|
[1] S. Vazquez, S. M. Lukic, E. Galvan, L. G. Franquelo, J. M. Carrasco, Energy Storage Systems for Transport and Grid Applications, IEEE Transactions on Industrial Electronics, 57 (2010) 3881 - 3895. [2] M. Beaudin, H. Zareipour, A. Schellenberglabe, W. Rosehart, Energy storage for mitigating the variability of renewable electricity sources: An updated review, Energy for Sustainable Development, 14 (2010) 302-314. [3] F. Díaz-González, A. Sumper, O. Gomis-Bellmunt, R. Villafáfila-Robles, A review of energy storage technologies for wind power applications, Renewable and Sustainable Energy Reviews, 16 (2012) 2154-2171. [4] F. Rahman, S. Rehman, M.A. Abdul-Majeed, Overview of energy storage systems for storing electricity from renewable energy sources in Saudi Arabia, Renewable and Sustainable Energy Reviews, 16 (2012) 274-283. [5] M.T. Arif, A.M.T. Oo, A.B.M.S. Ali, Estimation of Energy Storage and Its Feasibility Analysis, (2013). [6] M.M. Thackeray, S.-H. Kang, C.S. Johnson, J.T. Vaughey, R. Benedek, S.A. Hackney, Li2MnO3-stabilized LiMO2 (M = Mn, Ni, Co) electrodes for lithium-ion batteries, Journal of Materials Chemistry, 17 (2007) 3112. [7] G.S. Kumara, H. Rahner, D., Synthesis and electrochemical characterization of 4 V LiRXMn2-XO4 spinels for rechargeable lithium batteries, Materials Chemistry and Physics, 70 (2001) 117-123. [8] G.T.-K. Fey, C.-Z. Lu, T.P. Kumar, Solid-state synthesis and electrochemical characterization of LiMyCr0.5−yMn1.5O4 (M = Fe or Al; 0.0 < y < 0.4) spinels, Materials Chemistry and Physics, 80 (2003) 309-318. [9] I. Taniguchi, Powder properties of partially substituted LiMxMn2−xO4 (M=Al, Cr, Fe and Co) synthesized by ultrasonic spray pyrolysis, Materials Chemistry and Physics, 92 (2005) 172-179. [10] Q. Zhong, A. Bonakclarpour, M. Zhang, Y. Gao, J.R. Dahn, Synthesis and Electrochemistry of LiNixMn2-xO4, J. Electrochem. Soc., 144 (1997). [11] H.-s. Fang, Z.-x. Wang, X.-h. Li, H.-j. Guo, W.-j. Peng, Exploration of high capacity LiNi0.5Mn1.5O4 synthesized by solid-state reaction, Journal of Power Sources, 153 (2006) 174-176. [12] H. Fang, L. Li, G. Li, A low-temperature reaction route to high rate and high capacity LiNi0.5Mn1.5O4, Journal of Power Sources, 167 (2007) 223-227. [13] Y. Fan, J. Wang, X. Ye, J. Zhang, Physical properties and electrochemical performance of LiNi0.5Mn1.5O4 cathode material prepared by a coprecipitation method, Materials Chemistry and Physics, 103 (2007) 19-23. [14] H. Liu, J. Wang, X. Zhang, D. Zhou, X. Qi, B. Qiu, J. Fang, R. Kloepsch, G. Schumacher, Z. Liu, J. Li, Morphological Evolution of High-Voltage Spinel LiNi0.5Mn1.5O4 Cathode Materials for Lithium-Ion Batteries: The Critical Effects of Surface Orientations and Particle Size, ACS Appl. Mater. Interfaces, 8 (7) (2016) 4661-4675. [15] S.-W. Oh, S.-H. Park, J.-H. Kim, Y.C. Bae, Y.-K. Sun, Improvement of electrochemical properties of LiNi0.5Mn1.5O4 spinel material by fluorine substitution, Journal of Power Sources, 157 (2006) 464-470. [16] X.X. Xu, J. Yang, Y.Q. Wang, Y.N. NuLi, J.L. Wang, LiNi0.5Mn1.5O3.975F0.05 as novel 5V cathode material, Journal of Power Sources, 174 (2007) 1113-1116. [17] G. Du, Y. NuLi, J. Yang, J. Wang, Fluorine-doped LiNi0.5Mn1.5O4 for 5V cathode materials of lithium-ion battery, Materials Research Bulletin, 43 (2008) 3607-3613. [18] D.-W. Han, W.-H. Ryu, W.-K. Kim, J.-Y. Eom, H.-S. Kwon, Effects of Li and Cl Codoping on the Electrochemical Performance and Structural Stability of LiMn2O4Cathode Materials for Hybrid Electric Vehicle Applications, The Journal of Physical Chemistry C, 117 (2013) 4913-4919. [19] M. Kunduraci, G.G. Amatucci, Synthesis and Characterization of Nanostructured 4.7V LixMn1.5Ni 0.5O4 Spinels for High-Power Lithium-Ion Batteries, Journal of The Electrochemical Society, 153 (2006) A1345. [20] N. Amdouni, K. Zaghib, F. Gendron, A. Mauger, C.M. Julien, Magnetic properties of LiNi0.5Mn1.5O4 spinels prepared by wet chemical methods, Journal of Magnetism and Magnetic Materials, 309 (2007) 100-105. [21] A. Manthiram, K. Chemelewski, E.-S. Lee, A perspective on the high-voltage LiMn1.5Ni0.5O4 spinel cathode for lithium-ion batteries, Energy & Environmental Science, 7 (2014) 1339. [22] M. Kunduraci, G.G. Amatucci, Effect of oxygen non-stoichiometry and temperature on cation ordering in LiMn2−xNixO4 (0.50≥x≥0.36) spinels, Journal of Power Sources, 165 (2007) 359-367. [23] J. Song, D.W. Shin, Y. Lu, C.D. Amos, A. Manthiram, J.B. Goodenough, Role of Oxygen Vacancies on the Performance of Li[Ni0.5–xMn1.5+x]O4(x= 0, 0.05, and 0.08) Spinel Cathodes for Lithium-Ion Batteries, Chemistry of Materials, 24 (2012) 3101-3109. [24] J. Cabana, M. Casas-Cabanas, F.O. Omenya, N.A. Chernova, D. Zeng, M.S. Whittingham, C.P. Grey, Composition-structure relationships in the Li-ion battery electrode material LiNi0.5Mn1.5O4, Chemistry of materials : a publication of the American Chemical Society, 24 (2012) 2952-2964. [25] T.-F. Yi, Y. Xie, M.-F. Ye, L.-J. Jiang, R.-S. Zhu, Y.-R. Zhu, Recent developments in the doping of LiNi0.5Mn1.5O4 cathode material for 5 V lithium-ion batteries, Ionics, 17 (2011) 383-389. [26] D.W. Shin, C.A. Bridges, A. Huq, M.P. Paranthaman, A. Manthiram, Role of Cation Ordering and Surface Segregation in High-Voltage Spinel LiMn1.5Ni0.5–xMxO4(M = Cr, Fe, and Ga) Cathodes for Lithium-Ion Batteries, Chemistry of Materials, 24 (2012) 3720-3731. [27] Z. Wang, Q. Su, H. Deng, Y. Fu, Oxygen Deficiency and Defect Chemistry in Delithiated Spinel LiNi0.5Mn1.5O4 Cathodes for Li-Ion Batteries, ChemElectroChem, 2 (2015) 1182-1186. [28] G.Q. Liu, L. Wen, X. Wang, B.Y. Ma, Effect of the impurity LixNi1−xO on the electrochemical properties of 5V cathode material LiNi0.5Mn1.5O4, Journal of Alloys and Compounds, 509 (2011) 9377-9381. [29] J.-H. Kim, S.-T. Myung, C.S. Yoon, S.G. Kang, Y.-K. Sun, Comparative Study of LiNi0.5Mn1.5O4-δ and LiNi0.5Mn1.5O4 Cathodes Having Two Crystallographic Structures: Fd-3m and P4332, Chem. Mater., 16 (2004) 906-914. [30] G. Liu, K.-S. Park, J. Song, J.B. Goodenough, Influence of thermal history on the electrochemical properties of Li[Ni0.5Mn1.5]O4, Journal of Power Sources, 243 (2013) 260-266. [31] W.W. Wu, H.F. Xiang, G.B. Zhong, W. Su, W. Tang, Y. Zhang, Y. Yu, C.H. Chen, Ordered LiNi0.5Mn1.5O4 hollow microspheres as high-rate 5V cathode materials for lithium ion batteries, Electrochimica Acta, 119 (2014) 206-213. [32] Y. Idemoto, H. Narai, N. Koura, Crystal structure and cathode performance dependence on oxygen content of LiMn1.5Ni0.5O4 as a cathode material for secondary lithium batteries, Journal of Power Sources, 119-121 (2003) 125-129. [33] D. Li, A. Ito, K. Kobayakawa, H. Noguchi, Y. Sato, Electrochemical characteristics of LiNi0.5Mn1.5O4 prepared by spray drying and post-annealing, Electrochimica Acta, 52 (2007) 1919-1924. [34] J. Zheng, J. Xiao, X. Yu, L. Kovarik, M. Gu, F. Omenya, X. Chen, X.Q. Yang, J. Liu, G.L. Graff, M.S. Whittingham, J.G. Zhang, Enhanced Li+ ion transport in LiNi0.5Mn1.5O4 through control of site disorder, Physical chemistry chemical physics : PCCP, 14 (2012) 13515-13521. [35] K. Ariyoshi, Y. Iwakoshi, N. Nakayama, T. Ohzuku, Topotactic Two-Phase Reactions of Li[Ni1/2Mn3/2]O4 (P4332) in Nonaqueous Lithium Cells, Journal of The Electrochemical Society, 151 (2004) A296. [36] M. Kunduraci, J.F. Al-Sharab, G.G. Amatucci, High-Power Nanostructured LiMn2-xNixO4 High-Voltage Lithium-Ion Battery Electrode Materials Electrochemical Impact of Electronic Conductivity and Morphology, Chem. Mater., 18 (2006) 3585-3592. [37] D. Pasero, N. Reeves, V. Pralong, A.R. West, Oxygen Nonstoichiometry and Phase Transitions in LiMn1.5Ni0.5O4−δ, Journal of The Electrochemical Society, 155 (2008) A282. [38] M. Kunduraci, G.G. Amatucci, The effect of particle size and morphology on the rate capability of 4.7V LiMn1.5+δNi0.5−δO4 spinel lithium-ion battery cathodes, Electrochimica Acta, 53 (2008) 4193-4199. [39] X. Ma, B. Kang, G. Ceder, High Rate Micron-Sized Ordered LiNi0.5Mn1.5O4, Journal of The Electrochemical Society, 157 (2010) A925. [40] T.A. Arunkumar, A. Manthiram, Influence of chromium doping on the electrochemical performance of the 5V spinel cathode LiMn1.5Ni0.5O4, Electrochimica Acta, 50 (2005) 5568-5572. [41] S.H. Oh, S.H. Jeon, W.I. Cho, C.S. Kim, B.W. Cho, Synthesis and characterization of the metal-doped high-voltage spinel LiNi0.5Mn1.5O4 by mechanochemical process, Journal of Alloys and Compounds, 452 (2008) 389-396. [42] P. Verma, P. Maire, P. Novák, A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries, Electrochimica Acta, 55 (2010) 6332-6341. [43] J. Ma, P. Hu, G. Cui, L. Chen, Surface and Interface Issues in Spinel LiNi0.5Mn1.5O4: Insights into a Potential Cathode Material for High Energy Density Lithium Ion Batteries, Chemistry of Materials, 28 (2016) 3578-3606. [44] D. Aurbach, Review of selected electrode–solution interactions which determine the performance of Li and Li ion batteries, Journal of Power Sources 89 (2000) 206–218. [45] E. Wang, D. Ofer, W. Bowden, N. Iltchev, R. Moses, K. Brandt, Stability of Lithium Ion Spinel Cells III. Improved Life of Charged Cells, Journal of The Electrochemical Society, 147 (11) (2000) 4023-4028. [46] L. Yang, M. Takahashi, B. Wang, A study on capacity fading of lithium-ion battery with manganese spinel positive electrode during cycling, Electrochimica Acta, 51 (2006) 3228-3234. [47] S. Brutti, G. Greco, P. Reale, S. Panero, Insights about the irreversible capacity of LiNi0.5Mn1.5O4 cathode materials in lithium batteries, Electrochimica Acta, 106 (2013) 483-493. [48] C.L. Campion, W. Li, B.L. Lucht, Thermal Decomposition of LiPF6-Based Electrolytes for Lithium-Ion Batteries, Journal of The Electrochemical Society, 152 (2005) A2327. [49] D. Aurbach, The Correlation Between the Surface Chemistry and the Performance of Li-Carbon Intercalation Anodes for Rechargeable ‘Rocking-Chair’ Type Batteries, Journal of The Electrochemical Society, 141 (1994) 603. [50] D. Aurbach, B. Markovsky, A. Shechter, Y. Ein-Eli, H. Cohen, A Comparative Study of Synthetic Graphite and Li Electrodes in Electrolyte Solutions Based on Ethylen Carbonate-Dimethyl Carbonate Mixtures, J. Electrochem. Soc., 143 (1996) 3809-3820. [51] G.G. Amatucci, A. Blyrc, C. Sigalac, P. Alfonseb, J.M. Tarasconc, Surface treatments of Li1+xMn2-xO4 spinels for improved elevated temperature performance, Solid State Ionics, 104 (1997) 13-25. [52] T.-F. Yi, X.-G. Hu, Preparation and characterization of sub-micro LiNi0.5−xMn1.5+xO4 for 5V cathode materials synthesized by an ultrasonic-assisted co-precipitation method, Journal of Power Sources, 167 (2007) 185-191. [53] N.P.W. Pieczonka, Z. Liu, P. Lu, K.L. Olson, J. Moote, B.R. Powell, J.-H. Kim, Understanding Transition-Metal Dissolution Behavior in LiNi0.5Mn1.5O4 High-Voltage Spinel for Lithium Ion Batteries, The Journal of Physical Chemistry C, 117 (2013) 15947-15957. [54] A. Lewandowski, A. Świderska-Mocek, Ionic liquids as electrolytes for Li-ion batteries—An overview of electrochemical studies, Journal of Power Sources, 194 (2009) 601-609. [55] H. Matsumoto, H. Sakaebe, K. Tatsumi, Preparation of room temperature ionic liquids based on aliphatic onium cations and asymmetric amide anions and their electrochemical properties as a lithium battery electrolyte, Journal of Power Sources, 146 (2005) 45-50. [56] H. Sakaebe, H. Matsumoto, N-Methyl-N-propylpiperidinium bis(trifluoromethanesulfonyl)imide (PP13–TFSI) – novel electrolyte base for Li battery, Electrochemistry Communications, 5 (2003) 594-598. [57] M. Galiński, A. Lewandowski, I. Stępniak, Ionic liquids as electrolytes, Electrochimica Acta, 51 (2006) 5567-5580. [58] V. Borgel, E. Markevich, D. Aurbach, G. Semrau, M. Schmidt, On the application of ionic liquids for rechargeable Li batteries: High voltage systems, Journal of Power Sources, 189 (2009) 331-336. [59] J. Mun, T. Yim, K. Park, J.H. Ryu, Y.G. Kim, S.M. Oh, Surface Film Formation on LiNi0.5Mn1.5O4 Electrode in an Ionic Liquid Solvent at Elevated Temperature, Journal of The Electrochemical Society, 158 (2011) A453. [60] A. Guerfi, M. Dontigny, P. Charest, M. Petitclerc, M. Lagacé, A. Vijh, K. Zaghib, Improved electrolytes for Li-ion batteries: Mixtures of ionic liquid and organic electrolyte with enhanced safety and electrochemical performance, Journal of Power Sources, 195 (2010) 845-852. [61] J. Xiang, F. Wu, R. Chen, L. Li, H. Yu, High voltage and safe electrolytes based on ionic liquid and sulfone for lithium-ion batteries, Journal of Power Sources, 233 (2013) 115-120. [62] R.S. Kühnel, N. Böckenfeld, S. Passerini, M. Winter, A. Balducci, Mixtures of ionic liquid and organic carbonate as electrolyte with improved safety and performance for rechargeable lithium batteries, Electrochimica Acta, 56 (2011) 4092-4099. [63] H.F. Xiang, B. Yin, H. Wang, H.W. Lin, X.W. Ge, S. Xie, C.H. Chen, Improving electrochemical properties of room temperature ionic liquid (RTIL) based electrolyte for Li-ion batteries, Electrochimica Acta, 55 (2010) 5204-5209. [64] J. Jin, H.H. Li, J.P. Wei, X.K. Bian, Z. Zhou, J. Yan, Li/LiFePO4 batteries with room temperature ionic liquid as electrolyte, Electrochemistry Communications, 11 (2009) 1500-1503. [65] H. Sano, H. Sakaebe, H. Matsumoto, Effect of Organic Additives on Electrochemical Properties of Li Anode in Room Temperature Ionic Liquid, Journal of The Electrochemical Society, 158 (2011) A316. [66] K. Xu, C.A. Angell, High Anodic Stability of a New Electrolyte Solvent: Unsymmetric Noncyclic Aliphatic Sultone, J. Electrochem. Soc., 145 (1998) L70-L72. [67] K. Xu, C.A. Angell, Sulfone-Based Electrolytes for Lithium-Ion Batteries, Journal of The Electrochemical Society, 149 (2002) A920. [68] N. Shao, X.G. Sun, S. Dai, D.E. Jiang, Electrochemical windows of sulfone-based electrolytes for high-voltage Li-ion batteries, The journal of physical chemistry. B, 115 (2011) 12120-12125. [69] N. Shao, X.G. Sun, S. Dai, D.E. Jiang, Oxidation potentials of functionalized sulfone solvents for high-voltage Li-ion batteries: a computational study, The journal of physical chemistry. B, 116 (2012) 3235-3238. [70] X.-G. Sun, C.A. Angell, New sulfone electrolytes for rechargeable lithium batteries, Electrochemistry Communications, 7 (2005) 261-266. [71] Y. Watanabe, S.-i. Kinoshita, S. Wada, K. Hoshino, H. Morimoto, S.-i. Tobishima, Electrochemical properties and lithium ion solvation behavior of sulfone–ester mixed electrolytes for high-voltage rechargeable lithium cells, Journal of Power Sources, 179 (2008) 770-779. [72] S. Li, W. Zhao, X. Cui, Y. Zhao, B. Li, H. Zhang, Y. Li, G. Li, X. Ye, Y. Luo, An improved method for synthesis of lithium difluoro(oxalato)borate and effects of sulfolane on the electrochemical performances of lithium-ion batteries, Electrochimica Acta, 91 (2013) 282-292. [73] F. Wu, J. Xiang, L. Li, J. Chen, G. Tan, R. Chen, Study of the electrochemical characteristics of sulfonyl isocyanate/sulfone binary electrolytes for use in lithium-ion batteries, Journal of Power Sources, 202 (2012) 322-331. [74] F. Wu, Q. Zhu, L. Li, R. Chen, S. Chen, A diisocyanate/sulfone binary electrolyte based on lithium difluoro(oxalate)borate for lithium batteries, Journal of Materials Chemistry A, 1 (2013) 3659. [75] A. Abouimrane, I. Belharouak, K. Amine, Sulfone-based electrolytes for high-voltage Li-ion batteries, Electrochemistry Communications, 11 (2009) 1073-1076. [76] L. Mao, B. Li, X. Cui, Y. Zhao, X. Xu, X. Shi, S. Li, F. Li, Electrochemical performance of electrolytes based upon lithium bis(oxalate)borate and sulfolane/alkyl sulfite mixtures for high temperature lithium-ion batteries, Electrochimica Acta, 79 (2012) 197-201. [77] S.-Y. Lee, K. Ueno, C.A. Angell, Lithium Salt Solutions in Mixed Sulfone and Sulfone-Carbonate Solvents: A Walden Plot Analysis of the Maximally Conductive Compositions, The Journal of Physical Chemistry C, 116 (2012) 23915-23920. [78] L. Xing, J. Vatamanu, O. Borodin, G.D. Smith, D. Bedrov, Electrode/Electrolyte Interface in Sulfolane-Based Electrolytes for Li Ion Batteries: A Molecular Dynamics Simulation Study, The Journal of Physical Chemistry C, 116 (2012) 23871-23881. [79] X. Sun, C.A. Angell, Doped sulfone electrolytes for high voltage Li-ion cell applications, Electrochemistry Communications, 11 (2009) 1418-1421. [80] M. Ue, K. Ida, S. Mori, Electrochemical Properties of Organic Liquid Electrolytes Based on Quaternary Onium Salts for Electrical Double-Layer Capacitors, J. Electrochem. Soc., 141 (1994) 2989-2996. [81] M. Ue, M. Takeda, M. Takehara, S. Mori, Electrochemical Properties of Quaternary Ammonium Salts for Electrochemical Capacitors, J. Electrochem. Soc., 144 (1997) 2684-2688. [82] Y. Abu-Lebdeh, I. Davidson, High-Voltage Electrolytes Based on Adiponitrile for Li-Ion Batteries, Journal of The Electrochemical Society, 156 (2009) A60. [83] Y. Abu-Lebdeh, I. Davidson, New electrolytes based on glutaronitrile for high energy/power Li-ion batteries, Journal of Power Sources, 189 (2009) 576-579. [84] M. Nagahama, N. Hasegawa, S. Okada, High Voltage Performances of Li2NiPO4F Cathode with Dinitrile-Based Electrolytes, Journal of The Electrochemical Society, 157 (2010) A748. [85] B. Oh, D. Ofer, J. Rempel, S. Sriramulu, B. Barnett, 218th ECS Meeting Abstracts MA2010-02, (2010) 592. [86] R. McMillan, H. Slegr, Z.X. Shu, W. Wang, Fluoroethylene carbonate electrolyte and its use in lithium ion batteries with graphite anodes, 81–82 (1999) 20–26. [87] A.J. Gmitter, I. Plitz, G.G. Amatucci, High Concentration Dinitrile, 3-Alkoxypropionitrile, and Linear Carbonate Electrolytes Enabled by Vinylene and Monofluoroethylene Carbonate Additives, Journal of The Electrochemical Society, 159 (2012) A370. [88] S. Amaresh, G.J. Kim, K. Karthikeyan, V. Aravindan, K.Y. Chung, B.W. Cho, Y.S. Lee, Synthesis and enhanced electrochemical performance of Li2CoPO4F cathodes under high current cycling, Physical chemistry chemical physics : PCCP, 14 (2012) 11904-11909. [89] M. Bolloli, J. Kalhoff, F. Alloin, D. Bresser, M.L. Phung Le, B. Langlois, S. Passerini, J.-Y. Sanchez, Fluorinated Carbamates as Suitable Solvents for LiTFSI-Based Lithium-Ion Electrolytes: Physicochemical Properties and Electrochemical Characterization, The Journal of Physical Chemistry C, 119 (2015) 22404-22414. [90] R. Sharabi, E. Markevich, K. Fridman, G. Gershinsky, G. Salitra, D. Aurbach, G. Semrau, M.A. Schmidt, N. Schall, C. Bruenig, Electrolyte solution for the improved cycling performance of LiCoPO4/C composite cathodes, Electrochemistry Communications, 28 (2013) 20-23. [91] G.G. Amatucci, J.M. Tarascon, L.C. Klein, CoO2, The End Member of the LixCoO2 Solid Solution, J. Electrochem. Soc., 143 (1993) 1114-1123. [92] T. Kitagawa, K. Azuma, M. Koh, A. Yamauchi, H.S. Kagawa, M. , H. Miyawaki, A. Nakazono, H. Arima, M. Yamagata, M. Ishikawa, Application of Fluorine-containing Solvents to LiCoO2 Cathode in High Voltage Operation, Electrochemistry, 78 (2010) 345-348. [93] M. Hu, X. Pang, Z. Zhou, Recent progress in high-voltage lithium ion batteries, Journal of Power Sources, 237 (2013) 229-242. [94] L. Yang, B. Ravdel, B.L. Lucht, Electrolyte Reactions with the Surface of High Voltage LiNi0.5Mn1.5O4 Cathodes for Lithium-Ion Batteries, Electrochemical and Solid-State Letters, 13 (2010) A95. [95] V. Aravindan, Y.L. Cheah, W.C. Ling, S. Madhavi, Effect of LiBOB Additive on the Electrochemical Performance of LiCoPO4, Journal of the Electrochemical Society, 159 (2012) A1435-A1439. [96] W. Xu, A.J. Shusterman, R. Marzke, C.A. Angell, LiMOB, an Unsymmetrical Nonaromatic Orthoborate Salt for Nonaqueous Solution Electrochemical Applications, Journal of The Electrochemical Society, 151 (2004) A632. [97] S.E. Sloop, J.K. Pugh, S. Wang, J.B. Kerr, K. Kinoshita, Chemical Reactivity of PF5 and LiPF6 in Ethylene Carbonate/Dimethyl Carbonate Solutions, Electrochemical and Solid-State Letters, 4 (2001) A42. [98] T. Kawamura, A. Kimura, M. Egashira, S. Okada, J.I. Yamaki, Thermal stability of alkyl carbonate mixed-solventelectrolytes for lithium ion cells, Journal of Power Sources, 104 (2002) 260-264. [99] A. Xiao, L. Yang, B.L. Lucht, Thermal Reactions of LiPF6 with Added LiBOB, Electrochemical and Solid-State Letters, 10 (2007) A241. [100] N.P.W. Pieczonka, L. Yang, M.P. Balogh, B.R. Powell, K. Chemelewski, A. Manthiram, S.A. Krachkovskiy, G.R. Goward, M. Liu, J.-H. Kim, Impact of Lithium Bis(oxalate)borate Electrolyte Additive on the Performance of High-Voltage Spinel/Graphite Li-Ion Batteries, The Journal of Physical Chemistry C, 117 (2013) 22603-22612. [101] L. Yang, T. Markmaitree, B.L. Lucht, Inorganic additives for passivation of high voltage cathode materials, Journal of Power Sources, 196 (2011) 2251-2254. [102] L. Yang, B.L. Lucht, Inhibition of Electrolyte Oxidation in Lithium Ion Batteries with Electrolyte Additives, Electrochemical and Solid-State Letters, 12 (2009) A229. [103] J.-N. Lee, G.-B. Han, M.-H. Ryou, D.J. Lee, S. Jongchan, J.W. Choi, J.-K. Park, N-(triphenylphosphoranylidene) aniline as a novel electrolyte additive for high voltage LiCoO2 operations in lithium ion batteries, Electrochimica Acta, 56 (2011) 5195-5200. [104] A. von Cresce, K. Xu, Electrolyte Additive in Support of 5 V Li Ion Chemistry, Journal of The Electrochemical Society, 158 (2011) A337. [105] Z. Wang, N. Dupré, L. Lajaunie, P. Moreau, J.-F. Martin, L. Boutafa, S. Patoux, D. Guyomard, Effect of glutaric anhydride additive on the LiNi0.4Mn1.6O4 electrode/electrolyte interface evolution: A MAS NMR and TEM/EELS study, Journal of Power Sources, 215 (2012) 170-178. [106] M. Xu, Y. Liu, B. Li, W. Li, X. Li, S. Hu, Tris (pentafluorophenyl) phosphine: An electrolyte additive for high voltage Li-ion batteries, Electrochemistry Communications, 18 (2012) 123-126. [107] X. Zuo, C. Fan, X. Xiao, J. Liu, J. Nan, High-voltage performance of LiCoO2/graphite batteries with methylene methanedisulfonate as electrolyte additive, Journal of Power Sources, 219 (2012) 94-99. [108] T. Kubota, M. Ihara, S. Katayama, H. Nakai, J. Ichikawa, 1,1-Difluoro-1-alkenes as new electrolyte additives for lithium ion batteries, Journal of Power Sources, 207 (2012) 141-149. [109] V. Tarnopolskiy, J. Kalhoff, M. Nádherná, D. Bresser, L. Picard, F. Fabre, M. Rey, S. Passerini, Beneficial influence of succinic anhydride as electrolyte additive on the self-discharge of 5 V LiNi0.4Mn1.6O4 cathodes, Journal of Power Sources, 236 (2013) 39-46. [110] H. Lee, S. Choi, S. Choi, H.-J. Kim, Y. Choi, S. Yoon, J.-J. Cho, SEI layer-forming additives for LiNi0.5Mn1.5O4/graphite 5V Li-ion batteries, Electrochemistry Communications, 9 (2007) 801-806. [111] T. Horino, H. Tamada, A. Kishimoto, J. Kaneko, Y. Iriyama, Y. Tanaka, T. Fujinami, High Voltage Stability of Interfacial Reaction at the LiMn2O4 Thin-Film Electrodes/Liquid Electrolytes with Boroxine Compounds, Journal of The Electrochemical Society, 157 (2010) A677. [112] H.-C. Wu, C.-Y. Su, D.-T. Shieh, M.-H. Yang, N.-L. Wu, Enhanced High-Temperature Cycle Life of LiFePO4-Based Li-Ion Batteries by Vinylene Carbonate as Electrolyte Additive, Electrochemical and Solid-State Letters, 9 (2006) A537. [113] L. El Ouatani, R. Dedryvère, C. Siret, P. Biensan, S. Reynaud, P. Iratçabal, D. Gonbeau, The Effect of Vinylene Carbonate Additive on Surface Film Formation on Both Electrodes in Li-Ion Batteries, Journal of The Electrochemical Society, 156 (2009) A103. [114] J.-Y. Eom, I.-H. Jung, J.-H. Lee, Effects of vinylene carbonate on high temperature storage of high voltage Li-ion batteries, Journal of Power Sources, 196 (2011) 9810-9814. [115] K. Abe, Y. Ushigoe, H. Yoshitake, M. Yoshio, Functional electrolytes: Novel type additives for cathode materials, providing high cycleability performance, Journal of Power Sources, 153 (2006) 328-335. [116] T. Takeuchi, T. Kyuna, H. Morimoto, S.-i. Tobishima, Influence of surface modification of LiCoO2 by organic compounds on electrochemical and thermal properties of Li/LiCoO2 rechargeable cells, Journal of Power Sources, 196 (2011) 2790-2801. [117] M. Hu, J. Wei, L. Xing, Z. Zhou, Improving electrochemical performance of Li3V2(PO4)3 in a thiophene-containing electrolyte, Journal of Power Sources, 222 (2013) 373-378. [118] L.Y. Xing, M. Hu, Q. Tang, J.P. Wei, X. Qin, Z. Zhou, Improved cyclic performances of LiCoPO4/C cathode materials for high-cell-potential lithium-ion batteries with thiophene as an electrolyte additive, Electrochimica Acta, 59 (2012) 172-178. [119] K.-S. Lee, Y.-K. Sun, J. Noh, K.S. Song, D.-W. Kim, Improvement of high voltage cycling performance and thermal stability of lithium–ion cells by use of a thiophene additive, Electrochemistry Communications, 11 (2009) 1900-1903. [120] Y.-S. Lee, K.-S. Lee, Y.-K. Sun, Y.M. Lee, D.-W. Kim, Effect of an organic additive on the cycling performance and thermal stability of lithium-ion cells assembled with carbon anode and LiNi1/3Co1/3Mn1/3O2 cathode, Journal of Power Sources, 196 (2011) 6997-7001. [121] A. Abouimrane, S.A. Odom, H. Tavassol, M.V. Schulmerich, H. Wu, R. Bhargava, A.A. Gewirth, J.S. Moore, K. Amine, 3-Hexylthiophene as a Stabilizing Additive for High Voltage Cathodes in Lithium-Ion Batteries, Journal of the Electrochemical Society, 160 (2012) A268-A271. [122] Y.-K. Sun, K.-J. Hong, J. Prakash, K. Amine, Electrochemical performance of nano-sized ZnO-coated LiNi0.5Mn1.5O4 spinel as 5 V materials at elevated temperatures, Electrochemistry Communications, 4 (2002) 344-348. [123] Y.K. Sun, Y.S. Lee, M. Yoshio, K. Amine, Synthesis and Electrochemical Properties of ZnO-Coated LiNi0.5Mn1.5O4 Spinel as 5 V Cathode Material for Lithium Secondary Batteries, Electrochemical and Solid-State Letters, 5 (2002) A99. [124] Y.-K. Sun, C.S. Yoon, I.-H. Oh, Surface structural change of ZnO-coated LiNi0.5Mn1.5O4 spinel as 5 V cathode materials at elevated temperatures, Electrochimica Acta, 48 (2003) 503-506. [125] Y. Fan, J. Wang, Z. Tang, W. He, J. Zhang, Effects of the nanostructured SiO2 coating on the performance of LiNi0.5Mn1.5O4 cathode materials for high-voltage Li-ion batteries, Electrochimica Acta, 52 (2007) 3870-3875. [126] Y. Kobayashi, H. Miyashiro, K. Takei, H. Shigemura, M. Tabuchi, H. Kageyama, T. Iwahori, 5 V Class All-Solid-State Composite Lithium Battery with Li3PO4 Coated LiNi0.5Mn1.5O4, Journal of The Electrochemical Society, 150 (2003) A1577. [127] R. Alcántara, M. Jaraba, P. Lavela, J.L. Tirado, X-ray diffraction and electrochemical impedance spectroscopy study of zinc coated LiNi0.5Mn1.5O4 electrodes, Journal of Electroanalytical Chemistry, 566 (2004) 187-192. [128] J. Arrebola, A. Caballero, L. Hernán, J. Morales, E. Rodríguez Castellón, J.R. Ramos Barrado, Effects of Coating with Gold on the Performance of Nanosized LiNi0.5Mn1.5O4 for Lithium Batteries, Journal of The Electrochemical Society, 154 (2007) A178. [129] J. Arrebola, A. Caballero, L. Hernán, J. Morales, E. Rodríguez Castellón, Adverse Effect of Ag Treatment on the Electrochemical Performance of the 5 V Nanometric Spinel LiNi0.5Mn1.5O4 in Lithium Cells, Electrochemical and Solid-State Letters, 8 (2005) A303. [130] H.-B. Kang, S.-T. Myung, K. Amine, S.-M. Lee, Y.-K. Sun, Improved electrochemical properties of BiOF-coated 5V spinel Li[Ni0.5Mn1.5]O4 for rechargeable lithium batteries, Journal of Power Sources, 195 (2010) 2023-2028. [131] H.M. Wu, I. Belharouak, A. Abouimrane, Y.K. Sun, K. Amine, Surface modification of LiNi0.5Mn1.5O4 by ZrP2O7 and ZrO2 for lithium-ion batteries, Journal of Power Sources, 195 (2010) 2909-2913. [132] G.Q. Liu, L. Wen, Y.M. Liu, Spinel LiNi0.5Mn1.5O4 and its derivatives as cathodes for high-voltage Li-ion batteries, Journal of Solid State Electrochemistry, 14 (2010) 2191-2202. [133] G. Liu, H. Xie, L. Liu, X. Kang, Y. Tian, Y. Zhai, Synthesis and electrochemical performances of spinel LiCr0.1Ni0.4Mn1.5O4 compound, Materials Research Bulletin, 42 (2007) 1955-1961. [134] M. Aklalouch, J.M. Amarilla, R.M. Rojas, I. Saadoune, J.M. Rojo, Chromium doping as a new approach to improve the cycling performance at high temperature of 5V LiNi0.5Mn1.5O4-based positive electrode, Journal of Power Sources, 185 (2008) 501-511. [135] M. Aklalouch, J.M. Amarilla, R.M. Rojas, I. Saadoune, J.M. Rojo, Sub-micrometric LiCr0.2Ni0.4Mn1.4O4 spinel as 5V-cathode material exhibiting huge rate capability at 25 and 55°C, Electrochemistry Communications, 12 (2010) 548-552. [136] S. Rajakumar, R. Thirunakaran, A. Sivashanmugam, S. Gopukumar, Synthesis, Characterization, and Electrochemical Properties of LiCrxNiyMn2−x−yO4 Spinels as Cathode Material for 5 V Lithium Battery, Journal of The Electrochemical Society, 157 (2010) A333. [137] R. Alcantara, M. Jaraba, P. Lavela, J.L. Tirado, P. Biensan, A. de Guibert, C. Jordy, J.P. Peres, Structural and Electrochemical Study of New LiNi0.5TixMn1.5-xO4 Spinel Oxides for 5-V Cathode Materials, Chem. Mater., 15 (2003) 2376-2382. [138] J.H. Kim, S.T. Myung, C.S. Yoon, I.H. Oh, Y.K. Sun, Effect of Ti Substitution for Mn on the Structure of LiNi0.5Mn1.5−xTixO4 and Their Electrochemical Properties as Lithium Insertion Material, Journal of The Electrochemical Society, 151 (2004) A1911. [139] R. Alcántara, M. Jaraba, P. Lavela, J.M. Lloris, C. Pérez Vicente, J.L. Tirado, Synergistic Effects of Double Substitution in LiNi0.5−yFeyMn1.5O4 Spinel as 5 V Cathode Materials, Journal of The Electrochemical Society, 152 (2005) A13. [140] J. Liu, A. Manthiram, Understanding the Improved Electrochemical Performances of Fe-Substituted 5 V Spinel Cathode LiMn1.5Ni0.5O4, J. Phys. Chem. C, 113 (2009) 15073-15079. [141] H. Wang, H. Xia, M.O. Lai, L. Lu, Enhancements of rate capability and cyclic performance of spinel LiNi0.5Mn1.5O4 by trace Ru-doping, Electrochemistry Communications, 11 (2009) 1539-1542. [142] S.H. Oh, K.Y. Chung, S.H. Jeon, C.S. Kim, W.I. Cho, B.W. Cho, Structural and electrochemical investigations on the LiNi0.5−xMn1.5−yMx+yO4 (M=Cr, Al, Zr) compound for 5V cathode material, Journal of Alloys and Compounds, 469 (2009) 244-250. [143] M.-H. Liu, H.-T. Huang, C.-M. Lin, J.-M. Chen, S.-C. Liao, Mg gradient-doped LiNi0.5Mn1.5O4 as the cathode material for Li-ion batteries, Electrochimica Acta, 120 (2014) 133-139. [144] Y.-K. Sun, S.W. Oh, C.S. Yoon, H.J. Bang, J. Prakash, Effect of sulfur and nickel doping on morphology and electrochemical performance of LiNi0.5Mn1.5O4−xSx spinel material in 3-V region, Journal of Power Sources, 161 (2006) 19-26. [145] B. Leon, J.M. Lloris, C.P. Vicente, J.L. Tirado, Structure and Lithium Extraction Mechanism in LiNi0.5Mn1.5O4 after Double Substitution with Iron and Titanium, Electrochemical and Solid-State Letters, 9 (2006) A96-A100. [146] W.-R. Liu, S.-H. Wu, H.-S. Sheu, Preparation of spinel Li1.06Mn2O4−zClz cathode materials by the citrate gel method, Journal of Power Sources, 146 (2005) 232-236. [147] X. Li, F. Kang, W. Shen, X. Bai, Improvement of structural stability and electrochemical activity of a cathode material LiNi0.7Co0.3O2 by chlorine doping, Electrochimica Acta, 53 (2007) 1761-1765. [148] K. Kubo, S. Arai, S. Yamada, M. Kanda, Synthesis and charge–discharge properties of Li1+xNi1-x-yCoyO2-zFz, Journal of Power Sources, 81-82 (1999) 599–603.
|