跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2024/12/14 08:13
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:洪晟崴
研究生(外文):Cheng-Wei Hung
論文名稱:鋰過量與氯摻雜對高工作電壓正極材料LiNi0.5Mn1.5O4 特性之影響
論文名稱(外文):The Effects and Characteristics of Lithium-excess and Chlorine-doping for LiNi0.5Mn1.5O4 High-Voltage Cathode Materials
指導教授:吳溪煌
指導教授(外文):She-huang Wu
口試委員:吳溪煌
口試委員(外文):She-huang Wu
口試日期:2017-07-31
學位類別:碩士
校院名稱:大同大學
系所名稱:材料工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:108
中文關鍵詞:LiNi0.5Mn1.5O4噴霧乾燥法陰離子取代鋰過量
外文關鍵詞:LiNi0.5Mn1.5O4anion substitutionspray-drying methodlithium-excess
相關次數:
  • 被引用被引用:0
  • 點閱點閱:226
  • 評分評分:
  • 下載下載:17
  • 收藏至我的研究室書目清單書目收藏:0
利用噴霧乾燥法製備氯摻雜及鋰過量之 LiNi0.5Mn1.5O4 (LNMO) 基正極材料,探討氯摻雜及鋰過量對 LNMO 基正極材料的表面形貌、結晶結構及電化學特性的影響。由 SEM 圖譜及 PSA 數據可得知,氯摻雜及鋰過量對合成之粉末的表面形貌及粒徑大小並無顯著的影響。而透過 X 光繞射圖譜可發現,適量的氯摻雜於 LNMO 中會增加材料的晶格常數,並可有效抑制岩鹽雜相的生成;另一方面,過量的鋰摻雜於 LNMO 之中亦會擴大材料的晶格,然而,鋰過量會增加岩鹽雜相的生成,阻礙鋰離子的擴散。由傅立葉轉換紅外光譜可得知,氯摻雜及鋰過量的 LNMO 在900oC 的燒結溫度下皆會形成主要結構為 Fd3 ̅m 的無序相;然而透過計算 586/624 波段能帶的比值經比較後可發現,LNMO 會隨著氯摻雜的增加提升有序程度;相反地,鋰過量則會降低過渡金屬於晶體中的有序程度,使材料偏向無序之 Fd3 ̅m 相。
由循環充放電測試結果及靜置溶出實驗發現,適量的氯摻雜於 LNMO 中可提升電容量及倍率性能,並可抑制過渡金屬離子溶出,降低電解液被加速氧化分解的機會,使其在高溫循環下能有較佳的庫倫效率及循環壽命。然而,過量的鋰摻雜於 LNMO 中則會降低電化學性能表現,其較差的電化學性能表現與生成較多雜相阻礙鋰離子擴散有關。
The chlorine-doping and lithium-excess of LiNi0.5Mn1.5O4 (LNMO) - based cathode materials were prepared by spray-drying method, and their effects on the surface morphology, crystal structure, and electrochemical properties were investigated. From the SEM and PSA data, it was found that the surface morphology and particle size of the synthesized powders were not affected by the doping of chlorine and the excess of lithium ions. It was observed by XRD patterns that the chlorine ion doped in LNMO increase the lattice parameter of the material and can effectively inhibit the formation of rock-salt phase. Similarly, the excess of lithium doped into LNMO will also expand the lattice of the material; however, it also increased the formation of rock-salt phase, which hinders the diffusion of lithium ions. From the FT-IR spectroscopy, it can be seen that both of chlorine-doped and lithium-excess LNMO has mainly disordered phase with the space group of Fd3 ̅m at the 900oC sintering temperature. However, by comparing the ratio of the 586/624 bands, it can be found that the degree of ordering increase with the amount of chlorine doping. On the contrary, the excess of lithium would reduce the ordering of the transition metals in the crystal.
Moreover, it was found that the appropriate amount of chlorine doped in LNMO can improve the capacity and rate capability. It was also proved by dissolution test that chlorine doping can inhibit the dissolution of transition metal ions, which can reduce the chance of electrolyte oxidative decomposition and also improve the coulombic efficiency and retain better cycle life at high temperature. However, the excess of lithium doping in LNMO result in worse electrochemical performance, which was due to the formation of more inactive secondary phase and blocked the diffusion path of lithium ions.
摘要 V
Abstract VII
目錄 IX
表目錄 XII
圖目錄 XIII
第一章 研究背景與動機 1
第二章 文獻探討 5
2-1 LiNi0.5Mn1.5O4的晶體化學 5
2-2 LiNi0.5Mn1.5O4 的老化機制 12
2-3 提升LiNi0.5Mn1.5O4 性能的方法 17
2-3-1 電解液修飾 17
2-3-2 表面塗層 27
2-3-3 離子摻雜 30
第三章 研究方法 38
3-1 LiNi0.5Mn1.5O4 粉末製備 38
3-2 粉末特性分析 40
3-2-1 化學劑量分析 (ICP-OES) 40
3-2-2 粒徑分析 (PSA) 40
3-3-3 表面形貌分析(SEM) 41
3-3 結晶結構分析 42
3-3-1 X光繞射分析 (XRD) 42
3-3-2傅立葉轉換紅外光譜分析 (FT-IR) 42
3-4電池製備與測試 43
3-5溶出實驗 45
第四章 結果與討論 46
4-1氯摻雜對 LiNi0.5Mn1.5O4 特性之影響 46
4-1-1氯摻雜 LiNi0.5Mn1.5O4-xCly 之粉末特性分析 46
4-1-2氯摻雜 LiNi0.5Mn1.5O4-xCly 之結晶結構分析 55
4-1-3氯摻雜 LiNi0.5Mn1.5O4-xCly 之電化學特性 60
4-1-4溶出實驗 68
4-2氯摻雜配合鋰過量對 LiNi0.5Mn1.5O4 特性之影響 70
4-2-1氯摻雜配合鋰過量 Li1+zNi0.5Mn1.5O4-xCly 之粉末特性分析 70
4-2-2氯摻雜配合鋰過量Li1+zNi0.5Mn1.5O4-xCly之結晶結構分析 79
4-2-3氯摻雜配合鋰過量 Li1+zNi0.5Mn1.5O4-xCly 之電化學特性 83
第五章 結論 85
第六章 附錄 87
文獻探討 95
[1] S. Vazquez, S. M. Lukic, E. Galvan, L. G. Franquelo, J. M. Carrasco, Energy Storage Systems for Transport and Grid Applications, IEEE Transactions on Industrial Electronics, 57 (2010) 3881 - 3895.
[2] M. Beaudin, H. Zareipour, A. Schellenberglabe, W. Rosehart, Energy storage for mitigating the variability of renewable electricity sources: An updated review, Energy for Sustainable Development, 14 (2010) 302-314.
[3] F. Díaz-González, A. Sumper, O. Gomis-Bellmunt, R. Villafáfila-Robles, A review of energy storage technologies for wind power applications, Renewable and Sustainable Energy Reviews, 16 (2012) 2154-2171.
[4] F. Rahman, S. Rehman, M.A. Abdul-Majeed, Overview of energy storage systems for storing electricity from renewable energy sources in Saudi Arabia, Renewable and Sustainable Energy Reviews, 16 (2012) 274-283.
[5] M.T. Arif, A.M.T. Oo, A.B.M.S. Ali, Estimation of Energy Storage and Its Feasibility Analysis, (2013).
[6] M.M. Thackeray, S.-H. Kang, C.S. Johnson, J.T. Vaughey, R. Benedek, S.A. Hackney, Li2MnO3-stabilized LiMO2 (M = Mn, Ni, Co) electrodes for lithium-ion batteries, Journal of Materials Chemistry, 17 (2007) 3112.
[7] G.S. Kumara, H.
Rahner, D., Synthesis and electrochemical characterization of 4 V LiRXMn2-XO4 spinels for rechargeable lithium batteries, Materials Chemistry and Physics, 70 (2001) 117-123.
[8] G.T.-K. Fey, C.-Z. Lu, T.P. Kumar, Solid-state synthesis and electrochemical characterization of LiMyCr0.5−yMn1.5O4 (M = Fe or Al; 0.0 < y < 0.4) spinels, Materials Chemistry and Physics, 80 (2003) 309-318.
[9] I. Taniguchi, Powder properties of partially substituted LiMxMn2−xO4 (M=Al, Cr, Fe and Co) synthesized by ultrasonic spray pyrolysis, Materials Chemistry and Physics, 92 (2005) 172-179.
[10] Q. Zhong, A. Bonakclarpour, M. Zhang, Y. Gao, J.R. Dahn, Synthesis and Electrochemistry of LiNixMn2-xO4, J. Electrochem. Soc., 144 (1997).
[11] H.-s. Fang, Z.-x. Wang, X.-h. Li, H.-j. Guo, W.-j. Peng, Exploration of high capacity LiNi0.5Mn1.5O4 synthesized by solid-state reaction, Journal of Power Sources, 153 (2006) 174-176.
[12] H. Fang, L. Li, G. Li, A low-temperature reaction route to high rate and high capacity LiNi0.5Mn1.5O4, Journal of Power Sources, 167 (2007) 223-227.
[13] Y. Fan, J. Wang, X. Ye, J. Zhang, Physical properties and electrochemical performance of LiNi0.5Mn1.5O4 cathode material prepared by a coprecipitation method, Materials Chemistry and Physics, 103 (2007) 19-23.
[14] H. Liu, J. Wang, X. Zhang, D. Zhou, X. Qi, B. Qiu, J. Fang, R. Kloepsch, G. Schumacher, Z. Liu, J. Li, Morphological Evolution of High-Voltage Spinel LiNi0.5Mn1.5O4 Cathode Materials for Lithium-Ion Batteries: The Critical Effects of Surface Orientations and Particle Size, ACS Appl. Mater. Interfaces, 8 (7) (2016) 4661-4675.
[15] S.-W. Oh, S.-H. Park, J.-H. Kim, Y.C. Bae, Y.-K. Sun, Improvement of electrochemical properties of LiNi0.5Mn1.5O4 spinel material by fluorine substitution, Journal of Power Sources, 157 (2006) 464-470.
[16] X.X. Xu, J. Yang, Y.Q. Wang, Y.N. NuLi, J.L. Wang, LiNi0.5Mn1.5O3.975F0.05 as novel 5V cathode material, Journal of Power Sources, 174 (2007) 1113-1116.
[17] G. Du, Y. NuLi, J. Yang, J. Wang, Fluorine-doped LiNi0.5Mn1.5O4 for 5V cathode materials of lithium-ion battery, Materials Research Bulletin, 43 (2008) 3607-3613.
[18] D.-W. Han, W.-H. Ryu, W.-K. Kim, J.-Y. Eom, H.-S. Kwon, Effects of Li and Cl Codoping on the Electrochemical Performance and Structural Stability of LiMn2O4Cathode Materials for Hybrid Electric Vehicle Applications, The Journal of Physical Chemistry C, 117 (2013) 4913-4919.
[19] M. Kunduraci, G.G. Amatucci, Synthesis and Characterization of Nanostructured 4.7V LixMn1.5Ni 0.5O4 Spinels for High-Power Lithium-Ion Batteries, Journal of The Electrochemical Society, 153 (2006) A1345.
[20] N. Amdouni, K. Zaghib, F. Gendron, A. Mauger, C.M. Julien, Magnetic properties of LiNi0.5Mn1.5O4 spinels prepared by wet chemical methods, Journal of Magnetism and Magnetic Materials, 309 (2007) 100-105.
[21] A. Manthiram, K. Chemelewski, E.-S. Lee, A perspective on the high-voltage LiMn1.5Ni0.5O4 spinel cathode for lithium-ion batteries, Energy & Environmental Science, 7 (2014) 1339.
[22] M. Kunduraci, G.G. Amatucci, Effect of oxygen non-stoichiometry and temperature on cation ordering in LiMn2−xNixO4 (0.50≥x≥0.36) spinels, Journal of Power Sources, 165 (2007) 359-367.
[23] J. Song, D.W. Shin, Y. Lu, C.D. Amos, A. Manthiram, J.B. Goodenough, Role of Oxygen Vacancies on the Performance of Li[Ni0.5–xMn1.5+x]O4(x= 0, 0.05, and 0.08) Spinel Cathodes for Lithium-Ion Batteries, Chemistry of Materials, 24 (2012) 3101-3109.
[24] J. Cabana, M. Casas-Cabanas, F.O. Omenya, N.A. Chernova, D. Zeng, M.S. Whittingham, C.P. Grey, Composition-structure relationships in the Li-ion battery electrode material LiNi0.5Mn1.5O4, Chemistry of materials : a publication of the American Chemical Society, 24 (2012) 2952-2964.
[25] T.-F. Yi, Y. Xie, M.-F. Ye, L.-J. Jiang, R.-S. Zhu, Y.-R. Zhu, Recent developments in the doping of LiNi0.5Mn1.5O4 cathode material for 5 V lithium-ion batteries, Ionics, 17 (2011) 383-389.
[26] D.W. Shin, C.A. Bridges, A. Huq, M.P. Paranthaman, A. Manthiram, Role of Cation Ordering and Surface Segregation in High-Voltage Spinel LiMn1.5Ni0.5–xMxO4(M = Cr, Fe, and Ga) Cathodes for Lithium-Ion Batteries, Chemistry of Materials, 24 (2012) 3720-3731.
[27] Z. Wang, Q. Su, H. Deng, Y. Fu, Oxygen Deficiency and Defect Chemistry in Delithiated Spinel LiNi0.5Mn1.5O4 Cathodes for Li-Ion Batteries, ChemElectroChem, 2 (2015) 1182-1186.
[28] G.Q. Liu, L. Wen, X. Wang, B.Y. Ma, Effect of the impurity LixNi1−xO on the electrochemical properties of 5V cathode material LiNi0.5Mn1.5O4, Journal of Alloys and Compounds, 509 (2011) 9377-9381.
[29] J.-H. Kim, S.-T. Myung, C.S. Yoon, S.G. Kang, Y.-K. Sun, Comparative Study of LiNi0.5Mn1.5O4-δ and LiNi0.5Mn1.5O4 Cathodes Having Two Crystallographic Structures: Fd-3m and P4332, Chem. Mater., 16 (2004) 906-914.
[30] G. Liu, K.-S. Park, J. Song, J.B. Goodenough, Influence of thermal history on the electrochemical properties of Li[Ni0.5Mn1.5]O4, Journal of Power Sources, 243 (2013) 260-266.
[31] W.W. Wu, H.F. Xiang, G.B. Zhong, W. Su, W. Tang, Y. Zhang, Y. Yu, C.H. Chen, Ordered LiNi0.5Mn1.5O4 hollow microspheres as high-rate 5V cathode materials for lithium ion batteries, Electrochimica Acta, 119 (2014) 206-213.
[32] Y. Idemoto, H. Narai, N. Koura, Crystal structure and cathode performance dependence on oxygen content of LiMn1.5Ni0.5O4 as a cathode material for secondary lithium batteries, Journal of Power Sources, 119-121 (2003) 125-129.
[33] D. Li, A. Ito, K. Kobayakawa, H. Noguchi, Y. Sato, Electrochemical characteristics of LiNi0.5Mn1.5O4 prepared by spray drying and post-annealing, Electrochimica Acta, 52 (2007) 1919-1924.
[34] J. Zheng, J. Xiao, X. Yu, L. Kovarik, M. Gu, F. Omenya, X. Chen, X.Q. Yang, J. Liu, G.L. Graff, M.S. Whittingham, J.G. Zhang, Enhanced Li+ ion transport in LiNi0.5Mn1.5O4 through control of site disorder, Physical chemistry chemical physics : PCCP, 14 (2012) 13515-13521.
[35] K. Ariyoshi, Y. Iwakoshi, N. Nakayama, T. Ohzuku, Topotactic Two-Phase Reactions of Li[Ni1/2Mn3/2]O4 (P4332) in Nonaqueous Lithium Cells, Journal of The Electrochemical Society, 151 (2004) A296.
[36] M. Kunduraci, J.F. Al-Sharab, G.G. Amatucci, High-Power Nanostructured LiMn2-xNixO4 High-Voltage Lithium-Ion Battery Electrode Materials Electrochemical Impact of Electronic Conductivity and Morphology, Chem. Mater., 18 (2006) 3585-3592.
[37] D. Pasero, N. Reeves, V. Pralong, A.R. West, Oxygen Nonstoichiometry and Phase Transitions in LiMn1.5Ni0.5O4−δ, Journal of The Electrochemical Society, 155 (2008) A282.
[38] M. Kunduraci, G.G. Amatucci, The effect of particle size and morphology on the rate capability of 4.7V LiMn1.5+δNi0.5−δO4 spinel lithium-ion battery cathodes, Electrochimica Acta, 53 (2008) 4193-4199.
[39] X. Ma, B. Kang, G. Ceder, High Rate Micron-Sized Ordered LiNi0.5Mn1.5O4, Journal of The Electrochemical Society, 157 (2010) A925.
[40] T.A. Arunkumar, A. Manthiram, Influence of chromium doping on the electrochemical performance of the 5V spinel cathode LiMn1.5Ni0.5O4, Electrochimica Acta, 50 (2005) 5568-5572.
[41] S.H. Oh, S.H. Jeon, W.I. Cho, C.S. Kim, B.W. Cho, Synthesis and characterization of the metal-doped high-voltage spinel LiNi0.5Mn1.5O4 by mechanochemical process, Journal of Alloys and Compounds, 452 (2008) 389-396.
[42] P. Verma, P. Maire, P. Novák, A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries, Electrochimica Acta, 55 (2010) 6332-6341.
[43] J. Ma, P. Hu, G. Cui, L. Chen, Surface and Interface Issues in Spinel LiNi0.5Mn1.5O4: Insights into a Potential Cathode Material for High Energy Density Lithium Ion Batteries, Chemistry of Materials, 28 (2016) 3578-3606.
[44] D. Aurbach, Review of selected electrode–solution interactions which determine the performance of Li and Li ion batteries, Journal of Power Sources 89 (2000) 206–218.
[45] E. Wang, D. Ofer, W. Bowden, N. Iltchev, R. Moses, K. Brandt, Stability of Lithium Ion Spinel Cells III. Improved Life of Charged Cells, Journal of The Electrochemical Society, 147 (11) (2000) 4023-4028.
[46] L. Yang, M. Takahashi, B. Wang, A study on capacity fading of lithium-ion battery with manganese spinel positive electrode during cycling, Electrochimica Acta, 51 (2006) 3228-3234.
[47] S. Brutti, G. Greco, P. Reale, S. Panero, Insights about the irreversible capacity of LiNi0.5Mn1.5O4 cathode materials in lithium batteries, Electrochimica Acta, 106 (2013) 483-493.
[48] C.L. Campion, W. Li, B.L. Lucht, Thermal Decomposition of LiPF6-Based Electrolytes for Lithium-Ion Batteries, Journal of The Electrochemical Society, 152 (2005) A2327.
[49] D. Aurbach, The Correlation Between the Surface Chemistry and the Performance of Li-Carbon Intercalation Anodes for Rechargeable ‘Rocking-Chair’ Type Batteries, Journal of The Electrochemical Society, 141 (1994) 603.
[50] D. Aurbach, B. Markovsky, A. Shechter, Y. Ein-Eli, H. Cohen, A Comparative Study of Synthetic Graphite and Li Electrodes in Electrolyte Solutions Based on Ethylen Carbonate-Dimethyl Carbonate Mixtures, J. Electrochem. Soc., 143 (1996) 3809-3820.
[51] G.G. Amatucci, A. Blyrc, C. Sigalac, P. Alfonseb, J.M. Tarasconc, Surface treatments of Li1+xMn2-xO4 spinels for improved elevated temperature performance, Solid State Ionics, 104 (1997) 13-25.
[52] T.-F. Yi, X.-G. Hu, Preparation and characterization of sub-micro LiNi0.5−xMn1.5+xO4 for 5V cathode materials synthesized by an ultrasonic-assisted co-precipitation method, Journal of Power Sources, 167 (2007) 185-191.
[53] N.P.W. Pieczonka, Z. Liu, P. Lu, K.L. Olson, J. Moote, B.R. Powell, J.-H. Kim, Understanding Transition-Metal Dissolution Behavior in LiNi0.5Mn1.5O4 High-Voltage Spinel for Lithium Ion Batteries, The Journal of Physical Chemistry C, 117 (2013) 15947-15957.
[54] A. Lewandowski, A. Świderska-Mocek, Ionic liquids as electrolytes for Li-ion batteries—An overview of electrochemical studies, Journal of Power Sources, 194 (2009) 601-609.
[55] H. Matsumoto, H. Sakaebe, K. Tatsumi, Preparation of room temperature ionic liquids based on aliphatic onium cations and asymmetric amide anions and their electrochemical properties as a lithium battery electrolyte, Journal of Power Sources, 146 (2005) 45-50.
[56] H. Sakaebe, H. Matsumoto, N-Methyl-N-propylpiperidinium bis(trifluoromethanesulfonyl)imide (PP13–TFSI) – novel electrolyte base for Li battery, Electrochemistry Communications, 5 (2003) 594-598.
[57] M. Galiński, A. Lewandowski, I. Stępniak, Ionic liquids as electrolytes, Electrochimica Acta, 51 (2006) 5567-5580.
[58] V. Borgel, E. Markevich, D. Aurbach, G. Semrau, M. Schmidt, On the application of ionic liquids for rechargeable Li batteries: High voltage systems, Journal of Power Sources, 189 (2009) 331-336.
[59] J. Mun, T. Yim, K. Park, J.H. Ryu, Y.G. Kim, S.M. Oh, Surface Film Formation on LiNi0.5Mn1.5O4 Electrode in an Ionic Liquid Solvent at Elevated Temperature, Journal of The Electrochemical Society, 158 (2011) A453.
[60] A. Guerfi, M. Dontigny, P. Charest, M. Petitclerc, M. Lagacé, A. Vijh, K. Zaghib, Improved electrolytes for Li-ion batteries: Mixtures of ionic liquid and organic electrolyte with enhanced safety and electrochemical performance, Journal of Power Sources, 195 (2010) 845-852.
[61] J. Xiang, F. Wu, R. Chen, L. Li, H. Yu, High voltage and safe electrolytes based on ionic liquid and sulfone for lithium-ion batteries, Journal of Power Sources, 233 (2013) 115-120.
[62] R.S. Kühnel, N. Böckenfeld, S. Passerini, M. Winter, A. Balducci, Mixtures of ionic liquid and organic carbonate as electrolyte with improved safety and performance for rechargeable lithium batteries, Electrochimica Acta, 56 (2011) 4092-4099.
[63] H.F. Xiang, B. Yin, H. Wang, H.W. Lin, X.W. Ge, S. Xie, C.H. Chen, Improving electrochemical properties of room temperature ionic liquid (RTIL) based electrolyte for Li-ion batteries, Electrochimica Acta, 55 (2010) 5204-5209.
[64] J. Jin, H.H. Li, J.P. Wei, X.K. Bian, Z. Zhou, J. Yan, Li/LiFePO4 batteries with room temperature ionic liquid as electrolyte, Electrochemistry Communications, 11 (2009) 1500-1503.
[65] H. Sano, H. Sakaebe, H. Matsumoto, Effect of Organic Additives on Electrochemical Properties of Li Anode in Room Temperature Ionic Liquid, Journal of The Electrochemical Society, 158 (2011) A316.
[66] K. Xu, C.A. Angell, High Anodic Stability of a New Electrolyte Solvent: Unsymmetric Noncyclic Aliphatic Sultone, J. Electrochem. Soc., 145 (1998) L70-L72.
[67] K. Xu, C.A. Angell, Sulfone-Based Electrolytes for Lithium-Ion Batteries, Journal of The Electrochemical Society, 149 (2002) A920.
[68] N. Shao, X.G. Sun, S. Dai, D.E. Jiang, Electrochemical windows of sulfone-based electrolytes for high-voltage Li-ion batteries, The journal of physical chemistry. B, 115 (2011) 12120-12125.
[69] N. Shao, X.G. Sun, S. Dai, D.E. Jiang, Oxidation potentials of functionalized sulfone solvents for high-voltage Li-ion batteries: a computational study, The journal of physical chemistry. B, 116 (2012) 3235-3238.
[70] X.-G. Sun, C.A. Angell, New sulfone electrolytes for rechargeable lithium batteries, Electrochemistry Communications, 7 (2005) 261-266.
[71] Y. Watanabe, S.-i. Kinoshita, S. Wada, K. Hoshino, H. Morimoto, S.-i. Tobishima, Electrochemical properties and lithium ion solvation behavior of sulfone–ester mixed electrolytes for high-voltage rechargeable lithium cells, Journal of Power Sources, 179 (2008) 770-779.
[72] S. Li, W. Zhao, X. Cui, Y. Zhao, B. Li, H. Zhang, Y. Li, G. Li, X. Ye, Y. Luo, An improved method for synthesis of lithium difluoro(oxalato)borate and effects of sulfolane on the electrochemical performances of lithium-ion batteries, Electrochimica Acta, 91 (2013) 282-292.
[73] F. Wu, J. Xiang, L. Li, J. Chen, G. Tan, R. Chen, Study of the electrochemical characteristics of sulfonyl isocyanate/sulfone binary electrolytes for use in lithium-ion batteries, Journal of Power Sources, 202 (2012) 322-331.
[74] F. Wu, Q. Zhu, L. Li, R. Chen, S. Chen, A diisocyanate/sulfone binary electrolyte based on lithium difluoro(oxalate)borate for lithium batteries, Journal of Materials Chemistry A, 1 (2013) 3659.
[75] A. Abouimrane, I. Belharouak, K. Amine, Sulfone-based electrolytes for high-voltage Li-ion batteries, Electrochemistry Communications, 11 (2009) 1073-1076.
[76] L. Mao, B. Li, X. Cui, Y. Zhao, X. Xu, X. Shi, S. Li, F. Li, Electrochemical performance of electrolytes based upon lithium bis(oxalate)borate and sulfolane/alkyl sulfite mixtures for high temperature lithium-ion batteries, Electrochimica Acta, 79 (2012) 197-201.
[77] S.-Y. Lee, K. Ueno, C.A. Angell, Lithium Salt Solutions in Mixed Sulfone and Sulfone-Carbonate Solvents: A Walden Plot Analysis of the Maximally Conductive Compositions, The Journal of Physical Chemistry C, 116 (2012) 23915-23920.
[78] L. Xing, J. Vatamanu, O. Borodin, G.D. Smith, D. Bedrov, Electrode/Electrolyte Interface in Sulfolane-Based Electrolytes for Li Ion Batteries: A Molecular Dynamics Simulation Study, The Journal of Physical Chemistry C, 116 (2012) 23871-23881.
[79] X. Sun, C.A. Angell, Doped sulfone electrolytes for high voltage Li-ion cell applications, Electrochemistry Communications, 11 (2009) 1418-1421.
[80] M. Ue, K. Ida, S. Mori, Electrochemical Properties of Organic Liquid Electrolytes Based on Quaternary Onium Salts for Electrical Double-Layer Capacitors, J. Electrochem. Soc., 141 (1994) 2989-2996.
[81] M. Ue, M. Takeda, M. Takehara, S. Mori, Electrochemical Properties of Quaternary Ammonium Salts for Electrochemical Capacitors, J. Electrochem. Soc., 144 (1997) 2684-2688.
[82] Y. Abu-Lebdeh, I. Davidson, High-Voltage Electrolytes Based on Adiponitrile for Li-Ion Batteries, Journal of The Electrochemical Society, 156 (2009) A60.
[83] Y. Abu-Lebdeh, I. Davidson, New electrolytes based on glutaronitrile for high energy/power Li-ion batteries, Journal of Power Sources, 189 (2009) 576-579.
[84] M. Nagahama, N. Hasegawa, S. Okada, High Voltage Performances of Li2NiPO4F Cathode with Dinitrile-Based Electrolytes, Journal of The Electrochemical Society, 157 (2010) A748.
[85] B. Oh, D. Ofer, J. Rempel, S. Sriramulu, B. Barnett, 218th ECS Meeting Abstracts MA2010-02, (2010) 592.
[86] R. McMillan, H. Slegr, Z.X. Shu, W. Wang, Fluoroethylene carbonate electrolyte and its use in lithium ion batteries with graphite anodes, 81–82 (1999) 20–26.
[87] A.J. Gmitter, I. Plitz, G.G. Amatucci, High Concentration Dinitrile, 3-Alkoxypropionitrile, and Linear Carbonate Electrolytes Enabled by Vinylene and Monofluoroethylene Carbonate Additives, Journal of The Electrochemical Society, 159 (2012) A370.
[88] S. Amaresh, G.J. Kim, K. Karthikeyan, V. Aravindan, K.Y. Chung, B.W. Cho, Y.S. Lee, Synthesis and enhanced electrochemical performance of Li2CoPO4F cathodes under high current cycling, Physical chemistry chemical physics : PCCP, 14 (2012) 11904-11909.
[89] M. Bolloli, J. Kalhoff, F. Alloin, D. Bresser, M.L. Phung Le, B. Langlois, S. Passerini, J.-Y. Sanchez, Fluorinated Carbamates as Suitable Solvents for LiTFSI-Based Lithium-Ion Electrolytes: Physicochemical Properties and Electrochemical Characterization, The Journal of Physical Chemistry C, 119 (2015) 22404-22414.
[90] R. Sharabi, E. Markevich, K. Fridman, G. Gershinsky, G. Salitra, D. Aurbach, G. Semrau, M.A. Schmidt, N. Schall, C. Bruenig, Electrolyte solution for the improved cycling performance of LiCoPO4/C composite cathodes, Electrochemistry Communications, 28 (2013) 20-23.
[91] G.G. Amatucci, J.M. Tarascon, L.C. Klein, CoO2, The End Member of the LixCoO2 Solid Solution, J. Electrochem. Soc., 143 (1993) 1114-1123.
[92] T. Kitagawa, K. Azuma, M. Koh, A. Yamauchi, H.S. Kagawa, M. , H. Miyawaki, A. Nakazono, H. Arima, M. Yamagata, M. Ishikawa, Application of Fluorine-containing Solvents to LiCoO2 Cathode in High Voltage Operation, Electrochemistry, 78 (2010) 345-348.
[93] M. Hu, X. Pang, Z. Zhou, Recent progress in high-voltage lithium ion batteries, Journal of Power Sources, 237 (2013) 229-242.
[94] L. Yang, B. Ravdel, B.L. Lucht, Electrolyte Reactions with the Surface of High Voltage LiNi0.5Mn1.5O4 Cathodes for Lithium-Ion Batteries, Electrochemical and Solid-State Letters, 13 (2010) A95.
[95] V. Aravindan, Y.L. Cheah, W.C. Ling, S. Madhavi, Effect of LiBOB Additive on the Electrochemical Performance of LiCoPO4, Journal of the Electrochemical Society, 159 (2012) A1435-A1439.
[96] W. Xu, A.J. Shusterman, R. Marzke, C.A. Angell, LiMOB, an Unsymmetrical Nonaromatic Orthoborate Salt for Nonaqueous Solution Electrochemical Applications, Journal of The Electrochemical Society, 151 (2004) A632.
[97] S.E. Sloop, J.K. Pugh, S. Wang, J.B. Kerr, K. Kinoshita, Chemical Reactivity of PF5 and LiPF6 in Ethylene Carbonate/Dimethyl Carbonate Solutions, Electrochemical and Solid-State Letters, 4 (2001) A42.
[98] T. Kawamura, A. Kimura, M. Egashira, S. Okada, J.I. Yamaki, Thermal stability of alkyl carbonate mixed-solventelectrolytes for lithium ion cells, Journal of Power Sources, 104 (2002) 260-264.
[99] A. Xiao, L. Yang, B.L. Lucht, Thermal Reactions of LiPF6 with Added LiBOB, Electrochemical and Solid-State Letters, 10 (2007) A241.
[100] N.P.W. Pieczonka, L. Yang, M.P. Balogh, B.R. Powell, K. Chemelewski, A. Manthiram, S.A. Krachkovskiy, G.R. Goward, M. Liu, J.-H. Kim, Impact of Lithium Bis(oxalate)borate Electrolyte Additive on the Performance of High-Voltage Spinel/Graphite Li-Ion Batteries, The Journal of Physical Chemistry C, 117 (2013) 22603-22612.
[101] L. Yang, T. Markmaitree, B.L. Lucht, Inorganic additives for passivation of high voltage cathode materials, Journal of Power Sources, 196 (2011) 2251-2254.
[102] L. Yang, B.L. Lucht, Inhibition of Electrolyte Oxidation in Lithium Ion Batteries with Electrolyte Additives, Electrochemical and Solid-State Letters, 12 (2009) A229.
[103] J.-N. Lee, G.-B. Han, M.-H. Ryou, D.J. Lee, S. Jongchan, J.W. Choi, J.-K. Park, N-(triphenylphosphoranylidene) aniline as a novel electrolyte additive for high voltage LiCoO2 operations in lithium ion batteries, Electrochimica Acta, 56 (2011) 5195-5200.
[104] A. von Cresce, K. Xu, Electrolyte Additive in Support of 5 V Li Ion Chemistry, Journal of The Electrochemical Society, 158 (2011) A337.
[105] Z. Wang, N. Dupré, L. Lajaunie, P. Moreau, J.-F. Martin, L. Boutafa, S. Patoux, D. Guyomard, Effect of glutaric anhydride additive on the LiNi0.4Mn1.6O4 electrode/electrolyte interface evolution: A MAS NMR and TEM/EELS study, Journal of Power Sources, 215 (2012) 170-178.
[106] M. Xu, Y. Liu, B. Li, W. Li, X. Li, S. Hu, Tris (pentafluorophenyl) phosphine: An electrolyte additive for high voltage Li-ion batteries, Electrochemistry Communications, 18 (2012) 123-126.
[107] X. Zuo, C. Fan, X. Xiao, J. Liu, J. Nan, High-voltage performance of LiCoO2/graphite batteries with methylene methanedisulfonate as electrolyte additive, Journal of Power Sources, 219 (2012) 94-99.
[108] T. Kubota, M. Ihara, S. Katayama, H. Nakai, J. Ichikawa, 1,1-Difluoro-1-alkenes as new electrolyte additives for lithium ion batteries, Journal of Power Sources, 207 (2012) 141-149.
[109] V. Tarnopolskiy, J. Kalhoff, M. Nádherná, D. Bresser, L. Picard, F. Fabre, M. Rey, S. Passerini, Beneficial influence of succinic anhydride as electrolyte additive on the self-discharge of 5 V LiNi0.4Mn1.6O4 cathodes, Journal of Power Sources, 236 (2013) 39-46.
[110] H. Lee, S. Choi, S. Choi, H.-J. Kim, Y. Choi, S. Yoon, J.-J. Cho, SEI layer-forming additives for LiNi0.5Mn1.5O4/graphite 5V Li-ion batteries, Electrochemistry Communications, 9 (2007) 801-806.
[111] T. Horino, H. Tamada, A. Kishimoto, J. Kaneko, Y. Iriyama, Y. Tanaka, T. Fujinami, High Voltage Stability of Interfacial Reaction at the LiMn2O4 Thin-Film Electrodes/Liquid Electrolytes with Boroxine Compounds, Journal of The Electrochemical Society, 157 (2010) A677.
[112] H.-C. Wu, C.-Y. Su, D.-T. Shieh, M.-H. Yang, N.-L. Wu, Enhanced High-Temperature Cycle Life of LiFePO4-Based Li-Ion Batteries by Vinylene Carbonate as Electrolyte Additive, Electrochemical and Solid-State Letters, 9 (2006) A537.
[113] L. El Ouatani, R. Dedryvère, C. Siret, P. Biensan, S. Reynaud, P. Iratçabal, D. Gonbeau, The Effect of Vinylene Carbonate Additive on Surface Film Formation on Both Electrodes in Li-Ion Batteries, Journal of The Electrochemical Society, 156 (2009) A103.
[114] J.-Y. Eom, I.-H. Jung, J.-H. Lee, Effects of vinylene carbonate on high temperature storage of high voltage Li-ion batteries, Journal of Power Sources, 196 (2011) 9810-9814.
[115] K. Abe, Y. Ushigoe, H. Yoshitake, M. Yoshio, Functional electrolytes: Novel type additives for cathode materials, providing high cycleability performance, Journal of Power Sources, 153 (2006) 328-335.
[116] T. Takeuchi, T. Kyuna, H. Morimoto, S.-i. Tobishima, Influence of surface modification of LiCoO2 by organic compounds on electrochemical and thermal properties of Li/LiCoO2 rechargeable cells, Journal of Power Sources, 196 (2011) 2790-2801.
[117] M. Hu, J. Wei, L. Xing, Z. Zhou, Improving electrochemical performance of Li3V2(PO4)3 in a thiophene-containing electrolyte, Journal of Power Sources, 222 (2013) 373-378.
[118] L.Y. Xing, M. Hu, Q. Tang, J.P. Wei, X. Qin, Z. Zhou, Improved cyclic performances of LiCoPO4/C cathode materials for high-cell-potential lithium-ion batteries with thiophene as an electrolyte additive, Electrochimica Acta, 59 (2012) 172-178.
[119] K.-S. Lee, Y.-K. Sun, J. Noh, K.S. Song, D.-W. Kim, Improvement of high voltage cycling performance and thermal stability of lithium–ion cells by use of a thiophene additive, Electrochemistry Communications, 11 (2009) 1900-1903.
[120] Y.-S. Lee, K.-S. Lee, Y.-K. Sun, Y.M. Lee, D.-W. Kim, Effect of an organic additive on the cycling performance and thermal stability of lithium-ion cells assembled with carbon anode and LiNi1/3Co1/3Mn1/3O2 cathode, Journal of Power Sources, 196 (2011) 6997-7001.
[121] A. Abouimrane, S.A. Odom, H. Tavassol, M.V. Schulmerich, H. Wu, R. Bhargava, A.A. Gewirth, J.S. Moore, K. Amine, 3-Hexylthiophene as a Stabilizing Additive for High Voltage Cathodes in Lithium-Ion Batteries, Journal of the Electrochemical Society, 160 (2012) A268-A271.
[122] Y.-K. Sun, K.-J. Hong, J. Prakash, K. Amine, Electrochemical performance of nano-sized ZnO-coated LiNi0.5Mn1.5O4 spinel as 5 V materials at elevated temperatures, Electrochemistry Communications, 4 (2002) 344-348.
[123] Y.K. Sun, Y.S. Lee, M. Yoshio, K. Amine, Synthesis and Electrochemical Properties of ZnO-Coated LiNi0.5Mn1.5O4 Spinel as 5 V Cathode Material for Lithium Secondary Batteries, Electrochemical and Solid-State Letters, 5 (2002) A99.
[124] Y.-K. Sun, C.S. Yoon, I.-H. Oh, Surface structural change of ZnO-coated LiNi0.5Mn1.5O4 spinel as 5 V cathode materials at elevated temperatures, Electrochimica Acta, 48 (2003) 503-506.
[125] Y. Fan, J. Wang, Z. Tang, W. He, J. Zhang, Effects of the nanostructured SiO2 coating on the performance of LiNi0.5Mn1.5O4 cathode materials for high-voltage Li-ion batteries, Electrochimica Acta, 52 (2007) 3870-3875.
[126] Y. Kobayashi, H. Miyashiro, K. Takei, H. Shigemura, M. Tabuchi, H. Kageyama, T. Iwahori, 5 V Class All-Solid-State Composite Lithium Battery with Li3PO4 Coated LiNi0.5Mn1.5O4, Journal of The Electrochemical Society, 150 (2003) A1577.
[127] R. Alcántara, M. Jaraba, P. Lavela, J.L. Tirado, X-ray diffraction and electrochemical impedance spectroscopy study of zinc coated LiNi0.5Mn1.5O4 electrodes, Journal of Electroanalytical Chemistry, 566 (2004) 187-192.
[128] J. Arrebola, A. Caballero, L. Hernán, J. Morales, E. Rodríguez Castellón, J.R. Ramos Barrado, Effects of Coating with Gold on the Performance of Nanosized LiNi0.5Mn1.5O4 for Lithium Batteries, Journal of The Electrochemical Society, 154 (2007) A178.
[129] J. Arrebola, A. Caballero, L. Hernán, J. Morales, E. Rodríguez Castellón, Adverse Effect of Ag Treatment on the Electrochemical Performance of the 5 V Nanometric Spinel LiNi0.5Mn1.5O4 in Lithium Cells, Electrochemical and Solid-State Letters, 8 (2005) A303.
[130] H.-B. Kang, S.-T. Myung, K. Amine, S.-M. Lee, Y.-K. Sun, Improved electrochemical properties of BiOF-coated 5V spinel Li[Ni0.5Mn1.5]O4 for rechargeable lithium batteries, Journal of Power Sources, 195 (2010) 2023-2028.
[131] H.M. Wu, I. Belharouak, A. Abouimrane, Y.K. Sun, K. Amine, Surface modification of LiNi0.5Mn1.5O4 by ZrP2O7 and ZrO2 for lithium-ion batteries, Journal of Power Sources, 195 (2010) 2909-2913.
[132] G.Q. Liu, L. Wen, Y.M. Liu, Spinel LiNi0.5Mn1.5O4 and its derivatives as cathodes for high-voltage Li-ion batteries, Journal of Solid State Electrochemistry, 14 (2010) 2191-2202.
[133] G. Liu, H. Xie, L. Liu, X. Kang, Y. Tian, Y. Zhai, Synthesis and electrochemical performances of spinel LiCr0.1Ni0.4Mn1.5O4 compound, Materials Research Bulletin, 42 (2007) 1955-1961.
[134] M. Aklalouch, J.M. Amarilla, R.M. Rojas, I. Saadoune, J.M. Rojo, Chromium doping as a new approach to improve the cycling performance at high temperature of 5V LiNi0.5Mn1.5O4-based positive electrode, Journal of Power Sources, 185 (2008) 501-511.
[135] M. Aklalouch, J.M. Amarilla, R.M. Rojas, I. Saadoune, J.M. Rojo, Sub-micrometric LiCr0.2Ni0.4Mn1.4O4 spinel as 5V-cathode material exhibiting huge rate capability at 25 and 55°C, Electrochemistry Communications, 12 (2010) 548-552.
[136] S. Rajakumar, R. Thirunakaran, A. Sivashanmugam, S. Gopukumar, Synthesis, Characterization, and Electrochemical Properties of LiCrxNiyMn2−x−yO4 Spinels as Cathode Material for 5 V Lithium Battery, Journal of The Electrochemical Society, 157 (2010) A333.
[137] R. Alcantara, M. Jaraba, P. Lavela, J.L. Tirado, P. Biensan, A. de Guibert, C. Jordy, J.P. Peres, Structural and Electrochemical Study of New LiNi0.5TixMn1.5-xO4 Spinel Oxides for 5-V Cathode Materials, Chem. Mater., 15 (2003) 2376-2382.
[138] J.H. Kim, S.T. Myung, C.S. Yoon, I.H. Oh, Y.K. Sun, Effect of Ti Substitution for Mn on the Structure of LiNi0.5Mn1.5−xTixO4 and Their Electrochemical Properties as Lithium Insertion Material, Journal of The Electrochemical Society, 151 (2004) A1911.
[139] R. Alcántara, M. Jaraba, P. Lavela, J.M. Lloris, C. Pérez Vicente, J.L. Tirado, Synergistic Effects of Double Substitution in LiNi0.5−yFeyMn1.5O4 Spinel as 5 V Cathode Materials, Journal of The Electrochemical Society, 152 (2005) A13.
[140] J. Liu, A. Manthiram, Understanding the Improved Electrochemical Performances of Fe-Substituted 5 V Spinel Cathode LiMn1.5Ni0.5O4, J. Phys. Chem. C, 113 (2009) 15073-15079.
[141] H. Wang, H. Xia, M.O. Lai, L. Lu, Enhancements of rate capability and cyclic performance of spinel LiNi0.5Mn1.5O4 by trace Ru-doping, Electrochemistry Communications, 11 (2009) 1539-1542.
[142] S.H. Oh, K.Y. Chung, S.H. Jeon, C.S. Kim, W.I. Cho, B.W. Cho, Structural and electrochemical investigations on the LiNi0.5−xMn1.5−yMx+yO4 (M=Cr, Al, Zr) compound for 5V cathode material, Journal of Alloys and Compounds, 469 (2009) 244-250.
[143] M.-H. Liu, H.-T. Huang, C.-M. Lin, J.-M. Chen, S.-C. Liao, Mg gradient-doped LiNi0.5Mn1.5O4 as the cathode material for Li-ion batteries, Electrochimica Acta, 120 (2014) 133-139.
[144] Y.-K. Sun, S.W. Oh, C.S. Yoon, H.J. Bang, J. Prakash, Effect of sulfur and nickel doping on morphology and electrochemical performance of LiNi0.5Mn1.5O4−xSx spinel material in 3-V region, Journal of Power Sources, 161 (2006) 19-26.
[145] B. Leon, J.M. Lloris, C.P. Vicente, J.L. Tirado, Structure and Lithium Extraction Mechanism in LiNi0.5Mn1.5O4 after Double Substitution with Iron and Titanium, Electrochemical and Solid-State Letters, 9 (2006) A96-A100.
[146] W.-R. Liu, S.-H. Wu, H.-S. Sheu, Preparation of spinel Li1.06Mn2O4−zClz cathode materials by the citrate gel method, Journal of Power Sources, 146 (2005) 232-236.
[147] X. Li, F. Kang, W. Shen, X. Bai, Improvement of structural stability and electrochemical activity of a cathode material LiNi0.7Co0.3O2 by chlorine doping, Electrochimica Acta, 53 (2007) 1761-1765.
[148] K. Kubo, S. Arai, S. Yamada, M. Kanda, Synthesis and charge–discharge properties of Li1+xNi1-x-yCoyO2-zFz, Journal of Power Sources, 81-82 (1999) 599–603.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top