跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.86) 您好!臺灣時間:2025/01/14 16:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:楊佳偉
研究生(外文):Chia-Wei Yang
論文名稱:釔鋁柘榴石基螢光粉體及螢光顆粒分散於玻璃基地之燒結體的製備、微觀結構及光致發光性質
論文名稱(外文):Preparation, Microstructure, and Photoluminescent Properties of Yttrium Aluminium Garnet-Based Phosphors and Phosphor-Embedded Glass Materials
指導教授:徐錦志
指導教授(外文):Jiin-Jyh Shyu
口試委員:徐錦志
口試委員(外文):Jiin-Jyh Shyu
口試日期:2017-05-26
學位類別:博士
校院名稱:大同大學
系所名稱:材料工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:194
中文關鍵詞:鉍酸鹽玻璃玻璃-螢光燒結體氮化光致發光釔鋁石榴石
外文關鍵詞:yttrium aluminum garnetbismuthate glassglass-phosphornitridizingphotoluminescence
相關次數:
  • 被引用被引用:2
  • 點閱點閱:215
  • 評分評分:
  • 下載下載:25
  • 收藏至我的研究室書目清單書目收藏:0
釔鋁柘榴石具有良好的物理及化學穩定性,且已廣泛用於雷射器及螢光粉。摻雜氧化鈰 (CeO2)的YAG (YAG : Ce)黃色氧化物螢光粉與藍光晶片可組成最穩定和成本效益最佳的白光發光二極體 (W-LEDs)。其封裝方式是以螢光粉體埋入有機矽氧樹脂 (Silicone resins)基地製成,稱為色轉換層。有機矽氧樹脂的主要功效是固定螢光粉體,且直接包覆藍光LED晶片。比起傳統的照明燈,W-LEDs具有耗電量低、體積小、反應速度快、效率高、環保及可平面封裝等優勢。
但是,氧化物螢光粉在發光效率、亮度及色純度上仍存有缺點。且有機矽氧樹脂耐熱性差,當藍光晶片產生熱輻射或紫外線輻射,造成有機矽樹脂氧化。導致有機矽樹脂的顏色從透明無色變成透明黃色及變形的現象,使藍光對色轉換層的穿透率。造成W-LEDs光源產生色度偏移及使用壽命降低的缺點。
因此本研究分別探討,利用不同氮化物 (α-Si3N4及AlN)分別摻雜於YAG晶體螢光粉體,探討煆燒時間與氣氛、氮化程度及AlN粒徑對螢光粉體的結構及發光特性的影響。及將螢光粉體分散於玻璃基地中,利用燒結法,得到玻璃-螢光燒結體。探討燒結溫度、燒結條件及改變紅色螢光粉 (Ba1.89Eu0.11Si5N8,R)與黃色螢光粉 (YAG:Ce,Y)的體積比,對玻璃-螢光燒結體的結構及發光特性的影響。以下為研究結果:
1. 煆燒氣氛對YAG:0.05Ce螢光粉體的結構及光致發光性質影響
由實驗結果得知,相較於還原氣氛 (氬氣),將含有氮的氣氛作為煆燒氣氛,更可提高Ce4+還原成Ce3+程度及external量子效率,使YAG:0.05Ce螢光粉體的發光強度增加,並造成發光波峰有紅位移的現象。

2. AlN分別摻雜於Y2.95Ce0.05Al5O12、Y2.9Tb0.1Al5O12及Y2.9Eu0.1Al5O12,探討AlN對螢光粉體的結構及光致發光性質的影響
當AlN添加量為m =0(air) - 0.84,各試樣可得立方晶體系YAG結構的單相固溶體。N取代YAG中部分的O位置,氮離子於YAG晶體中是不均勻分佈。但氮離子比較偏向於與Y (如同Tb、Eu、Ce)離子成鍵結,其次是Al離子。各試樣的發光強度會隨著Re3+/(Re3+ + Re4+)比例 (Re=Ce或Tb)及Re-N (Re= Ce或Tb或Eu)鍵結的增加而增加。但是,Tb3+及Eu3+屬於4f-4f電子軌域躍遷,其晶體場強度較容易受到5s及5p軌域的電子屏蔽的影響。所以發光增加的程度及external量子效率較Ce3+小。而當AlN添加量為m = 0.96 - 2時,各試樣皆發現殘留的二次相AlN的存在,因而造成發光強度降低。若改變AlN粒徑時,m=0.84成分的結晶度有變好的現象,導致發光增強的強度會由50倍增加至54倍。

3. α-Si3N4 摻雜於YAG:0.05Ce,探討α-Si3N4對螢光粉體的結構及發光性質的影響
當α-Si3N4添加量為m =0(air) - 0.27,試樣可得立方晶體系YAG結構的單相固溶體。試樣的發光強度會隨著Ce3+/(Ce 3+ + Ce 4+)比例及Ce-N鍵結的增加而增加。而當α-Si3N4添加量為m = 0.39- 0.6時,試樣有殘留的二次相α-Si3N4的存在,因而造成發光強度降低。
不同氮化物 (AlN或α-Si3N4)分別摻雜於試樣,AlN- m = 0.84成分的發光的強度約為m = 0(air)成分的55倍,但是α-Si3N4- m = 0.27成分的發光的強度僅約m = 0(air)成分的2.5倍而已。可能的原因,因Si4+的離子半徑較Al3+小,導致晶體扭曲、較大的晶格間隙及螢光顆粒粒徑變小所致。但是,Si-N的鍵結強度較Al-N的鍵結強度強,所以α-Si3N4- m = 0.27成分有較佳的熱穩定性。
若煆燒條件不完全,Si4+及N3-會尚未完全進入YAG 晶體中,並在YAG晶界中形成富矽玻璃相,造成試樣的發光強度低於YAG:Ce。當煆燒條件完全時,所有Si4+及N3-會進入YAG晶體中,雖然Si4+會降低試樣的發光強度,但是N3-促使發光離子的價數變化 (Ce4+還原至Ce3+),使試樣發光的增強的效果更明顯。

4. 螢光顆粒分散於玻璃基地材料的燒結、微結構與光致發光性質
4.1. 燒結溫度對玻璃-螢光燒結體的結構及光致發光的影響
將YAG:Ce黃色螢光粉體分散低Tg點的鉍酸鹽玻璃 (BiG)基地中。探討燒結溫度 (325°C-390°C),對得玻璃-螢光燒結體的結構及發光特性的影響。
燒結過程中,部分螢光顆粒會溶解於玻璃基地中,且溶解程度會隨著燒結溫度的增加而增加 (由16.7%增加至18%),此現象會導致試樣的發光強度下降。且玻璃元素的Bi及Zn分別會顆散至螢光顆粒近中心及外圍的位置。擴散元素會隨著燒結溫度的增加而增加。但是,Bi在YAG:Ce中是扮演敏化劑的角色,導致試樣發光強度異常增加,且大於燒結前的發強度。燒結溫度由325°C增加370°C時,發光殘留量 (I/I0值)會由84.6 %增加至157 %。但當燒結溫度超過370°C時,由於Zn (抑制劑)及螢光相損失較發光增強的效應大,導致試樣的發光強度開始下降。
4.2. 燒結條件對玻璃-螢光燒結體的結構及光致發光的影響
當低Tg點的BiG玻璃取代高Tg點的SiG玻璃、YAG進行氮化處理、燒結時間縮短並降低YAG氧化程度時,可降低螢光顆粒溶解於玻璃基地的程度,造成試樣的發光僅損失約1.8%。由PL分析得知,玻璃-螢光燒結體的螢光殘留相量 (I/I0值)與發光殘留量 (VP/VPo值)呈現線性的曲線,且線性回歸的斜率 (0.95)接近於1。此結果表示,試樣的發光強度取決於螢光殘留量,且少量的玻璃元素對螢光顆粒的發光不會造成影響。
當改變BiG玻璃-螢光燒結體中,紅色螢光粉 (Ba1.89Eu0.11Si5N8,R)及黃色螢光粉 (YAG:Ce,Y)的體積比 (BiG:Y:R vol%=90:(10-x):x, x =0、2、3、4及10)。由PL分析結果得知,雖然Zn不會影響R相的發光特性,但是Bi於R相可能扮演抑制劑的角色。導致R相的發光強度降低,且螢光殘留相量不等於發光殘留量。但當R相與Y相共存時,Ce3+的發光範圍與Eu2+的激發範圍有部分重疊。使Eu2+吸收Ce3+的發光,導致R的發光強度大於100 %。
Yttrium aluminum garnet (Y3Al5O12, YAG) has been widely used as a host crystal for lasers and phosphors. White light-emitting diodes (W-LEDs) can be fabricated by the combination of a blue chip and a yellow emitting Ce3+-doped YAG (YAG:Ce3+) phosphor. The conventional method for packaging W-LEDs involves embedding phosphor into silicone resins. The main functions of resins include phosphor fixation and direct cladding for blue chip. As compared with the traditional light sources, W-LEDs have the advantages of low power consumption, small size, fast response, high efficiency, eco-friendliness, and feasibility for flat package.
However, the luminous efficiency, emission intensity, high correlated color temperature and low color rendering index of oxide phosphors still need to be improved. And the thermal endurance of silicone resins is rather low for high-power W-LEDs. Thermal radiation from the blue chips would result to oxidization of silicone resins. As a result, the color of the resins would change from colorless to yellow, and in turn reducing the penetration rate of the blue light through the color conversion layer. Finally, the chromaticity of the W-LEDs shifts. The drawbacks thus caused include color shifting and a shorter life of the W-LEDs light source.
This study mixed YAG phosphor with different oxides (α-Si3N4 and AlN) to explore the influences of time and atmosphere of calcination, degree of nitration, and ALN grain size on the structure and luminous characteristics of the phosphor. The phosphor was spread on the glass substrate. Through calcination, the glass-phosphor calcined product was obtained. Then, this study discussed the influences of the temperature of calcination, condition of calcinations, and volume ration of red phosphor (Ba1.89Eu0.11Si5N8, R) and yellow phosphor (YAG: Ce, Y) on the structure and luminous characteristics of the glass-phosphor calcined product. The findings are summarized below:

1. The influences of the atmosphere of calcinations on the structure and luminous characteristics of YAG: 0.05Ce phosphor
According to the experiment result, compared with reducing atmosphere (argon), using atmosphere containing nitrogen as the atmosphere of calcinations was more likely to increase the reduction from Ce4+ to Ce3+ and the external quantum efficiency, so that the luminous intensity of the YAG:0.05Ce was increased and the emission peak redshift was observed.

2. The influences of AlN on the structure and photoluminescent properties of phosphor by mixing AlN with Y2.95Ce0.05Al5O12, Y2.9Tb0.1Al5O12, and Y2.9Eu0.1Al5O12
When the amount of AlN added was m =0(air) - 0.84, single phase YAG solid solution (s.s.) in which the O sites are partially occupied by N ions. The nitrogen ions do not distribute homogeneously over the YAG lattice. The tendency to bond with nitrogen ion for the cations is (Y, Tb, Eu, Ce) > Al. With the increase in the AlN content, the increase in both the Re3+/(Re3+ + Re4+) ratio and the Re-N (Re = Tb or Ce or Eu) bonds improve the intensity of the photoluminescent emission. However, due to the 4f-4f electron orbit transition of Tb3+ and Eu3+, the crystal field strength was easily influenced by the electron screening of the 5s and 5p orbits. As a result, the increase in luminous intensity and external quantum efficiency were smaller than Ce3+. When the AlN content (m) is higher than 0.96, the emission intensity decreases due to the existence of residual AlN phase. And when the grain size of AlN was reduced, the crystallinity of the m = 0.84 was improved. As a result, the luminous intensity increased from 50 times to 54 times.

3. The influences of α-Si3N4 on the structure and photoluminescent properties of phosphor by mixing α-Si3N4 with YAG:0.05 Ce
When the amount of α-Si3N4 added was m =0(air) - 0.27, single phase YAG s.s. was obtained from the samples. With the increase in the α-Si3N4 content, the increase in both the Ce3+/(Ce3+ + Ce4+) ratio and the Ce-N bonds improve the intensity of the photoluminescent emission. When theα-Si3N4 content (m) is higher than 0.27, the emission intensity decreases due to the existence of residual α-Si3N4 phase.
The samples were mixed with different nitrides (AlN or α-Si3N4). The luminous intensity with AlN- m = 0.84 was about 55 times that with m = 0(air). However, the luminous intensity with α-Si3N4- m = 0.27 was merely about 2.5 times that with m = 0(air). One possible reason could be that the smaller ionic radius of Si4+ (compared with that of Al3+) led to twisted crystal, larger lattice spacing, and smaller phosphor grain size. Yet, the Si-N bonding was stronger than the Al-N bonding. As a result, the thermal stability of α-Si3N4- m = 0.27 was higher.
If the calcinations was incomplete, then Si4+ and N3- wouldn’t enter the YAG crystal completely to create the silicon-rich supercooling liquid phase. Thus, the luminous intensity of the samples was lower than YAG: Ce. If the calcinations was complete, almost all Si4+ and N3- would enter the YAG crystal. Although Si4+ would reduce the luminous intensity of the samples, N3- would facilitate the valence change of luminous ions (reduced from Ce4+ to Ce3+). Thus, the increase in luminous intensity of the samples was actually more significant.

4. Preparation, microstructure, and photoluminescent properties of phosphor-embdded glass material
4.1. The influences of calcination temperature on the structure and photoluminescent properties of the phosphor-embdded glass material
The YAG:Ce yellow phosphor powders were dispersed in the substrate of BiG of a low Tg, in order to explore the influences of calcination temperature (325°C-390°C) on the structure and luminous characteristics of the glass-phosphor calcined product.
With the increasing sintering temperature, some phosphor grains were dissolved in the glass substrates. And the percentage of grains dissolved increased as the calcination temperature increased (from 16.7% to 18%), resulting in the decrease in luminous intensity. And the glass elements (Bi and Zn) were diffused to near the center and periphery of the phosphor grains. The diffusion elements increased as the calcination temperature increased. However, the role of Bi in YAG:Ce was the sensitizer, which resulted in the abnormal increase in luminous intensity to higher than before the calcination. When the calcination temperature increased from 325°C to 370°C, the residue phasors (I/I0) increased from 84.6% to 157%. However, when the calcination temperature was over 370°C, the effects of Zn (inhibitor) and phasor loss were stronger than the increase in luminous intensity, resulting in the decrease in luminous intensity.
4.2. The influences of calcination conditions on the structure and photoluminescent properties of the phosphor-embdded glass material
Replace the high-Tg SiG glass by the low-Tg BiG glass, pre-nitridize the YAG:Ce phosphor, and change the sintering atmosphere from air to N2 suppress the loss of phosphor during sintering. Therefore, the resulting loss of emission intensity of the phosphor-embedded glass material can be reduced to only about 1.8%. The linear relationship between the residue phasors (I/I0) and the residue amounts (VP/VPo) of the glass-phosphor calcined products, with the slope of the linear regression (0.95) being close to 1. Based on these findings, the luminous intensity of the samples was determined by the residue amounts. And a small amount of glass elements had no influence on the phosphor grains in the aspect of luminescence.
The volume ratio of red (Ba1.89Eu0.11Si5N8, R) and yellow (YAG:Ce, Y) phosphor powders in the BiG glass-phosphor calcined product was changed (BiG: Y:R vol%=90:(10-x):x, x =0, 2, 3, 4, and 10). Although the influence of Zn on the luminous characteristics of the R phase was not significant, Bi might play the role of an inhibitor which caused the decrease in the luminous intensity of the R phase and the inequality of the phosphor residue phasors and the residue amounts. Yet, when the R phase and the Y phase coexisted, the luminous range of Ce3+ and the excitation range of Eu2+ were overlapped. As a result, Eu2+ absorbed the luminescence of Ce3+ so the luminous intensity of the R phase was higher than 100%.
致謝 I
Abstract II
中文摘要 VII
目錄 XI
第一章 前言 1
1.1色彩定義 1
1.2 照明的演進 1
1.3 研究背景與動機 3
1.3.1螢光粉體 3
1.3.2 玻璃-螢光燒結體 7
第二章 原理與文獻回顧 12
2.1發光定義 12
2.2固態材料的光致發光 13
2.2.1本質發光 13
2.2.2異質發光 14
2.3螢光材料的發光原理與機制 16
2.4螢光材料 17
2.4.1活化劑 17
2.4.2 敏化劑 17
2.4.3主體化合物的選擇 19
2.4.4 活化劑的選擇 19
2.4.5抑制劑的選擇 19
2.5鑭系稀土離子發光特性 22
2.5.1稀土離子之價數 25
2.5.2稀土離子之f-f電子躍遷 25
2.5.3稀土離子之f-d電子躍遷
 25
2.6影響發光行為與效率的因素 28
2.6.1組態座標 28
2.6.2史托克位移 31
2.6.3主體晶格效應 32
2.6.3.1電子雲膨脹效應 32
2.6.3.2晶體場理論 34
2.6.4濃度淬滅效應 36
2.6.5熱淬滅 36
2.7 色彩簡介 38
2.7.1 CIE1931色度圖 38
2.7.2色溫 40
2.7.3演色性 41
2.8氮化物螢光粉 43
2.9釔鋁石榴石 (Yttrium-Aluminum Garnet, Y3Al5O12, YAG)晶體 44
2.9.1 YAG歷史 44
2.9.2 YAG結構 44
2.9.3固態反應合成YAG 46
2.9.4發光離子Tb3+、Eu3+及Ce3+於YAG晶體的發光能階 47
2.10玻璃 49
2.10.1玻璃 49
2.10.2 玻璃的結構 50
2.10.3 鉍酸鹽玻璃 53
第三章 實驗步驟 55
3.1螢光粉體 55
3.1.1螢光粉體製程 55
3.2 玻璃-螢光體燒結體材料 57
3.2.1玻璃粉末的製程 57
3.2.2 玻璃-螢光體燒結體的製程 57
3.2.3 暖白光玻璃-螢光體燒結體的製程 58
3.3 實驗原料 60
3.4量測與分析方法 61
3.4.1 XRD分析 61
3.4.1.1 螢光粉晶體的晶格常數 (a0) 61
3.4.1.2 螢光粉晶體的繞射峰的半高全寬 61
3.4.1.3 玻璃-螢光材料的螢光YAG相量 (Vp或Vp0) 62
3.4.2 XPS分析 62
3.4.3 微觀結構分析 63
3.4.3.1螢光粉體之SEM試片製備 63
3.4.3.2玻璃-螢光燒結體之SEM試片製備 63
3.4.3.3螢光粉體之TEM試片製備 63
3.4.3.4玻璃-螢光燒結體之TEM試片製備 64
3.4.4 螢光光譜量測 64
3.4.5 色度座標圖 64
第四章 結果與討論 65
4.1煆燒氣氛對YAG:0.05Ce螢光粉體的結構及發光性質影響 65
4.1.1不同煆燒條件之YAG晶體結構的結晶相及晶格常數分析 65
4.1.2 Y3-zCezAl5O12 (z = 0.05、0.075、0.1及0.125)的發光特性分析 67
4.1.3 不同煆燒氣氛的z=0.05成分之結晶相及晶格常數分析 69
4.1.4 不同煆燒氣氛的z=0.05成分之Ce離子的價數分析 71
4.1.5 不同煆燒氣氛之z=0.05成分的發光特性分析 73
4.1.6 結論 77
4.2 AlN分別摻雜於Y2.95Ce0.05Al5O12、Y2.9Tb0.1Al5O12及Y2.9Eu0.1Al5O12,探討AlN對螢光粉體的結構及發光性質的影響 78
4.2.1 Y3-xTbxAl5O12 (x = 0.06、0.08、0.1及0.12)及Y3-yEuyAl5O12 (y = 0.02、0.06、0.1、0.14及0.18)的發光特性分析 78
4.2.2氮化程度對螢光粉體的結晶相及晶格常數分析 80
4.2.3氮化程度對螢光粉體的陽離子周圍氮含量,及發光離子價數的分析 83
4.2.4 氮化程度對螢光粉體的發光特性分析 91
4.2.5 改變AlN粒徑,對m = 0.84 (YAG:0.05Ce)的結晶相、晶格常數、Ce離子價數及發光特性分析 98
4.2.6結論 104
4.3 α-Si3N4 摻雜於YAG:0.05Ce,探討α-Si3N4對螢光粉體的結構及發光性質的影響 106
4.3.1 氮化程度對試樣的結晶相、晶格常數及SEM微觀結構分析 106
4.3.2氮化程度對陽離子周圍氮含量及Ce離子價數分析 108
4.3.3 氮化程度對螢光粉體的發光特性分析 113
4.3.4 不同螢光粉體之熱穩定性分析 118
4.3.5 改變煆燒時間對m=0.27的結晶相及晶格常數分析 120
4.3.6煆燒時間對m=0.27的TEM微觀結構及元素分析 124
4.3.7 煆燒時間對m=0.27的發光特性分析 127
4.3.8 結論 129
4.4 螢光顆粒分散於玻璃基地材料的燒結、微結構與性質研究 130
4.4.1 燒結溫度對玻璃-螢光燒結體之結晶相及螢光殘留相量 (VP/VP0 )分析 130
4.4.2 燒結溫度對玻璃-螢光燒結體之SEM微觀結構及元素分析 132
4.4.3 燒結溫度對玻璃-螢光燒結體之TEM微觀結構及元素分析 136
4.4.4 燒結溫度使玻璃-螢光燒結體的發光強度異常增強之分析 143
4.4.5 使玻璃-螢光燒結體的發光強度異常增強的可能原因 146
4.4.6 改變燒結條件對玻璃-螢光燒結體的結晶相及螢光殘留相量分析 148
4.4.7 改變燒結條件之玻璃-螢光燒結體的SEM微觀結構及元素分析 150
4.4.8 改變燒結條件之玻璃-螢光燒結體的TEM微觀結構及元素分析 154
4.4.9 改變燒結條件對玻璃-螢光燒結體的發光特性分析 164
4.4.10 以BiG及Epoxy為基地的色轉換層之熱處理分析 168
4.4.11 暖白光玻璃-螢光燒結體的結晶相、螢光殘留相、SEM微觀結構及元素分析 171
4.4.12 暖白光玻璃-螢光燒結體的發光特性分析 174
4.4.13 暖白光玻璃-螢光燒結體的CIE座標圖分析 176
4.4.14 結論 178
本論文對本領域之貢獻 179
未來工作 180
參考文獻 181
發表的期刊論文 194
1.H.J. Round, “A Note on Carborundum,” Electrical World, 49 309-310 (1907).
2.N. Holonyak, and S.F. Bevacqua, “Coherent (Visible) Light Emission from Ga (AS1−xPx) Junctions,” Appl. Phys. Lett., 4 82-83 (1962).
3.E.F. Schubert, Light-Emitting Diodes; p.22. Cambridge, NY, 2006.
4.Silica Lighting, http://www.silicalighting.eu/home-image/, 2012
5.E.F. Schubert, and J.K. Kim, “Solid-State Light Sources Getting Smart,” Science, 308 1274-1278 (2005).
6.N. Kimura, K. Sakuma, S. Hirafune, K. Asano, N. Hirosaki, and R.J. Xie, “Extrahigh Color Rendering White Light-Emitting Diode Lamps using Oxynitride and Nitride Phosphors Excited by Blue Light-Emitting Diode,” Appl. Phys. Lett., 90 1-3 (2007).
7.楊素華, 螢光粉在發光上的應用; p.358. 科學發展 358期, 2002.
8.王書任、林仁鈞, 讓LED發光的功臣-螢光粉; p.22-27. 科學發展435期, 2009.
9.V. Sivakumar and U.V. Varadaraju, “Intense Red-Emitting Phosphors for White Light Emitting-Diodes,” J. Electrochem.Soc., 152 H168-171 (2005).
10. O.A. Lopez, J. Mckittrick, and L.E. Shea, “Fluorescence Properties of Polycrystalline Tm3+-Activated Y3Al5O12 and Tm3+-Li+ Co-Activated Y3Al5O12 in the Visible and Near IR Ranges,” J. Lumin., 71 1-11 (1997).
11.H. Yamamoto, M. Mikami, Y. Shimomura, and Y. Oruri, “Host-to-Activator Energy Transfer in a New Blue-Emitting Phosphor SrHfO3 : Tm3+,” J. Lumin., 87-89 1079-1082 (2000).
12.K. N. Kim, H. K. Jung, H. D. Park, and D. Kim, “High Luminance of New Green Emitting Phosphor, Mg2SnO4:Mn,” J. Lumin., 99 169-173 (2002).
13.L.D. Carlos, V. De Zea Bermudez, and R.A. Sa Ferreira, “Multi-Wavelength Europium-Based Hybrid Phosphors,” J. Non-Cryst. Solids., 243 203-208 (1999).
14.J.M. Robertson, and M.W. Van Tol, “Epitaxially Grown Monocrystalline Garnet Cathode-Ray Tube Phosphor Screens,” Appl. Phys. Lett., 37 471-472 (1980).
15.Z. Wei, L. Sun, C. Liao, C. Yan, and S. Huang, “Fluorescence Intensity and Color Purity Improvement in Nanosized YBO3:Eu,” Appl. Phys. Lett., 80 1447-1449 (2002).
16.E. Danielson, J.H. Golden, E.W. McFarland, C.M. Reaves, W.H. Weinberg, and X.D. Wu, “A Combinatorial Approach to the Discovery and Optimization of Luminescent Materials,” Nature., 389 944-948 (1997).
17.R.J. Xie, and N. Hirosaki, “Silicon-Based Oxynitride and Nitride Phosphors for White LEDs—A Review,” Sci. Technol. Adv. Mater., 8 588-600 (2007).
18.J. Shang, K. Qiu, X. Lu, K. Zhao, L. Zhang, The luminescence properties of a novel oxynitride phosphor Sr3-yEuySiO5-6XN4x, Opt. Mater., 35 1642–1645 (2013).
19.Y.F. Wang, X. Xu, L.J. Yin, L.Y. Hao, High thermal stability and photoluminescence of Si–N-codoped BaMgAl10O17:Eu2+ phosphors, J. Am. Ceram. Soc., 93 1534–1536 (2010).
20.X. Ma, W. Zhuang, H. Guo, R. Liu, Y. Liu, Y. Hu, X. Wen, Effect of Si–N substituting for Al–O bonds on luminescence properties of Sr3AlO4F:Ce3+ phosphor, J. Rare. Earth., 32 399-403 (2014).
21.Z. He, X.F. Huang, R.D. Zhou, amd W.G. Huang, “Synthesis and Luminescence Properties of a New Green Emitting Ca2MgSi-2O7-xNx:Eu2+ Phosphor,” J. Alloy. Compd., 658 36-40 (2016).
22.W.Y. Tian, K.X. Song, F.F. Zhang, P. Zheng, J.G. Deng, J. Jiang, J.M. Xu, and H.B. Qin, “Optical Spectrum Adjustment of Yellow–green Sr1.99SiO4-3x/2 Nx:0.01Eu2+ Phosphor Powders for Near Ultraviolet–visible Light Application,” J. Alloy. Compd., 638 249-253 (2015).
23.S.H. Jung, D.S. Kang, and D.Y. Jeon,
“Effect of substitution of nitrogen ions to red-emitting Sr3B2O6-3/2xNx/:Eu2+ Oxy-nitride Phosphor for the Application to White LED,” J. Cryst. Growth, 326 116-119 (2011).
24.K.X. Song, F.F. Zhang, D.Q. Chen, S. Wu, P. Zheng, Q.M. Huang, J. Jiang, J.M. Xu, H.B. Qin, “Enhancement of Photoluminescence Properties and Modification of Crystal Structures of Si3N4 Doping Li2Sr0.995SiO4:0.005Eu2+ Phosphors,” Mater. Res. Bull., 70 309-314 (2015).
25.Y.Q. Li , N. Hirosaki, R.J. Xie, and M. Mitomo, “Crystal, electronic and luminescence properties of Eu2+-doped Sr2Al2-xSi1+xO7-xNx,” Sci. Technol. Adv. Mat., 8 607-616 (2007).
26.Y.F. Wang, Y.F. Wang, Q.Q. Zhu, L.Y. Hao, X. Xu, R.J. Xie, and S. Agathopoulos, “Luminescence and Structural Properties of High Stable Si–N-Doped BaAl2-xSixO4-xNx:Eu2+ Phosphors Synthesized by a Mechanochemical Activation Route,” J. Am. Ceram. Soc., 96 2562–2569 (2013).
27.K.H. Lee, and W.B. Im, “Efficiency Enhancement of Bredigite-Structure Ca14Mg2[SiO4]8:Eu2+ Phosphor via Partial Nitridation for Solid-State Lighting Applications” J. Am. Ceram. Soc., 96 503–508 (2013).
28.Y.Q. Li, Y. Fang, N. Hirosaki, R.J. Xie, L.J. Liu, T. Takeda, and X.Y. Li, “Crystal and Electronic Structures, Photoluminescence Properties of Eu Eu2+-Doped Novel Oxynitride Ba3.99Eu0.12Si6O16-3x/2Nx,” Materials. 3 1692-1708 (2010).
29.G. Anoop, I.H. Cho, D.W. Suh, C.K. Kim, and J.S. Yoo
, “Structural and Luminescent Characteristics of Two-step Processed BaAl2-xSixO4-xNx:Eu2+ Phosphors,” J. Lumin., 134 390–395 (2013).
30.Y.Q. Li, and H.T. Hintzen, “Luminescence Properties of Eu2+-doped MAl2-x Six O4-x Nx (M = Ca, Sr, Ba) Conversion Phosphor for White LED Applications,” J. Electrochem Soc., 153 G278-G282 (2006).
31.H. Yu, D.G. Deng, S.Q. Xu, C.P. Yu, H.Y. Yin, and Q.L. Nie, “Luminescent Properties of Red-emitting LiSr3.95B3O(9-3x/2)Nx:0.05 Eu2+ Phosphor for White-LEDs,” J. Lumin., 132 2553–2556 (2012).
32.S.K. Sun, Y. Masubuchi, D.H. Go, Y.S. Kim, and S. Kikkawa, “Preparation and Luminescence Properties of Eu2+-doped oxynitride feldspar SrAl2-xEuySi2+xO8-xNx,” J. Alloy. Compd., 618 254-257 (2015).
33.F. Zhang, K. Song, J. Jiang, S. Wu, P. Zheng, Q. Huang, J. Xu, H. Qin, Improvement of photoluminescence properties and thermal stability of Y2.9Ce0.1Al5−xSixO12 phosphors with Si3N4 addition, J. Alloy. Compd., 615 588–593 (2014).
34.X. Wang, G. Zhou, H. Zhang, H. Li, Z. Zhang, Z. Sun, Luminescent properties of yellowish orange Y3Al5−xSixO12−xNx:Ce phosphors and their applications in warm white light-emitting diodes, J. Alloy. Compd., 519 149–155 (2012).
35.M. Sopicka-Lizer, D. Michalik, J. Plewa, T. Juestel, H. Winkler, T. Pawlik, The effect of Al–O substitution for Si–N on the luminescence properties of YAG:Ce phosphor, J. Eur. Ceram. Soc., 32 1383–1387 (2012).
36.Y.S. Lin, Y.H. Tseng, R.S. Liu, J.C.C. Chan, Luminescent properties and structure investigation of Y3Al5O12/Ce phosphors with Si addition, J. Electrochem. Soc., 154 16-19 (2007).
37.F.F. Zhang, K.X. Song, J. Jiang, S. Wu, P. Zheng, Q.M. Huang, J.M. Xu, and H.B. Qin, “Improvement of Photoluminescence Properties and Thermal stability of Y2.9Ce0.1Al5−xSixO12-3x/2Nx Phosphors with Si3N4 Addition,” J. Alloy. Compd., 615 588-593 (2014).
38.Y.H. Song, T.Y. Choi, K. Senthil, T. Masaki, and D.H. Yoon, “Enhancement of Photoluminescence Properties of Green to Yellow Emitting Y3Al5O12: Ce3+ Phosphor by AlN Addition for White LED Applications,” Mater. Lett., 67 184-186 (2012).
39.“Remote Phosphor Brings Higher Efficacy to Area Lighting, ”Illumination in Focus, winter issue (2013).
40.S.C. Allen, and A.J. Steckl, “A Nearly Ideal Phosphor-Converted White Light-Emitting Diode,” Appl. Phys. Lett., 92 143309 (2008).
41.N.F. Borrelli et. al., “Phosphor Containing Glass Frit Materials for LED Lighting Applications,” US patent 
2012/0107622 (2012).
42.C. Atas, and O. Sayman, “An Overall View on Impact Response of Woven Fabric Composite Plates,” Compos. Struct., 82 336-345 (2008).
43.G. Mavrov, “Aging of Silicone Resins,” Stud. Conserv., 28(4) 171-178 (1983).
44.Y.H. Lin, J.P. You, Y.C. Lin, N.T. Tran, and F.G. Shi, “Development of High-Performance Optical Silicone for the Packaging of High-Power LEDs,” IEEE Trans. Compon. Packag. Tech., 33(4) 761-766 (2010).
45.C.C. Tsai, J. Wang, M.H. Chen, Y.C. Hsu, Y.J. Lin, C.W. Lee, S.B. Huang, H.L. Hu, and W.H. Cheng, “Investigation of Ce:YAG Doping Effect on Thermal Aging for High-Power Phosphor-Converted White-Light- Emitting Diode,” Trans. Device. Mater. Res., 9(3) 367-371 (2009).
46.N.F. Borrelli et. al., “Phosphor Containing Glass Frit Materials for LED Lighting Applications,” US patent 
2012/0107622 (2012).
47.H. Kimura, M. Sugimoto, S. Ishizaki, and E. Shiohama, “The High Power LED Unit for Lighting,” in Proc. 10th Int. Symp. Sci. Technol. Light Sources, pp. 181–182.
48.Y. Shimizu, “Development of White LED Light Source,” in Rare Earths, 40. Osaka, Japan:The Rare Earth Soc. Jpn., 2002, pp. 150–151.
49.D. Huang et. al., “Wavelength Conversion Component Having Photo-Luminescence Material Embedded into a 
Hermetic Material for Remote Wavelength Conversion,” US patent 2013/0094178 (2013).
50.B.G. Aitken et. al., “Bismuth Borate Glass Encapsulant for LED Phosphors,” US patent 2013/0256598 (2013).
51.S. Fujita, S. Yoshihara, A. Sakamoto, S. Yamamoto, and S. Tanabe, “YAG Glass-Ceramic Phosphor for White LED (I) Background and Development,” Proc. Spie., 5941 1-7 (2005).
52.T. Nakanishi, and S. Tanabe, “Novel Eu2+-Activated Glass Ceramics Precipitated With Green and Red Phosphors for High-Power White LED,” IEEE J. Sel. Top. Quant., 15 1171-11766 (2009).
53.S. Nishiura, S. Tanabe, K. Fujioka, and Y. Fujimoto, “Properties of Transparent Ce:YAG Ceramic Phosphors for White LED,” Opt. Mater., 33 688-691 (2011).
54.Y.K. Lee, J.S. Lee, J. Heo, W.B. Im, and W.J. Chung, “Phosphor in Glasses with Pb-free Silicate Glass Powders as Robust Color-Converting Materials for White LED Applications,” Opt. Lett., 37 3276-3278 (2012).
55.H. Segawa, N. Hirosaki, S. Ohki, K. Deguchi, and T. Shimizu, “Exploration of Zinc Phosphate Glasses Dispersed with Eu-Doped SiAlON for White LED Applications,” Opt. Mater., 35 2677-2684 (2013).
56.C.C. Tsai, W.C. Cheng, J.K. Chang, L.Y. Chen, J.H. Chen, Y.C. Hsu, and W.H. Cheng, “Ultra-High Thermal-Stable Glass Phosphor Layer for Phosphor-Converted White Light-Emitting Diodes,” J. Disp. Technol., 9 427-432 (2013).
57.G. Liu, Z.F. Tian, Z.H. Chen, H.Z. Wang, Q.H. Zhang, and Y.G. Li, “CaAlSiN3:Eu2+ Phosphors Bonding with Bismuth Borate Glass for High Power Light Excitation,” Opt. Mater., 40 63-67 (2015).
58.L.Y. Chen, W.C. Cheng, C.C. Tsai, Y.C. Huang, Y.S. Lin, and W.H. Cheng, “High-Performance Glass Phosphor for White-Light-Emitting Diodes Via Reduction of Si-Ce3+:YAG Inter-Diffusion,” Opt. Mater., 4 121-128 (2014).
59.R. Zhang, H. Lin, Y.L. Yu, D.Q. Chen, J. Xu, and Y.S. Wang, “ A New-Generation Color Converter for High-power White LED:Transparent Ce3+:YAG Phosphor-in-Glass,” Laser Photonics. Rev., 8 158–164 (2014).
60.Q.Q. Zhu, X.J. Wang, L. Wang, N. Hirosaki, T. Nishimura, Z.F. Tian, Q. Li, Y.Z. Xu, X. Xu, and R.J. Xie, “β-Sialon:Eu Phosphor-in-Glass:A Robust Green Color Converter for High Power Blue Laser Lighting,” J. Mater. Chem. C., 3 10761-10766 (2015).
61.M.G. Gong, X.J. Liang, Y.Y. Wang, H.H. Xu, L. Zhang, and W.D. Xiang, “Novel Synthesis and Optical Characterization of Phosphor-Converted WLED Employing Ce:YAG-Doped Glass,” J. Alloys. Compd., 664 125-132 (2016).
62.Y. Li, L.L. Hua, B.B. Yang, M.M. Shi, and J. Zou, “ Effect of Hydrogen Annealing on the Photoluminescence Properties of Color Conversion Glass in Borosilicate Glass,” J. Alloys. Compd., 16 33173-33175 (2016).
63.H.S. Lee, J.H. Hwang, T.Y. Lim, J.H. Kim, D.W. Jeon, H.S. Jung, and M.J. Lee, “ Effect of Lu3Al5O12:Ce3+ and (Sr,Ca)AlSiN3:Eu2+ Phosphor Content on Glass Conversion Lens for High-Power White LED,” J. Korean. Chem. Soc., 52 229-233 (2015).
64.L.Y. Chen, W.C. Cheng, C.C. Tsai, J.K. Chang, Y.C. Huang, J.C. Huang, and W.H. Cheng, “ Novel Broadband Glass Phosphors for High CRI WLEDs,” Opt. Soc. Am., 22 A671-A678 (2014).
65.H. Jeong, C. Huh, T.Y. Lim, J.H. Kim, M. Lee, D.W. Jeon, J. Hwang, T.H. Park and D. Shin, “ Effect of glass composition on the luminescence characteristics of color conversion glasses in BaO–ZnO–B2O3–SiO2 glasses,” J. Non-Cryst. Solids, 423-4, 25-9 (2015).
66.C.C. Tsa, “ Process dependent luminescence characteristics of low-temperature Ce3+:YAG doped glass for phosphor-converted white-light-emitting diodes,” Optik, 126[6], 655–8 (2015).
67.Y. Zhou, D. Chen, W. Tian, and Z. Ji, “ Impact of Eu3+ dopants on optical spectroscopy of Ce3+:Y3Al5O12 embedded transparent glass-ceramics,” J. Am. Ceram. Soc, 98[8], 2445–50 (2015).
68.D. Chen, W. Xiang, X. Liang, J. Zhong, H. Yu, M. Ding, H. Lu, Z. Ji,“ Advances in transparent glass–ceramic phosphors for white light-emitting diodes—A review,” J. Eur. Ceram. Soc, 35[3], 859-69 (2015).
69.N. Fuhita, M. lwao,S. Fujita and M. Ohji, “ Wavelength Convresion Material Phosphor – Glass Composites for High Power Solid-State Lighting” Handbook on the Physics and Chemistry of Rare Earths: Including Actinides, 48, 775-8 (2013).
70.L.Y. Chen, J.K. Chang, W.C. Cheng, J.C. Huang, Y.C. Huang, and W.H. Cheng, “ Chromaticity tailorable glass-based phosphor converted white light-emitting diodes with high color rendering index,” Opt. Express., 23[15], 1024-9 (2015).
71.J. Zhong, D. Chen,W. Zhao, Y. Zhou, H. Yu, L. Chen and Z. Ji, “ Garnet-based Li6CaLa2Sb2O12:Eu3+ red phosphors: a potential color-converting material for warm white light-emitting diodes,” J. Mater. Chem, 3, 4500-10 (2015).
72.S.Yi, W. J. Chung and J. Heo, “ Phosphor-in-glasses composites containing light diffusers for high color uniformity of white-light-emitting diodes,”1-6, J. Solid. State. Light. (2015).
73.J. S. Lee, P. Arunkumar, S. Kim,I.J. Lee, H. Lee, and W.B. Im, ” Smart design to resolve spectral overlapping of phosphor-in-glass for high-powered remote-type white light-emitting devices,” Opt Lett, Vol.39[4], February 15 ( 2014).
74.J. Seo,S. Kim, Y. Kim, F. lqbal, and H. Kim, “ Effect of Glass Refractive Index on Light Extraction Efficiency of Light-Emitting Diodes,” J. Am. Ceram. Soc, 1–5 (2014).
75.31. Ru. Li, H. Li, Y. Peng, H. Cheng, Z. Chen, and M. Chen, “ Development of RGB ph osphor-in-glass for ultraviolet-excited white light-emitting diodes packaging,” Electronic Packaging Technology.,94-7 (2016).
76.D.R.Vij, Luminescence of Solids, Plenum Press, NY, 1998.
77.M.H. Nazarov, and D.Y. Noh, New Generation of Europium and Terbium Activated phosphors; pp.2-4. Pan Stanford Publishing Ltd., SG, 2011.
78.C.C. Tsai, M.H. Chen, Y.C. Huang, Y.C. Hsu, Y. TLo, Y.J. Lin, J.H. Kuang, S.B. Huang, H.L. Hu, Y.I. Su, and W.H. Cheng, “Decay Mechanisms of Radiation Pattern and Optical Spectrum of High-power LED Modules in Aging tTest,” J. Sel. Top. Quant., 15, 1156-1162 (2009).
79.T. Justel, H. Nikol, and C. Ronda, “New Developments in the Field of Luminescent Materials for Lighting and Displays,” Chem. Int. Ed., 37 3084-3103 (1998).
80.C. Feldmann, T. Justel, C.R. Ronda, and P.J. Schmidt, “Inorganic Luminescent Materials: 100 Years of Research and Application,” Adv. Funct. Mater., 13 511-516 (2003).
81.R.C. Ropp, Luminescence and the Solid State; pp.228-352. Elsevier, AMS, 1991
82.蘇鏘, 稀土化學; pp. 8-12. 河南科學技術出版社, 河南, 1993.
83.蘇鏘, 稀土元素-您身邊的大家族; PP.40-41. 清華大學出版社, 北京, 2000.
84.G. Blasse, Handbook on the Physics and chemistry of Rare Earths; PP.237-274. Netherlands, AMS, 1979.
85.T. Hoshina, Luminescence of Rare Earth Ions; Sony Research Center Rep., 1983.
86.B.D. Bartolo, Optical Interactions in Solids; pp. 470. John Wiley & Sons, Inc., NY, 1968.
87.H. Yamamoto, Phosphor Global Summit, March 19, Phoenix, Arizona, USA 2003.
88.G. Blasse, and B.C. Grabmaier, Luminescent Materials; pp.25. Springer-Verlag, NY, 1994.
89.H.S. Nalwa, L.S. Rohwer, A.J. Heeger, and N. Laureate, Handbook of Luminescence, Display Materials, and Devices – Inorganic Display Materials, American Scientific, Inc., 2003.
90.M. Fox, Optical Properties of Solids; pp.169-183. Oxford University Press, UK, 2001.
91.C.K. Jorgensen, Modern Aspects of ligand Field Theory, Elsevier, AMS, 1971.
92.J.A. Duffy, and M.D. Ingram, “Use of Thallium (I), Lead (II), and Bismuth (III) as Spectroscopic Probes for Ionic–Covalent Interaction in Glasses,” J. Chem. Phys., 52 3752-3754 (1970).

93.P. Dorenbos, “Crystal Field Splitting of Lanthanide 4fn-15d-Levels in Inorganic Compounds,” J. Alloys Compd., 341 156-159 (2002).

94.R.J. Xie, M. Mitomo, K. Uheda, F.F. Xu, and Y. Akimune, “Preparation and Luminescence Spectra of Calcium-and Rare-Earth (R=Eu, Tb, and Pr)-Codoped α-SiAlON Ceramics,” J. Am. Ceram. Soc., 85 1229-1234 (2002).

95.S. Shionoya, and W.M. Yen, Phosphor Handbook; pp.623. CRC Press, Boca Raton, FL, 1999.
96.H. Bethe, “Termaufspaltung in Kristallen,” Ann. Phys., 3 133–208 (1929).
97.C.J. Ballhausen, Introduction to Ligand Field Theory; pp.235-239. McGraw Hill, NY, 1962.
98.C.K. Jaurgensen, Absorption Spectra and Chemical Bonding in Complexes; pp.85, Pergamon Press, Ltd., Oxford, 1962.
99.C.K. Jaurgensen, Modern Aspects of Ligand Field Theory; pp. 293-313. Netherlands, AMS, 1971.
100.A.B.P. Lever, Inorganic Electronic Spectroscopy; pp. 212-225. Elsevier, AMS, 1984.
101.I.B. Bersuker, Electronic Structure and Properties of Coor-Dination Compounds. Khimiya, Moscow, 1976.
102.W.M. Yen, S. Shionoya, and H. Yamamoto, Phosphor handbook (2nd ed.); pp.11-70. CRC Press, Boca Raton, FL, 1998.
103.J. A. Deluca, “An Introduction to Luminescence in Organic Solids,” J. Chem. Educ., 57 541-545 (1980).
104.G. Wyszecki, and W.S. Stiles, Concepts and Methods, Quantitative Data and Formulae, 2nd ed., John Wiley & Sons, Inc., NY, 1982.
105.E.F. Schubert, Light Emitting Diodes, Cambridge, NY, 2003.
106.T. Justel, H. Nikol, and C. Ronda, “New Developments in the Field of Luminescent Materials for Lighting and Displays,” Angew. Chem. Int. Ed., 37 3084-3103 (1998).
107.H. S. Fairman, M. H. Brill, and H. Hemmendinger, “How the CIE 1931 Color-matching Functions were Derived from Wright–Guild data, Color” Res. Appl., 22 11–23 (1997).
108.Y.R. Luo, Comprehensive Handbook of Chemical Bond Energies; pp.491 and 1045. CRC Press Inc., Boca Raton, FL, 2007.
109.W.R. Stevens, Building Physics: Lighting. Seeing in the Artificial Environment. Elsevier inc., AMS, 2013.
110.W.D. Van Driel, and X.J. Fan, Solid State Lighting Reliability. Springer, inc., BE, 2008.
111.Y.L. Liu, and C.S. Shi, “Luminescent Centers of Eu2+ in BaMgAl10O17 Phosphor,” Mater. Res. B, 36 109-115 (2001).
112.E. Van Der Kolk, P. Dorenbos, A.P. Vink, R.C. Perego, C.W.E. Van Eijk, and A. R. Lakshmanan, “Vacuum Ultraviolet Excitation and Emission Properties of Pr3+ and Ce3+ in MSO4 (M=Ba, Sr, and Ca) and Predicting Quantum Splitting by Pr3+ in Oxides and Fluorides,” Phys. Rev., 64 195129-1-195129-12 (2001).
113.B.M.J. Smts, and J.G. Verlijsdonk, “The Luminescence Properties of Eu2+- and Mn2+-Doped Barium Hexaaluminates,” Mat. Res.Bull., 21 1305-1310 (1986). 

114.W. Schnick, “Nitridosilicates, Oxonitridosilicates (Sions), and Oxonitridoaluminosilicates (Sialons): New Materials with Promising Properties,” Int. J. Inorg. Mater., 3 1267–1272 (2001).
115.W. Schnick, and H.Huppertz, “Nitridosilicates—A Significant Extension of Silicate Chemistry,” Chem. Eur., 3 679-683 (1997).
116.S. Geller, and M.A. Gilleo, “Structure and Ferrimagnetism of Yttrium and Rare-Earth Iron Garnets,” Acta crystallogr., 10 239 (1957).

117.J.E. Geusic, H.M. Marcos, and L.G. Van Uitert, “Laser Oscillations in Nd-Doped Yttrium Aluminum, Yttrium Gallium and Gadolinium Garnets,” Appl. Phys. Lett., 4 182-184 (1964).
118.S. Geller, “Crystal Chemistry of the Garnets,” Z. Kristallogr., 125 1-14 (1967).
119.J.M. Robertson, M.W. Van Tol, J.P.H. Heynen, W.H. Smits, and T. de
Boer, “Thin Single Crystalline Phosphor Layers Grown by Liquid Phase Epitaxy,” Philips J. res., 35 354-371(1980).

120.E.M. Levin, C.R. Robbins, and H.F. McMurdie, Phase Diagrams for Ceramists. American Ceramics Society. COR., Columbus, Ohio, 1964.
121.R.C. Buchanan, Cerzmic materials for electronics:Processing, properties, and application. Marcel Dekker, Inc. NY, 1986.
122.V.B. Glushkova, V.A. Krzhizhanovskaya, and O.N. Egorova, “Physicochemical Investigations of the Compounds in the System Y2O3-Al2O3,” Dokl. An. SSSR, 260 1157-1160 (1981).
123.E.F. Kustov, T.K. Maketov, V.A. Surogina, and V.P. Petrov, “Energy levels diagram of rare earth ions in crystal fields (I) cubic crystals (Oh, O, Td)” Cryst. Res. Technol., 15 1351–1488 (1980).
124.M.H. Werts, “Making Sense of Lanthanide Luminescence,” Sci. Prog., 88 101-131 (2005).
125.A.K. Varshneya, Fundamentals of Inorganic Glasses, Academic Pres, Inc., NY, 1994.
126.J.E. Shelby, Introduction to Glass Science and Technology, RSC, UK, 2005.
127.V.M. Goldschmidt, L. Thomassen, F. Ulrich, T.F.W. Barth, G.O.J. Lund, D. Holmsen, and W.H. Sazarryson, Geochemische Verteilungsgesetze Der Elemente, I kommission hos J. Dybwad, Olso, 1925.
128.W.H. Zachariasen, “The Atomic Arrangement in Glass,” J. Am. Chem. Soc., 54 3841-3851 (1932).
129.J.E. Stanworth, “on the Structure of Glass,” J. Soc. Glass Technol., 32 154-172 (1948).
130.A.Z. Dietzel, “The Cation Field Strengths and Their Relation to Devitrifying Process, to Compound Formation, and to the Melting Points of Silicates,” Z. Elektrochem., 48 9-23 (1942).
131.W. Vogel, Chemistry of Glass, The American Ceramic Society, Inc., Columbus, Ohio, 1985. 

132.E.M. Levin, C.L. Mcdaniel, “The System Bi2O3-B2O3,” J. Am. Ceram. Soc., 45 355-360 (1962).
133.W.H. Dumbaugh, “Heavy Metal Oxide Glasses Containing Bi2O3,” Phys. Chem. Glasses, 27 119-123 (1986).
134.T. Inoue, T. Honma, V. Dimitrov, and T. Komatsu, “Approach to Thermal Properties and Electronic Polarizability from Average Single Bond Strength in ZnO-Bi2O3-B2O3 glasses,” J. Solid State Chem., 183 3078-3085 (2010).

135.T. Hashimoto, Y. Shimoda, H. Nasu, and A. Ishihara, “ZnO–Bi2O3-B2O3 Glasses as Molding Glasses with High Refractive Indices and Low Coloration Codes,” J. Am. Ceram. Soc., 94 2061-2066 (2011).
136.Y.S. Chang, “The Effects of Heat Treatment on the Crystallinity and Luminescence Properties of YInGe2O7 Doped with Eu3+ Ions,” J. Electron. Mater., 37 1024-1028 (2008).
137.J.F. Moulder, Handbook of x-ray photoelectron spectroscopy, in:J. Chastain (Eds.), Physical Electronics Inc., 1995, pp. 56, 106, and 143.
138.C. Wang, Y. Ao, P. Wang, J. Hou, J. Qian, Preparation of cerium and nitrogen co-doped titania hollow spheres with enhanced visible light photocatalytic performance, Powder Technol. 210 (2011) 203–207.
139.P. Wang, D.J. Wang, J. Song, Z.Y. Mao, Q.F. Lu, Incorporation of Si–O induced valence state variation of cerium ion and phase evolution in YAG:Ce phosphors for white light emitting diodes, Mater. Electron. 23 (2012) 1764–1769.
140.M. C. Maniquiz, K. Y. Jung, and S. M. Jeongb, “Luminescence Characteristics of Y3Al5−2y(Mg,Si)yO12:Ce Phosphor Prepared by Spray Pyrolysis,” J. Electrochem. Soc., 157, H1135-H1139 (2010).
141.J. Shang, K. Qiu, X. Lu, K. Zhao, and L. Zhang, “The luminescence properties of a novel oxynitride phosphor Sr3-yEuySiO5-6XN4x,”Opt. Mater., 35, 1642–5 (2013).
142.J.C. Caicedo, J.A. Pérez, W. Aperador, AlN film deposition as a semiconductor device, Ingeniería e Investigación 33 (2013) 16-23.
143.I. Valov, B. Luerssen, E. Mutoro, L. Gregoratti, R.A.D. Souza, T. Bredow, S. Günther, A. Barinov, P. Dudin, M. Martin, J.R. Janek, Electrochemical activation of molecular nitrogen at the Ir/YSZ interface, Phys. Chem. Chem. Phys. 13 (2011) 3394–3410.
144.C.J. Mao, Y.X. Zhao, X.F. Qiu, J.J. Zhu, C. Burda, Synthesis, characterization and computational study of nitrogen-doped CeO2nanoparticles with visible-light activity, Phys. Chem. Chem. Phys. 10 (2008) 5633–5638.
145.R. Wicks, S.G. Altendorf, C. Caspers, H. Kierspel, R. Sutarto, L. H. Tjeng, and A. Damascelli, “NO-assisted Molecular-Beam Epitaxial Growth of Nitrogen Substituted EuO,” Appl. Phys. Lett., 100 1025405-1-1025405-4 (2012).
146.K.k. Masumoto, A.S. Semba, C.H. Kimura, T.K. Taniguchi, K.J. Watanabe, T.k. Sakata, and H.D. Aoki, “Luminescence Characteristics and Annealing Effect of Tb-Doped AlBNO Films for Inorganic Electroluminescence Devices,” Japan Soc. Applied Physics, 50 04DH01-1-04DH01-4 (2011).
147.D.D. Sarma, and C.N.R. Rao., “XPES Studies of Oxides of Second- and Third-row Transition Metals Including Rare Earths,” J. Electron Spectrosc., 20 25-45 (1980).
148.J.H. Richter, B.J. Ruck, M. Simpson, F. Natali, N.O.V. Plank, M. Azeem, H.J. Trodahl, A.R.H. Preston, B. Chen, J. McNulty, K.E. Smith, A. Tadich, B. Cowie, A. Svane, M. van Schilfgaarde, and W.R.L. Lambrecht, “Electronic Structure of EuN: Growth, Spectroscopy, and Theory,” Phys. Rev. B, 84, 35120-1-35120-10 (2011).
149.C.S. Young, S.J. Leem, C.M. Kim, S.J. Kim, Y.M. Sung, C.K. Hahn, J.H. Baek, amd T.G. Kim, “Deposition of Europium Oxide on Si and its Optical Properties Depending on Thermal Annealing Conditions,” J. Electroceram., 23 326–330 (2009).
150.Q.Q. Zhu, W.W. Hu, L.C. Ju, L.Y. Hao, X. Xu, and S. Agathopoulos, “Synthesis of Y3Al5O12:Eu2+ Phosphor by a Facile Hydrogen Iodide-Assisted Sol–Gel Method,” J. Am. Ceram. Soc., 96 701–703 (2013).
151.Q. Li, T. Li, and J.G. Wu, “Luminescence of Europium (III) and Terbium (III) Complexes Incorporated in Poly (Vinyl Pyrrolidone) Matrix,” J. Phys. Chem. B, 96 12293–12296 (2001).
152.W.W. Wang, P. Zhang, X.B. Wang, X. Lei, H. Ding, and H. Yang, “Bifunctional AlN:Tb Semiconductor with Luminescence and Photocatalytic Properties,” RSC Adv., 5 90698–90704 (2015).
153.L.J. Yin, Q.Q. Zhu, W.Y. Yu, L.Y. Hao, and X. Xu, “Europium location in the AlN: Eu green phosphor prepared by a gas- reduction-nitridation route,” J. Appl. Phys., 111 053534-1- 053534-7 (2012).
154.Z.H. Zhang, Y.H. Wang, X.X. Li, Effects of Si4+ and B3+ doping on the photoluminescence of BaMgAl10O17:Eu2+ phosphor under UV and VUV excitation, J. Alloys Compd. 478 (2009) 801–804.
155.Y. Li, Z.P. Ci, Y.Q. Peng, Y.H. Wang, and C.J. Liu, “Photoluminescent and Thermal Properties of (Sr0.995-x-y-zCaxBayMgz)2SiO4:0.01Eu2+ Phosphors for Warm White Light-emitting diodes,” Mater. Res. Bull,. 61 146–151 (2015).
156.C.C. Lin, and R.S. Liu, “Thermal effects in (oxy)nitride phosphors,” J. Solid State Lighting, 1 1-13 (2014).
157.H.J. Wu, T.H. Lu, N. Wei, Z.W. Lu, X.T. Chen, Y.B. Guan, Y. Zhao, J.Q. Qi, Q.W. Shi, X.M. Xie, and W. Zhang, “Photoluminescence Enhancement of YAG:Ce Nanophosphors with SiO2 Additions,” J. Mater. Sci. Mater. El., 26 2451-2456 (2015).
158.Y.M. Chiang, D.P. Birnie, III, and W.D. Kingery, Physical Ceramics; pp.426. John Wiley & Sons, Inc., Hoboken, 1997.
159.Y.R Luo, Comprehensive Handbook of Chemical Bond Energies; pp.491 and 1045. CRC Press Inc., Boca Raton, FL, 2007.
160.X.W. Sun, J. Tan, C.M. Li, Z. Lei, X.K. Meng, W. Zuo, Z. Zhang, and S. Feng, “Doping Effects of Sb, Bi, Zr and Si on the Properties of YAG:Ce Phosphor,” Chinese J. Inorg. Chem., 1001-4861, 1863-69 (2013).
161.R.J. Xie and N. Hirosaki, “Silicon-Based Oxynitride and Nitride Phosphors for White LEDs—A Review,” Sci. Technol. Adv. Mater., 8 588-600 (2007).
162.R.J. Xie, N. Hirosaki, and T. Takeda, ”Highly Reliable White LEDs Using Nitride Phosphors,” J. Korean Chem.Soc.,49, 375-379 (2012).
163.N.E. Zein, “Sustainability, Energy and Architecture: chaper 7,The LED Lighting Revolution, ”Academic Press, Chicago, USA, Oct, 2013,pp.187.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top