Diodes,” J. Electrochem.Soc., 152 H168-171 (2005). 10. O.A. Lopez, J. Mckittrick, and L.E. Shea, “Fluorescence Properties of Polycrystalline Tm3+-Activated Y3Al5O12 and Tm3+-Li+ Co-Activated Y3Al5O12 in the Visible and Near IR Ranges,” J. Lumin., 71 1-11 (1997). 11.H. Yamamoto, M. Mikami, Y. Shimomura, and Y. Oruri, “Host-to-Activator Energy Transfer in a New Blue-Emitting Phosphor SrHfO3 : Tm3+,” J. Lumin., 87-89 1079-1082 (2000). 12.K. N. Kim, H. K. Jung, H. D. Park, and D. Kim, “High Luminance of New Green Emitting Phosphor, Mg2SnO4:Mn,” J. Lumin., 99 169-173 (2002). 13.L.D. Carlos, V. De Zea Bermudez, and R.A. Sa Ferreira, “Multi-Wavelength Europium-Based Hybrid Phosphors,” J. Non-Cryst. Solids., 243 203-208 (1999). 14.J.M. Robertson, and M.W. Van Tol, “Epitaxially Grown Monocrystalline Garnet Cathode-Ray Tube Phosphor Screens,” Appl. Phys. Lett., 37 471-472 (1980). 15.Z. Wei, L. Sun, C. Liao, C. Yan, and S. Huang, “Fluorescence Intensity and Color Purity Improvement in Nanosized YBO3:Eu,” Appl. Phys. Lett., 80 1447-1449 (2002). 16.E. Danielson, J.H. Golden, E.W. McFarland, C.M. Reaves, W.H. Weinberg, and X.D. Wu, “A Combinatorial Approach to the Discovery and Optimization of Luminescent Materials,” Nature., 389 944-948 (1997). 17.R.J. Xie, and N. Hirosaki, “Silicon-Based Oxynitride and Nitride Phosphors for White LEDs—A Review,” Sci. Technol. Adv. Mater., 8 588-600 (2007). 18.J. Shang, K. Qiu, X. Lu, K. Zhao, L. Zhang, The luminescence properties of a novel oxynitride phosphor Sr3-yEuySiO5-6XN4x, Opt. Mater., 35 1642–1645 (2013). 19.Y.F. Wang, X. Xu, L.J. Yin, L.Y. Hao, High thermal stability and photoluminescence of Si–N-codoped BaMgAl10O17:Eu2+ phosphors, J. Am. Ceram. Soc., 93 1534–1536 (2010). 20.X. Ma, W. Zhuang, H. Guo, R. Liu, Y. Liu, Y. Hu, X. Wen, Effect of Si–N substituting for Al–O bonds on luminescence properties of Sr3AlO4F:Ce3+ phosphor, J. Rare. Earth., 32 399-403 (2014). 21.Z. He, X.F. Huang, R.D. Zhou, amd W.G. Huang, “Synthesis and Luminescence Properties of a New Green Emitting Ca2MgSi-2O7-xNx:Eu2+ Phosphor,” J. Alloy. Compd., 658 36-40 (2016). 22.W.Y. Tian, K.X. Song, F.F. Zhang, P. Zheng, J.G. Deng, J. Jiang, J.M. Xu, and H.B. Qin, “Optical Spectrum Adjustment of Yellow–green Sr1.99SiO4-3x/2 Nx:0.01Eu2+ Phosphor Powders for Near Ultraviolet–visible Light Application,” J. Alloy. Compd., 638 249-253 (2015). 23.S.H. Jung, D.S. Kang, and D.Y. Jeon,
“Effect of substitution of nitrogen ions to red-emitting Sr3B2O6-3/2xNx/:Eu2+ Oxy-nitride Phosphor for the Application to White LED,” J. Cryst. Growth, 326 116-119 (2011). 24.K.X. Song, F.F. Zhang, D.Q. Chen, S. Wu, P. Zheng, Q.M. Huang, J. Jiang, J.M. Xu, H.B. Qin, “Enhancement of Photoluminescence Properties and Modification of Crystal Structures of Si3N4 Doping Li2Sr0.995SiO4:0.005Eu2+ Phosphors,” Mater. Res. Bull., 70 309-314 (2015). 25.Y.Q. Li , N. Hirosaki, R.J. Xie, and M. Mitomo, “Crystal, electronic and luminescence properties of Eu2+-doped Sr2Al2-xSi1+xO7-xNx,” Sci. Technol. Adv. Mat., 8 607-616 (2007). 26.Y.F. Wang, Y.F. Wang, Q.Q. Zhu, L.Y. Hao, X. Xu, R.J. Xie, and S. Agathopoulos, “Luminescence and Structural Properties of High Stable Si–N-Doped BaAl2-xSixO4-xNx:Eu2+ Phosphors Synthesized by a Mechanochemical Activation Route,” J. Am. Ceram. Soc., 96 2562–2569 (2013). 27.K.H. Lee, and W.B. Im, “Efficiency Enhancement of Bredigite-Structure Ca14Mg2[SiO4]8:Eu2+ Phosphor via Partial Nitridation for Solid-State Lighting Applications” J. Am. Ceram. Soc., 96 503–508 (2013). 28.Y.Q. Li, Y. Fang, N. Hirosaki, R.J. Xie, L.J. Liu, T. Takeda, and X.Y. Li, “Crystal and Electronic Structures, Photoluminescence Properties of Eu Eu2+-Doped Novel Oxynitride Ba3.99Eu0.12Si6O16-3x/2Nx,” Materials. 3 1692-1708 (2010). 29.G. Anoop, I.H. Cho, D.W. Suh, C.K. Kim, and J.S. Yoo
, “Structural and Luminescent Characteristics of Two-step Processed BaAl2-xSixO4-xNx:Eu2+ Phosphors,” J. Lumin., 134 390–395 (2013). 30.Y.Q. Li, and H.T. Hintzen, “Luminescence Properties of Eu2+-doped MAl2-x Six O4-x Nx (M = Ca, Sr, Ba) Conversion Phosphor for White LED Applications,” J. Electrochem Soc., 153 G278-G282 (2006). 31.H. Yu, D.G. Deng, S.Q. Xu, C.P. Yu, H.Y. Yin, and Q.L. Nie, “Luminescent Properties of Red-emitting LiSr3.95B3O(9-3x/2)Nx:0.05 Eu2+ Phosphor for White-LEDs,” J. Lumin., 132 2553–2556 (2012). 32.S.K. Sun, Y. Masubuchi, D.H. Go, Y.S. Kim, and S. Kikkawa, “Preparation and Luminescence Properties of Eu2+-doped oxynitride feldspar SrAl2-xEuySi2+xO8-xNx,” J. Alloy. Compd., 618 254-257 (2015). 33.F. Zhang, K. Song, J. Jiang, S. Wu, P. Zheng, Q. Huang, J. Xu, H. Qin, Improvement of photoluminescence properties and thermal stability of Y2.9Ce0.1Al5−xSixO12 phosphors with Si3N4 addition, J. Alloy. Compd., 615 588–593 (2014). 34.X. Wang, G. Zhou, H. Zhang, H. Li, Z. Zhang, Z. Sun, Luminescent properties of yellowish orange Y3Al5−xSixO12−xNx:Ce phosphors and their applications in warm white light-emitting diodes, J. Alloy. Compd., 519 149–155 (2012). 35.M. Sopicka-Lizer, D. Michalik, J. Plewa, T. Juestel, H. Winkler, T. Pawlik, The effect of Al–O substitution for Si–N on the luminescence properties of YAG:Ce phosphor, J. Eur. Ceram. Soc., 32 1383–1387 (2012). 36.Y.S. Lin, Y.H. Tseng, R.S. Liu, J.C.C. Chan, Luminescent properties and structure investigation of Y3Al5O12/Ce phosphors with Si addition, J. Electrochem. Soc., 154 16-19 (2007). 37.F.F. Zhang, K.X. Song, J. Jiang, S. Wu, P. Zheng, Q.M. Huang, J.M. Xu, and H.B. Qin, “Improvement of Photoluminescence Properties and Thermal stability of Y2.9Ce0.1Al5−xSixO12-3x/2Nx Phosphors with Si3N4 Addition,” J. Alloy. Compd., 615 588-593 (2014). 38.Y.H. Song, T.Y. Choi, K. Senthil, T. Masaki, and D.H. Yoon, “Enhancement of Photoluminescence Properties of Green to Yellow Emitting Y3Al5O12: Ce3+ Phosphor by AlN Addition for White LED Applications,” Mater. Lett., 67 184-186 (2012). 39.“Remote Phosphor Brings Higher Efficacy to Area Lighting, ”Illumination in Focus, winter issue (2013). 40.S.C. Allen, and A.J. Steckl, “A Nearly Ideal Phosphor-Converted White Light-Emitting Diode,” Appl. Phys. Lett., 92 143309 (2008). 41.N.F. Borrelli et. al., “Phosphor Containing Glass Frit Materials for LED Lighting Applications,” US patent
2012/0107622 (2012). 42.C. Atas, and O. Sayman, “An Overall View on Impact Response of Woven Fabric Composite Plates,” Compos. Struct., 82 336-345 (2008). 43.G. Mavrov, “Aging of Silicone Resins,” Stud. Conserv., 28(4) 171-178 (1983). 44.Y.H. Lin, J.P. You, Y.C. Lin, N.T. Tran, and F.G. Shi, “Development of High-Performance Optical Silicone for the Packaging of High-Power LEDs,” IEEE Trans. Compon. Packag. Tech., 33(4) 761-766 (2010). 45.C.C. Tsai, J. Wang, M.H. Chen, Y.C. Hsu, Y.J. Lin, C.W. Lee, S.B. Huang, H.L. Hu, and W.H. Cheng, “Investigation of Ce:YAG Doping Effect on Thermal Aging for High-Power Phosphor-Converted White-Light- Emitting Diode,” Trans. Device. Mater. Res., 9(3) 367-371 (2009). 46.N.F. Borrelli et. al., “Phosphor Containing Glass Frit Materials for LED Lighting Applications,” US patent
2012/0107622 (2012). 47.H. Kimura, M. Sugimoto, S. Ishizaki, and E. Shiohama, “The High Power LED Unit for Lighting,” in Proc. 10th Int. Symp. Sci. Technol. Light Sources, pp. 181–182. 48.Y. Shimizu, “Development of White LED Light Source,” in Rare Earths, 40. Osaka, Japan:The Rare Earth Soc. Jpn., 2002, pp. 150–151. 49.D. Huang et. al., “Wavelength Conversion Component Having Photo-Luminescence Material Embedded into a
Hermetic Material for Remote Wavelength Conversion,” US patent 2013/0094178 (2013). 50.B.G. Aitken et. al., “Bismuth Borate Glass Encapsulant for LED Phosphors,” US patent 2013/0256598 (2013). 51.S. Fujita, S. Yoshihara, A. Sakamoto, S. Yamamoto, and S. Tanabe, “YAG Glass-Ceramic Phosphor for White LED (I) Background and Development,” Proc. Spie., 5941 1-7 (2005). 52.T. Nakanishi, and S. Tanabe, “Novel Eu2+-Activated Glass Ceramics Precipitated With Green and Red Phosphors for High-Power White LED,” IEEE J. Sel. Top. Quant., 15 1171-11766 (2009). 53.S. Nishiura, S. Tanabe, K. Fujioka, and Y. Fujimoto, “Properties of Transparent Ce:YAG Ceramic Phosphors for White LED,” Opt. Mater., 33 688-691 (2011). 54.Y.K. Lee, J.S. Lee, J. Heo, W.B. Im, and W.J. Chung, “Phosphor in Glasses with Pb-free Silicate Glass Powders as Robust Color-Converting Materials for White LED Applications,” Opt. Lett., 37 3276-3278 (2012). 55.H. Segawa, N. Hirosaki, S. Ohki, K. Deguchi, and T. Shimizu, “Exploration of Zinc Phosphate Glasses Dispersed with Eu-Doped SiAlON for White LED Applications,” Opt. Mater., 35 2677-2684 (2013). 56.C.C. Tsai, W.C. Cheng, J.K. Chang, L.Y. Chen, J.H. Chen, Y.C. Hsu, and W.H. Cheng, “Ultra-High Thermal-Stable Glass Phosphor Layer for Phosphor-Converted White Light-Emitting Diodes,” J. Disp. Technol., 9 427-432 (2013). 57.G. Liu, Z.F. Tian, Z.H. Chen, H.Z. Wang, Q.H. Zhang, and Y.G. Li, “CaAlSiN3:Eu2+ Phosphors Bonding with Bismuth Borate Glass for High Power Light Excitation,” Opt. Mater., 40 63-67 (2015). 58.L.Y. Chen, W.C. Cheng, C.C. Tsai, Y.C. Huang, Y.S. Lin, and W.H. Cheng, “High-Performance Glass Phosphor for White-Light-Emitting Diodes Via Reduction of Si-Ce3+:YAG Inter-Diffusion,” Opt. Mater., 4 121-128 (2014). 59.R. Zhang, H. Lin, Y.L. Yu, D.Q. Chen, J. Xu, and Y.S. Wang, “ A New-Generation Color Converter for High-power White LED:Transparent Ce3+:YAG Phosphor-in-Glass,” Laser Photonics. Rev., 8 158–164 (2014). 60.Q.Q. Zhu, X.J. Wang, L. Wang, N. Hirosaki, T. Nishimura, Z.F. Tian, Q. Li, Y.Z. Xu, X. Xu, and R.J. Xie, “β-Sialon:Eu Phosphor-in-Glass:A Robust Green Color Converter for High Power Blue Laser Lighting,” J. Mater. Chem. C., 3 10761-10766 (2015). 61.M.G. Gong, X.J. Liang, Y.Y. Wang, H.H. Xu, L. Zhang, and W.D. Xiang, “Novel Synthesis and Optical Characterization of Phosphor-Converted WLED Employing Ce:YAG-Doped Glass,” J. Alloys. Compd., 664 125-132 (2016). 62.Y. Li, L.L. Hua, B.B. Yang, M.M. Shi, and J. Zou, “ Effect of Hydrogen Annealing on the Photoluminescence Properties of Color Conversion Glass in Borosilicate Glass,” J. Alloys. Compd., 16 33173-33175 (2016). 63.H.S. Lee, J.H. Hwang, T.Y. Lim, J.H. Kim, D.W. Jeon, H.S. Jung, and M.J. Lee, “ Effect of Lu3Al5O12:Ce3+ and (Sr,Ca)AlSiN3:Eu2+ Phosphor Content on Glass Conversion Lens for High-Power White LED,” J. Korean. Chem. Soc., 52 229-233 (2015). 64.L.Y. Chen, W.C. Cheng, C.C. Tsai, J.K. Chang, Y.C. Huang, J.C. Huang, and W.H. Cheng, “ Novel Broadband Glass Phosphors for High CRI WLEDs,” Opt. Soc. Am., 22 A671-A678 (2014). 65.H. Jeong, C. Huh, T.Y. Lim, J.H. Kim, M. Lee, D.W. Jeon, J. Hwang, T.H. Park and D. Shin, “ Effect of glass composition on the luminescence characteristics of color conversion glasses in BaO–ZnO–B2O3–SiO2 glasses,” J. Non-Cryst. Solids, 423-4, 25-9 (2015). 66.C.C. Tsa, “ Process dependent luminescence characteristics of low-temperature Ce3+:YAG doped glass for phosphor-converted white-light-emitting diodes,” Optik, 126[6], 655–8 (2015). 67.Y. Zhou, D. Chen, W. Tian, and Z. Ji, “ Impact of Eu3+ dopants on optical spectroscopy of Ce3+:Y3Al5O12 embedded transparent glass-ceramics,” J. Am. Ceram. Soc, 98[8], 2445–50 (2015). 68.D. Chen, W. Xiang, X. Liang, J. Zhong, H. Yu, M. Ding, H. Lu, Z. Ji,“ Advances in transparent glass–ceramic phosphors for white light-emitting diodes—A review,” J. Eur. Ceram. Soc, 35[3], 859-69 (2015). 69.N. Fuhita, M. lwao,S. Fujita and M. Ohji, “ Wavelength Convresion Material Phosphor – Glass Composites for High Power Solid-State Lighting” Handbook on the Physics and Chemistry of Rare Earths: Including Actinides, 48, 775-8 (2013). 70.L.Y. Chen, J.K. Chang, W.C. Cheng, J.C. Huang, Y.C. Huang, and W.H. Cheng, “ Chromaticity tailorable glass-based phosphor converted white light-emitting diodes with high color rendering index,” Opt. Express., 23[15], 1024-9 (2015). 71.J. Zhong, D. Chen,W. Zhao, Y. Zhou, H. Yu, L. Chen and Z. Ji, “ Garnet-based Li6CaLa2Sb2O12:Eu3+ red phosphors: a potential color-converting material for warm white light-emitting diodes,” J. Mater. Chem, 3, 4500-10 (2015). 72.S.Yi, W. J. Chung and J. Heo, “ Phosphor-in-glasses composites containing light diffusers for high color uniformity of white-light-emitting diodes,”1-6, J. Solid. State. Light. (2015). 73.J. S. Lee, P. Arunkumar, S. Kim,I.J. Lee, H. Lee, and W.B. Im, ” Smart design to resolve spectral overlapping of phosphor-in-glass for high-powered remote-type white light-emitting devices,” Opt Lett, Vol.39[4], February 15 ( 2014). 74.J. Seo,S. Kim, Y. Kim, F. lqbal, and H. Kim, “ Effect of Glass Refractive Index on Light Extraction Efficiency of Light-Emitting Diodes,” J. Am. Ceram. Soc, 1–5 (2014). 75.31. Ru. Li, H. Li, Y. Peng, H. Cheng, Z. Chen, and M. Chen, “ Development of RGB ph osphor-in-glass for ultraviolet-excited white light-emitting diodes packaging,” Electronic Packaging Technology.,94-7 (2016). 76.D.R.Vij, Luminescence of Solids, Plenum Press, NY, 1998. 77.M.H. Nazarov, and D.Y. Noh, New Generation of Europium and Terbium Activated phosphors; pp.2-4. Pan Stanford Publishing Ltd., SG, 2011. 78.C.C. Tsai, M.H. Chen, Y.C. Huang, Y.C. Hsu, Y. TLo, Y.J. Lin, J.H. Kuang, S.B. Huang, H.L. Hu, Y.I. Su, and W.H. Cheng, “Decay Mechanisms of Radiation Pattern and Optical Spectrum of High-power LED Modules in Aging tTest,” J. Sel. Top. Quant., 15, 1156-1162 (2009). 79.T. Justel, H. Nikol, and C. Ronda, “New Developments in the Field of Luminescent Materials for Lighting and Displays,” Chem. Int. Ed., 37 3084-3103 (1998). 80.C. Feldmann, T. Justel, C.R. Ronda, and P.J. Schmidt, “Inorganic Luminescent Materials: 100 Years of Research and Application,” Adv. Funct. Mater., 13 511-516 (2003). 81.R.C. Ropp, Luminescence and the Solid State; pp.228-352. Elsevier, AMS, 1991 82.蘇鏘, 稀土化學; pp. 8-12. 河南科學技術出版社, 河南, 1993. 83.蘇鏘, 稀土元素-您身邊的大家族; PP.40-41. 清華大學出版社, 北京, 2000. 84.G. Blasse, Handbook on the Physics and chemistry of Rare Earths; PP.237-274. Netherlands, AMS, 1979. 85.T. Hoshina, Luminescence of Rare Earth Ions; Sony Research Center Rep., 1983. 86.B.D. Bartolo, Optical Interactions in Solids; pp. 470. John Wiley & Sons, Inc., NY, 1968. 87.H. Yamamoto, Phosphor Global Summit, March 19, Phoenix, Arizona, USA 2003. 88.G. Blasse, and B.C. Grabmaier, Luminescent Materials; pp.25. Springer-Verlag, NY, 1994. 89.H.S. Nalwa, L.S. Rohwer, A.J. Heeger, and N. Laureate, Handbook of Luminescence, Display Materials, and Devices – Inorganic Display Materials, American Scientific, Inc., 2003. 90.M. Fox, Optical Properties of Solids; pp.169-183. Oxford University Press, UK, 2001. 91.C.K. Jorgensen, Modern Aspects of ligand Field Theory, Elsevier, AMS, 1971. 92.J.A. Duffy, and M.D. Ingram, “Use of Thallium (I), Lead (II), and Bismuth (III) as Spectroscopic Probes for Ionic–Covalent Interaction in Glasses,” J. Chem. Phys., 52 3752-3754 (1970).
93.P. Dorenbos, “Crystal Field Splitting of Lanthanide 4fn-15d-Levels in Inorganic Compounds,” J. Alloys Compd., 341 156-159 (2002).
94.R.J. Xie, M. Mitomo, K. Uheda, F.F. Xu, and Y. Akimune, “Preparation and Luminescence Spectra of Calcium-and Rare-Earth (R=Eu, Tb, and Pr)-Codoped α-SiAlON Ceramics,” J. Am. Ceram. Soc., 85 1229-1234 (2002).
95.S. Shionoya, and W.M. Yen, Phosphor Handbook; pp.623. CRC Press, Boca Raton, FL, 1999. 96.H. Bethe, “Termaufspaltung in Kristallen,” Ann. Phys., 3 133–208 (1929). 97.C.J. Ballhausen, Introduction to Ligand Field Theory; pp.235-239. McGraw Hill, NY, 1962. 98.C.K. Jaurgensen, Absorption Spectra and Chemical Bonding in Complexes; pp.85, Pergamon Press, Ltd., Oxford, 1962. 99.C.K. Jaurgensen, Modern Aspects of Ligand Field Theory; pp. 293-313. Netherlands, AMS, 1971. 100.A.B.P. Lever, Inorganic Electronic Spectroscopy; pp. 212-225. Elsevier, AMS, 1984. 101.I.B. Bersuker, Electronic Structure and Properties of Coor-Dination Compounds. Khimiya, Moscow, 1976. 102.W.M. Yen, S. Shionoya, and H. Yamamoto, Phosphor handbook (2nd ed.); pp.11-70. CRC Press, Boca Raton, FL, 1998. 103.J. A. Deluca, “An Introduction to Luminescence in Organic Solids,” J. Chem. Educ., 57 541-545 (1980). 104.G. Wyszecki, and W.S. Stiles, Concepts and Methods, Quantitative Data and Formulae, 2nd ed., John Wiley & Sons, Inc., NY, 1982. 105.E.F. Schubert, Light Emitting Diodes, Cambridge, NY, 2003. 106.T. Justel, H. Nikol, and C. Ronda, “New Developments in the Field of Luminescent Materials for Lighting and Displays,” Angew. Chem. Int. Ed., 37 3084-3103 (1998). 107.H. S. Fairman, M. H. Brill, and H. Hemmendinger, “How the CIE 1931 Color-matching Functions were Derived from Wright–Guild data, Color” Res. Appl., 22 11–23 (1997). 108.Y.R. Luo, Comprehensive Handbook of Chemical Bond Energies; pp.491 and 1045. CRC Press Inc., Boca Raton, FL, 2007. 109.W.R. Stevens, Building Physics: Lighting. Seeing in the Artificial Environment. Elsevier inc., AMS, 2013. 110.W.D. Van Driel, and X.J. Fan, Solid State Lighting Reliability. Springer, inc., BE, 2008. 111.Y.L. Liu, and C.S. Shi, “Luminescent Centers of Eu2+ in BaMgAl10O17 Phosphor,” Mater. Res. B, 36 109-115 (2001). 112.E. Van Der Kolk, P. Dorenbos, A.P. Vink, R.C. Perego, C.W.E. Van Eijk, and A. R. Lakshmanan, “Vacuum Ultraviolet Excitation and Emission Properties of Pr3+ and Ce3+ in MSO4 (M=Ba, Sr, and Ca) and Predicting Quantum Splitting by Pr3+ in Oxides and Fluorides,” Phys. Rev., 64 195129-1-195129-12 (2001). 113.B.M.J. Smts, and J.G. Verlijsdonk, “The Luminescence Properties of Eu2+- and Mn2+-Doped Barium Hexaaluminates,” Mat. Res.Bull., 21 1305-1310 (1986).
114.W. Schnick, “Nitridosilicates, Oxonitridosilicates (Sions), and Oxonitridoaluminosilicates (Sialons): New Materials with Promising Properties,” Int. J. Inorg. Mater., 3 1267–1272 (2001). 115.W. Schnick, and H.Huppertz, “Nitridosilicates—A Significant Extension of Silicate Chemistry,” Chem. Eur., 3 679-683 (1997). 116.S. Geller, and M.A. Gilleo, “Structure and Ferrimagnetism of Yttrium and Rare-Earth Iron Garnets,” Acta crystallogr., 10 239 (1957).
117.J.E. Geusic, H.M. Marcos, and L.G. Van Uitert, “Laser Oscillations in Nd-Doped Yttrium Aluminum, Yttrium Gallium and Gadolinium Garnets,” Appl. Phys. Lett., 4 182-184 (1964). 118.S. Geller, “Crystal Chemistry of the Garnets,” Z. Kristallogr., 125 1-14 (1967). 119.J.M. Robertson, M.W. Van Tol, J.P.H. Heynen, W.H. Smits, and T. de
Boer, “Thin Single Crystalline Phosphor Layers Grown by Liquid Phase Epitaxy,” Philips J. res., 35 354-371(1980).
120.E.M. Levin, C.R. Robbins, and H.F. McMurdie, Phase Diagrams for Ceramists. American Ceramics Society. COR., Columbus, Ohio, 1964. 121.R.C. Buchanan, Cerzmic materials for electronics:Processing, properties, and application. Marcel Dekker, Inc. NY, 1986. 122.V.B. Glushkova, V.A. Krzhizhanovskaya, and O.N. Egorova, “Physicochemical Investigations of the Compounds in the System Y2O3-Al2O3,” Dokl. An. SSSR, 260 1157-1160 (1981). 123.E.F. Kustov, T.K. Maketov, V.A. Surogina, and V.P. Petrov, “Energy levels diagram of rare earth ions in crystal fields (I) cubic crystals (Oh, O, Td)” Cryst. Res. Technol., 15 1351–1488 (1980). 124.M.H. Werts, “Making Sense of Lanthanide Luminescence,” Sci. Prog., 88 101-131 (2005). 125.A.K. Varshneya, Fundamentals of Inorganic Glasses, Academic Pres, Inc., NY, 1994. 126.J.E. Shelby, Introduction to Glass Science and Technology, RSC, UK, 2005. 127.V.M. Goldschmidt, L. Thomassen, F. Ulrich, T.F.W. Barth, G.O.J. Lund, D. Holmsen, and W.H. Sazarryson, Geochemische Verteilungsgesetze Der Elemente, I kommission hos J. Dybwad, Olso, 1925. 128.W.H. Zachariasen, “The Atomic Arrangement in Glass,” J. Am. Chem. Soc., 54 3841-3851 (1932). 129.J.E. Stanworth, “on the Structure of Glass,” J. Soc. Glass Technol., 32 154-172 (1948). 130.A.Z. Dietzel, “The Cation Field Strengths and Their Relation to Devitrifying Process, to Compound Formation, and to the Melting Points of Silicates,” Z. Elektrochem., 48 9-23 (1942). 131.W. Vogel, Chemistry of Glass, The American Ceramic Society, Inc., Columbus, Ohio, 1985.
132.E.M. Levin, C.L. Mcdaniel, “The System Bi2O3-B2O3,” J. Am. Ceram. Soc., 45 355-360 (1962). 133.W.H. Dumbaugh, “Heavy Metal Oxide Glasses Containing Bi2O3,” Phys. Chem. Glasses, 27 119-123 (1986). 134.T. Inoue, T. Honma, V. Dimitrov, and T. Komatsu, “Approach to Thermal Properties and Electronic Polarizability from Average Single Bond Strength in ZnO-Bi2O3-B2O3 glasses,” J. Solid State Chem., 183 3078-3085 (2010).
135.T. Hashimoto, Y. Shimoda, H. Nasu, and A. Ishihara, “ZnO–Bi2O3-B2O3 Glasses as Molding Glasses with High Refractive Indices and Low Coloration Codes,” J. Am. Ceram. Soc., 94 2061-2066 (2011). 136.Y.S. Chang, “The Effects of Heat Treatment on the Crystallinity and Luminescence Properties of YInGe2O7 Doped with Eu3+ Ions,” J. Electron. Mater., 37 1024-1028 (2008). 137.J.F. Moulder, Handbook of x-ray photoelectron spectroscopy, in:J. Chastain (Eds.), Physical Electronics Inc., 1995, pp. 56, 106, and 143. 138.C. Wang, Y. Ao, P. Wang, J. Hou, J. Qian, Preparation of cerium and nitrogen co-doped titania hollow spheres with enhanced visible light photocatalytic performance, Powder Technol. 210 (2011) 203–207. 139.P. Wang, D.J. Wang, J. Song, Z.Y. Mao, Q.F. Lu, Incorporation of Si–O induced valence state variation of cerium ion and phase evolution in YAG:Ce phosphors for white light emitting diodes, Mater. Electron. 23 (2012) 1764–1769. 140.M. C. Maniquiz, K. Y. Jung, and S. M. Jeongb, “Luminescence Characteristics of Y3Al5−2y(Mg,Si)yO12:Ce Phosphor Prepared by Spray Pyrolysis,” J. Electrochem. Soc., 157, H1135-H1139 (2010). 141.J. Shang, K. Qiu, X. Lu, K. Zhao, and L. Zhang, “The luminescence properties of a novel oxynitride phosphor Sr3-yEuySiO5-6XN4x,”Opt. Mater., 35, 1642–5 (2013). 142.J.C. Caicedo, J.A. Pérez, W. Aperador, AlN film deposition as a semiconductor device, Ingeniería e Investigación 33 (2013) 16-23. 143.I. Valov, B. Luerssen, E. Mutoro, L. Gregoratti, R.A.D. Souza, T. Bredow, S. Günther, A. Barinov, P. Dudin, M. Martin, J.R. Janek, Electrochemical activation of molecular nitrogen at the Ir/YSZ interface, Phys. Chem. Chem. Phys. 13 (2011) 3394–3410. 144.C.J. Mao, Y.X. Zhao, X.F. Qiu, J.J. Zhu, C. Burda, Synthesis, characterization and computational study of nitrogen-doped CeO2nanoparticles with visible-light activity, Phys. Chem. Chem. Phys. 10 (2008) 5633–5638. 145.R. Wicks, S.G. Altendorf, C. Caspers, H. Kierspel, R. Sutarto, L. H. Tjeng, and A. Damascelli, “NO-assisted Molecular-Beam Epitaxial Growth of Nitrogen Substituted EuO,” Appl. Phys. Lett., 100 1025405-1-1025405-4 (2012). 146.K.k. Masumoto, A.S. Semba, C.H. Kimura, T.K. Taniguchi, K.J. Watanabe, T.k. Sakata, and H.D. Aoki, “Luminescence Characteristics and Annealing Effect of Tb-Doped AlBNO Films for Inorganic Electroluminescence Devices,” Japan Soc. Applied Physics, 50 04DH01-1-04DH01-4 (2011). 147.D.D. Sarma, and C.N.R. Rao., “XPES Studies of Oxides of Second- and Third-row Transition Metals Including Rare Earths,” J. Electron Spectrosc., 20 25-45 (1980). 148.J.H. Richter, B.J. Ruck, M. Simpson, F. Natali, N.O.V. Plank, M. Azeem, H.J. Trodahl, A.R.H. Preston, B. Chen, J. McNulty, K.E. Smith, A. Tadich, B. Cowie, A. Svane, M. van Schilfgaarde, and W.R.L. Lambrecht, “Electronic Structure of EuN: Growth, Spectroscopy, and Theory,” Phys. Rev. B, 84, 35120-1-35120-10 (2011). 149.C.S. Young, S.J. Leem, C.M. Kim, S.J. Kim, Y.M. Sung, C.K. Hahn, J.H. Baek, amd T.G. Kim, “Deposition of Europium Oxide on Si and its Optical Properties Depending on Thermal Annealing Conditions,” J. Electroceram., 23 326–330 (2009). 150.Q.Q. Zhu, W.W. Hu, L.C. Ju, L.Y. Hao, X. Xu, and S. Agathopoulos, “Synthesis of Y3Al5O12:Eu2+ Phosphor by a Facile Hydrogen Iodide-Assisted Sol–Gel Method,” J. Am. Ceram. Soc., 96 701–703 (2013). 151.Q. Li, T. Li, and J.G. Wu, “Luminescence of Europium (III) and Terbium (III) Complexes Incorporated in Poly (Vinyl Pyrrolidone) Matrix,” J. Phys. Chem. B, 96 12293–12296 (2001). 152.W.W. Wang, P. Zhang, X.B. Wang, X. Lei, H. Ding, and H. Yang, “Bifunctional AlN:Tb Semiconductor with Luminescence and Photocatalytic Properties,” RSC Adv., 5 90698–90704 (2015). 153.L.J. Yin, Q.Q. Zhu, W.Y. Yu, L.Y. Hao, and X. Xu, “Europium location in the AlN: Eu green phosphor prepared by a gas- reduction-nitridation route,” J. Appl. Phys., 111 053534-1- 053534-7 (2012). 154.Z.H. Zhang, Y.H. Wang, X.X. Li, Effects of Si4+ and B3+ doping on the photoluminescence of BaMgAl10O17:Eu2+ phosphor under UV and VUV excitation, J. Alloys Compd. 478 (2009) 801–804. 155.Y. Li, Z.P. Ci, Y.Q. Peng, Y.H. Wang, and C.J. Liu, “Photoluminescent and Thermal Properties of (Sr0.995-x-y-zCaxBayMgz)2SiO4:0.01Eu2+ Phosphors for Warm White Light-emitting diodes,” Mater. Res. Bull,. 61 146–151 (2015). 156.C.C. Lin, and R.S. Liu, “Thermal effects in (oxy)nitride phosphors,” J. Solid State Lighting, 1 1-13 (2014). 157.H.J. Wu, T.H. Lu, N. Wei, Z.W. Lu, X.T. Chen, Y.B. Guan, Y. Zhao, J.Q. Qi, Q.W. Shi, X.M. Xie, and W. Zhang, “Photoluminescence Enhancement of YAG:Ce Nanophosphors with SiO2 Additions,” J. Mater. Sci. Mater. El., 26 2451-2456 (2015). 158.Y.M. Chiang, D.P. Birnie, III, and W.D. Kingery, Physical Ceramics; pp.426. John Wiley & Sons, Inc., Hoboken, 1997. 159.Y.R Luo, Comprehensive Handbook of Chemical Bond Energies; pp.491 and 1045. CRC Press Inc., Boca Raton, FL, 2007. 160.X.W. Sun, J. Tan, C.M. Li, Z. Lei, X.K. Meng, W. Zuo, Z. Zhang, and S. Feng, “Doping Effects of Sb, Bi, Zr and Si on the Properties of YAG:Ce Phosphor,” Chinese J. Inorg. Chem., 1001-4861, 1863-69 (2013). 161.R.J. Xie and N. Hirosaki, “Silicon-Based Oxynitride and Nitride Phosphors for White LEDs—A Review,” Sci. Technol. Adv. Mater., 8 588-600 (2007). 162.R.J. Xie, N. Hirosaki, and T. Takeda, ”Highly Reliable White LEDs Using Nitride Phosphors,” J. Korean Chem.Soc.,49, 375-379 (2012). 163.N.E. Zein, “Sustainability, Energy and Architecture: chaper 7,The LED Lighting Revolution, ”Academic Press, Chicago, USA, Oct, 2013,pp.187.
|