跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2024/12/09 18:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:郭穎
研究生(外文):Ying Kuo
論文名稱:SiC燒結特性及Al/SiC複合材料性質研究
論文名稱(外文):The sintering of SiC and properties of Al/SiC composites
指導教授:楊智富楊智富引用關係林永仁林永仁引用關係
指導教授(外文):Chih-Fu YangYung-Jen Lin
口試委員:楊智富林永仁
口試委員(外文):Chih-Fu YangYung-Jen Lin
口試日期:2017-07-28
學位類別:碩士
校院名稱:大同大學
系所名稱:材料工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:96
中文關鍵詞:熱傳導率Al/SiC複合材料熱膨脹係數
外文關鍵詞:coefficient of thermal expansionthermal conductivityAl/SiC composite
相關次數:
  • 被引用被引用:1
  • 點閱點閱:792
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
碳化矽強化之鋁基複合材料(Al/SiC)具有其高比強度、高熱傳率及低熱膨脹係數,應用十分廣泛,但作為高功率電子元件之散熱基板時,常有與矽元件熱膨脹係數不匹配而發生剝離之問題。本研究採用數種不同SiC粒徑組合之單峰、雙峰及三峰粒度法製備生胚,並以高溫固相燒結法(2100°C)製備SiC燒結體,之後對不同粒度組合之燒結胚體,以擠壓鑄造法滲入A356鋁湯製作Al/SiC複合材料。
實驗結果顯示,數種不同SiC生胚粒度組合中,三峰粒度組合所獲致之SiC生胚密度優於雙峰粒度及單峰粒度者。而不同粒度組合之SiC燒結體中,單峰粒度組合出現異常晶粒成長現象,並轉化為粗大板狀之晶粒;雙峰粒度組合呈現近似立體網絡狀之晶粒連結體;三峰粒度組合之燒結體可觀察到分散之大顆粒與中、小顆粒燒結轉化之網絡狀連結體,整體來說,三峰粒度組合之SiC燒結體有最佳之體密度。
而對三峰粒度而言,小顆粒SiC粉末之粒徑對燒結緻密化有重大影響,當小顆粒粒徑為2 μm時,燒結難以產生緻密化,燒結體之體密度不高,製作Al/SiC複材時鋁湯雖可順利滲入胚體,但複材之熱性質與機械性質皆不理想。當小顆粒SiC粒徑下降至0.5 μm時,其緻密化效果相當明顯,最高燒結密度達80.5% (d = 2.58 g/cm3),燒結體之抗折強度達81.8 MPa,但閉孔隙率約為10%,以致鋁合金溶液難以滲入SiC燒結體內,無法製作緻密之Al/SiC複合材料。
本研究最後選用1.2 μm小顆粒之三峰粒度組合No.11 (57 μm : 9.5 μm : 1.2 μm = 60 : 40 : 10)來進行SiC燒結與製備Al/SiC複合材料,SEM微觀組織及體密度分析顯示,其有較明顯之緻密化現象,其體密度達73.8% (d = 2.37 g/cm3 ),製作Al/SiC複合材料時其抗折強度達356 MPa,皆優於前十個粒度組合,而其TC與CTE分別為133.9 W/mK(優於前十個粒度組合)與7.6 ppm/K(介於前八個與後兩個粒度組合)。



Silicon carbide-reinforced aluminum composite (Al/SiC) was widely used because of its high specific strength, high thermal conductivity and low coefficient of thermal expansion. Since the thermal expansion coefficient of Si substrate differs from its heat sink material Al/SiC composites, delamination of Si device from the Al/SiC baseplate may take place and cause failure of high power device. In this study, SiC sintered by solid-state sintering at high temperature(2100°C) with monomodal, bi-modal and tri-modal distribution of SiC particles. The sintered body was infiltrated with aluminum alloy A356 by squeeze casting to form Al/SiC composite.
The results showed that, the density of SiC green compact with tri-modal distribution was the highest. In sintered SiC, monomodal distribution caused abnormal grain growth and formed plate-like SiC, bi-modal and ti-modal distribution caused less abnormal grain growth of SiC. The density of sintered SiC with tri-modal particle size distribution was the highest.
For samples with tri-modal distribution, the small particles of SiC powder had great influence on densification. When the particle size was 2 μm, the densification was difficult, and the bulk density of the sintered body was not high and the thermal properties and mechanical properties were low. When the particle size of small particles decreased to 0.5 μm, the densification effect was obvious, the highest sintering density was 80.5% (d = 2.58 g/cm3), the flexural strength of the sintered body was 81.8 MPa, but the closed porosity was about 10%. In these samples, the aluminum alloy melt was difficult to penetrate into the SiC sintered body and to produce dense Al/SiC composite.
Finally, we chose powder with 1.2 μm particle size to prepare sintered SiC and Al/SiC composites. The results showed that it could be densified and the bulk density was 73.8% (d = 2.37 g/cm3). The flexural strength of Al/SiC composites was 356 MPa which was the best of all. Its TC and CTE were 133.9 W/mK and 7.6 ppm/K.
中文摘要 i
英文摘要 iii
目錄 v
表目錄 ix
圖目錄 xi

第一章 導論 1
1.1 研究背景與動機 1
1.2 研究目的與方法概述 2
第二章 文獻回顧 3
2.1 碳化矽簡介 3
2.2燒結的基本原理 4
2.2.1 燒結機構 4
2.2.2 緻密化 6
2.2.3 燒結助劑(B4C) 8
2.2.4 異常晶粒成長 9
2.3 鋁合金簡介 9
2.4 Al/SiC複合材料 11
2.4.1 金屬/陶瓷複合材料簡介 11
2.4.2 Al/SiC 複合材料 13
2.5 擠壓鑄造法原理與特色 14
2.6 金屬/陶瓷界面潤濕性 15
2.7 鋁及碳化矽間界面反應 17
2.8 熱傳導機制與理論計算 19
2.8.1 複材熱傳導率模型 20
2.8.2 複材熱膨脹係數模型 21
第三章 實驗步驟 23
3.1實驗設計 23
3.2鋁合金 23
3.3高SiC體積分率之胚體製備 24
3.3.1 SiC生胚密度分析 24
3.3.2 SiC燒結體密度與晶體結構分析 25
3.4 Al/SiC複合材料製備 26
3.5 性質量測 26
3.5.1 複材中各相體積分率及緻密度推算 26
3.5.2 阿基米得法測複合材料之密度及開孔隙率 27
3.5.3 水銀孔隙分析法 28
3.5.4 金相分析 29
3.5.5 熱傳導率測試 29
3.5.6 熱膨脹係數測試 30
3.5.7 三點抗折測試 31
第四章 結果與討論 32
4.1 SiC生胚分析 32
4.1.1 不同粒度組合之生胚密度分析 32
4.2不同粒度組合之SiC燒結體之特性 33
4.2.1 SiC燒結體密度分析 33
4.2.2 SiC燒結體之微觀組織 35
4.2.3 SiC燒結體之晶體結構分析 37
4.2.4 SiC機械性質分析 38
4.2.5 SiC燒結體水銀孔隙分析 38
4.3 SiC燒結助劑探討 39
4.3.1有無添加燒結助劑B4C對SiC燒結體密度之影響 39
4.3.2有無添加燒結助劑之SiC胚體之微觀組織比較 40
4.3.3 有無添加燒結助劑之SiC胚體之機械性質比較 41
4.4 燒結時間對SiC胚體特性之影響 41
4.4.1 燒結時間對SiC胚體密度之影響 41
4.5 CIP對生胚密度之影響 42
4.5.1 CIP前後之SiC生胚密度 42
4.5.2 CIP對SiC燒結體密度之影響 42
4.6 Al/SiC複合材料性質 43
4.6.1 不同粒度組合之Al/SiC複合材料之微觀組織 43
4.6.2 Al/SiC複合材料之抗折強度 44
4.6.3 Al/SiC複合材料熱性質分析 45
4.7 小顆粒SiC之最佳化效果分析 46
4.7.1 最小粒徑為0.5 μm SiC燒結體之微觀組織 46
4.7.2 不同小顆粒粒徑之SiC燒結胚體及其AlSiC複材性質比較 47
第五章 結論 49
參考文獻 52
[1] G. Acheson, “Production of artificial crystalline carbonaceous material,” U.S. Patent, pp. 492,767, 1893.
[2] G. Pensl, W.J. Choyke, “Electrical and optical characterization of SiC,” Physica B: Physics of Condensed Matter,vol.185, pp. 264-283, 1993.95.
[3] K. J. Nilsen, G. A. Cochran, and R. P. Roach, “Chemical reaction engineering aspects of a rotary reactor for carbothermal synthesis of SiC,” Journal of the European Ceramic Society 5, pp. 55-61, 1989.
[4] D. J. Lloyd, “Particulate reinforcement composites produced by molten metal mixing,” in “High Perforcement Composites for the 1990s, ”Minerals, Metals & Materials Society, pp. 33-45, 1991.
[5] 黃坤祥,「粉末冶金學」,中華民國粉金協會,2001。
[8] S. Prochazka, “Role of Boron and Carbon in the Sintering of Silicon Carbide,” Proc. of the conference on Ceramics for High Performance Applications, Hyannis, Mass., 1973, ed. By J. J. Burke, A. E Gorum, and R.M. Katz (Brook Hill Publ. Co., 1975).
[7] Z.H. Huang, D.C. Jia, Z.H. Yang and Y. Chou, “Activated sintering and sintering additives for silicon carbide ceramics,” Materials and Science & Technology, vol. 12, No.1, pp. 103-107, 2004.
[9] SIGEL LORENZ S, KL EEBE HANS-JOACHIM, “Core/Rim structure of liquid-phase-sintered silicon carbide,” J Am Ceram Soc,76(3), pp. 773-776, 1993.
[10] CAO JOE J,MOBERL YCHAN WARREN J, LU TGARD C,etal.In Situ Toughened Silicon Carbide withAl-B-C Additions[J].J Am Ceram Soc,1996,79(2):461-469.
[11] M. Hillert, “On the Theory of Normal and Abnormal Grain Growth” Acta. Metal., 13(3), pp. 227-238, 1965
[12] 潘復生、張丁非,鋁合金及應用,化學工業出版社,2006,p.17。
[13] H. Ralph, D. D. Pramod, T. H. Donald, G. Mollyand K. K. Kenneth, “Select values of the thermodynamic properties of binary alloys,?ASM, pp. 210-212, 1973.
[14] 樊翔雲、林招松、潘永寧,“凝固冷卻參數對擠壓狀態A356鋁合金顯微組織與機械性質的影響”,中華民國鑄造學會78年度論文發表會論文集,台北,第56-76頁,1999。
[15] 王良泉、李玉振,“材料手冊II.非鐵金屬材料”,中國材料科學學會,高雄,1983。
[16] T.B. Massalski, “binary alloy phase diagrams,?American Society for Metals, Metals Park, Ohio,vol.1, pp. 165, 1984.
[17] Z. Ahmad, “Recent trends in processing and degradation of aluminum alloys”, Creative Commons, 2011.
[18]J. M. Molina, J. Narciso, L. Weber, A. Mortensen and E. Louis, “Thermal conductivity of Al-SiC composites with monomodal and bimodal particle size distribution,”Materials Science And Engineering A, vol. 480, pp. 483-488, 2008.
[19] X. M. Zhu, J. K. Yu, and X. Y. Wang, “Microstructure and properties of Al/Si/SiC composites for electronic packaging,”Transactions of Nonferrous Metals Society of China, vol. 22, pp. 1686-1692, 2012.
[20] J. M. Lee, S. K. Lee, S. J. Hong, and Y. N. Kwon, “Microstructures and thermal properties of A356/SiCp composites fabricated by liquid pressing method,”Materials & Design, vol. 37, pp. 313-316, 2012.
[21] K. Chu et al., “Thermal conductivity of spark plasma sintering consolidated SiCp/Al composites containing pores: Numerical study and experimental validation,”Composites Part A: Applied Science and Manufacturing, vol. 41, pp. 161-167, 2010.
[22] K. Mizuuchiet al., “Processing of Al/SiC composites in continuous solid–liquid co-existent state by SPS and their thermal properties,” 97 Composites Part B: Engineering, vol. 43, pp. 2012-2019, 2012.
[23] 楊傑閔,“以竹碳顆粒製備碳化矽鋁矽合金複合材料之研究”,大同大學,材料工程碩士論文,2010。
[24] B. K. Hwu, S. J. Lin, and M. T. Jahn, “Effects of process parameters on the properties of squeeze-cast SiCp-6061 Al metal-matrix omposite,”Materials Science and Engineering: A, vol. 207, pp. 135-141, 1996.
[25] Q. Zhang, G. Chen, G. Wu, Z. Xiu, and B. Luan, “Property characteristics of a AlNp/Al composite fabricatedby squeeze casting technology,”Materials Letters, vol. 57, pp. 1453-1458, 2003.
[26] R. Couturier, D. Ducret, P. Merle,J. P. Disson, and P. Joubert, “Elaboration and characterization of a metal matrix composite: Al/AlN,”Journal of the European Ceramic Society, vol. 17, pp. 1861-1866, 1997.
[27] A. Kalemtas,G. Topates, O. Bahadir, P. K. Isci, and H. Mandal, “Thermal properties of pressureless melt infiltrated AlN–Si–Al composites,” Transactions of Nonferrous Metals Society of China, vol. 23, pp. 1304-1313, 2013.
[28]張強、陳國欽、姜龍濤、武高輝,“兩種粒徑顆粒混合增強鋁基複合材料的導熱性能”,複合材料學報,第22卷,第1期,2005。
[29]S. Ren, X. He, X. Qu, I. S. Humail, and Y. Li, “Effect of Mg and Si in the aluminum on the thermo-mechanical properties of pressureless infiltrated SiCp/Al composites,”Composites Science and Technology, vol. 67, pp. 2103-2113, 2007.
[30]S.Ren, X. He, X. Qu, and Y. Li, “Effect of controlled interfacial reaction on the microstructure and properties of the SiCp/Al composites prepared by pressureless infiltration,”Journal of Alloys and Compounds, vol. 455, pp. 424-431, 2008.
[31]趙龍志、何向明、趙明娟、曹小明、張勁松,“SiC泡沫陶瓷/SiCp/Al混雜複合材料的導熱性能”,材料工程,第1期,2008。
[32] J. M. Molina, M. Rhême, J. Carron, and L. Weber, “Thermal conductivity of aluminum matrix composites reinforced with mixtures of diamond and SiC particles,” Scripta Materialia, vol. 58, pp. 393-396, 2008.
[33]C.Xue, J. K. Yu, and X. M. Zhu,“Thermal properties of diamond/SiC/Al composites with high volume fractions,”Materials & Design, vol. 32, pp. 4225-4229, 2011.
[34]S. C. Okumus, S. Aslan, R.Karslioglu, D.Gultekin, H.Akbulut, “Thermal expansion and thermal conductivity behaviors of Al-Si/SiC/graphite hybrid metal matrix composites (MMCs),” Materials Science, vol. 18, No. 4. 2012.
[35]R. Prieto, J. M. Molina, J. Narciso and E. Louis, “Thermal conductivity of graphite flakes–SiC particles/metal composites,” Composites Part A: Applied Science and Manufacturing, vol. 42, pp. 1970-1977, 2011.
[36] 許財源,“SiCp/7075Al 複合材料粉末冶金製程及性質之研究”,國立清華大學,材料工程博士論文,1996。
[37] S. H. Hong, and K. H. Chung, “Effects of vacuum hot pressing parameters on the tensile properties and microstructure of SiC-2124 Al composites,” MaterialsScience andEngineeringA,vol.194, pp. 165–170, 1995.
[38] M. Zhao, L. Chen, and J. Bi, “Diffusionbonding of silicon carbide particulate reinforced 2024Al composites,” Journal ofMaterialsScienceandTechnology, vol. 16, pp. 471-474, 2000.
[39] W. Guo, J. Niu, J. Zhai, C. Wang, J. Yu, and G.. Zhou, “Study on non-interlayer liquid phase diffusion bonding for SiCp/ZL101 aluminum matrix composite,” Journal ofMaterialsScience and Technology, vol. 19, pp. 88-90, 2003.
[40] S. Ren, X. He, X. Qu, I. S. Humail, and Y. Li, “Effect of Si addition to Al–8Mg alloy on the microstructure and thermo-physical properties of SiCp/Al composites prepared by pressureless infiltration,” Materials Science andEngineeringB, vol. 138, pp. 263-270, 2007.
[41] J. Tian, E. Pinero, J. Narciso, and E.Louis, “Effects of temperature on pressure infiltration of liquid Al and Al–12wt.%Si alloy into packed SiC particles,” Scripta Materialia,vol. 53, pp.1483-1488, 2005.
[42] E. Candan, “Effect of alloying additions on the porosity of SiCp preforms infiltrated by aluminum,” MaterialsLetters, vol. 60, pp. 1204–1208, 2006.
[43] X. Y. Zhou, and Y. H. Tan,“Fabrication of ceramic composites by directed metal oxidation,” Journal of Wuhan University of Technology-Materials Science, vol. 19, pp. 48-50, 2004.
[44] M. S. Newkirk, H. D. Lesher, D. R. White, C. R. Kennedy, A. W. Urquhart, and T. D. Claar, “Formation of Lanxide Ceramic Matrix Composites:Matrix Formation by the Directed Oxidation of Molten Metals,” Ceramic Engineering and Science Proceedings, vol. 8, pp. 879-885, 1982.
[45]S. J. Park, M. K.Seo,“Interface science and composites,” Academic 99 Press, chapter 7, 2011.
[46] J. S. Reed, “Principle of ceramics processing,” John Wiley,pp. 23-27, 1995.
[47]A. C. Ferro and B. Derby,“Wetting behaviour in the Al-Si/SiC system: interface reactions and solubility effects,” Acta Metallurgica et Materialia, vol. 43, pp. 3061-3073, 1995.
[48] G. W. Han, D. Feng, M. Yin, and W. J. Ye, “Ceramic/aluminum co-continuous composite synthesized by reactionaccelerated melt infiltration,” Materials Science and Engineering: A, vol. 225, pp. 204-207, 1997.
[49] J. C. Viala, N. Pecillon, F. Bosselet, J. Bouix, “Phase equilibria at 1000℃in the Al-C-Si-Ti quaternary system an experimental approach,?MaterialsScience andEngineering: A, vol. 229, pp. 95-113, 1997.
[50] C. Hu, T. N. Baker, “A new aluminium silicon carbide formed in laser processing,” Journal ofMaterials andScience, vol. 32, pp. 5047-5052, 1997.
[51] J. C. Lee, J. P. Ahn, J. H. Shim, Z. Shi, and H. I. Lee, “Microstructure and interface studies of Al/SiCp composites produced by dynamic compaction,” Scripta Materialia, vol. 41, pp. 895-900, 1999.
[52] 洪連輝,劉立基,魏榮君編譯,「固態物理學導論」,高立圖書有限公司,台北,第145-147頁,1997年。
[53]R. E.Newnham, “Properties of Materials,” Oxford University Press, chapter18, 2005.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊