跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2025/02/17 13:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林昱志
研究生(外文):Yu-chih Lin
論文名稱:AISI 304 不銹鋼電弧沉積Ti-(Ag,Cu)-N薄膜之特性研究
論文名稱(外文):Study on Characteristics of Arc-deposited Ti-(Ag,Cu)-N Films on AISI 304 Stainless Steel
指導教授:許正勳許正勳引用關係
指導教授(外文):Cheng-Hsun, Hsu
口試委員:許正勳
口試委員(外文):Cheng-Hsun, Hsu
口試日期:2017-07-28
學位類別:碩士
校院名稱:大同大學
系所名稱:材料工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:95
中文關鍵詞:氮化鈦銀膜氮化鈦銅膜電流比耐腐蝕陰極電弧沉積耐磨耗抗菌性
外文關鍵詞:cathodic arc depositioncorrosion resistanceantibacterialabrasion resistancetitanium nitride silver filmcurrent ratiotitanium nitride copper film
相關次數:
  • 被引用被引用:0
  • 點閱點閱:204
  • 評分評分:
  • 下載下載:17
  • 收藏至我的研究室書目清單書目收藏:0
本研究以陰極電弧沉積(Cathodic arc deposotion, CAD)系統,配合使用不同電流參數與Ti靶TiAg合金靶及Cu靶與N2反應披覆TiN、TiAgN及TiCuN薄膜於AISI 304不銹鋼基材上,然後進一步分析各鍍膜結構、特性(包括粗糙度、化學組成、附著性)以及進行TiN鍍膜有無摻雜Cu或Ag原子之磨耗、極化腐蝕及抗菌試驗,以探討添加Cu與Ag之電流參數對TiN薄膜性質之影響。
實驗結果顯示,此TiAgN與TiCuN薄膜結構主要是Cu與Ag原子是以非晶質的方式存在TiN晶格中,當電流參數為75A時,可獲得最緻密的膜層結構、由於Cu與Ag原子在電弧沉積時有濺射現象發生,導致表面粗度下降,在電流參數為75A時,TiAgN與TiCuN可以獲得最好的鍍膜附著性。在耐磨耗方面,由於受到粗糙度的影響,而導致摩擦係數下降,但是根據重量變化量來看TiAgN與TiCuN會因為原子含量而導致損失與沾黏量有所相關。在耐蝕性方面,由於受到粗糙度的影響,導致試片表面容易被腐蝕,在抗菌性方面,TiN薄膜透過添加Cu與Ag原子可以提升抗菌率,且其原子含量越高,抗菌性越好。
In this study, TiN, TiAgN and TiCuN films were coated on the AISI 304 stainless steel substrate by using a cathodic arc deposotion (CAD) system with different current parameters and Ti target TiAg alloy target and Cu target and N2 reaction, and then further analyzed the coating’s property (Including roughness, chemical composition, adhesion) and the wear, polarization corrosion and antimicrobial tests of TiN coating with or without Cu or Ag atom. The effects of adding Cu and Ag on the TiN film were investigated.
The results show that the TiAgN and TiCuN thin films are mainly composed of Cu and Ag atoms in the form of amorphous TiN lattice. When the current parameter is 75A, the most dense film structure can be obtained. Since Cu and Ag atoms In the arc deposition, sputtering occurs, resulting in surface roughness decreases, TiAgN and TiCuN can get the best coating adhesion when the current parameter is 75A. In the wear resistance, due to the impact of roughness, which led to decreased friction coefficient, but according to the weight of the amount of change in TiAgN and TiCuN because of the atomic content of the loss caused by the amount of sticky. In the aspect of corrosion resistance, the surface of the test piece is easily corroded due to the roughness. In the aspect of antibacterial property, the addition of Cu and Ag atoms can enhance the antibacterial rate, and the higher the atomic content, the better the antibacterial property.
中文摘要I
英文摘要II
目錄IV
圖目錄VIII
表目錄XIV
第一章 前言1
1.1.研究動機1
1.2.研究目的2
第二章 文獻回顧4
2.1.不銹鋼4
2.1.1.不銹鋼簡介4
2.1.2.不銹鋼腐蝕行為6
2.1.3. AISI 304不銹鋼8
2.2.表面改質8
2.3.物理氣相沉積10
2.3.1.概述10
2.3.2.薄膜成長成核理論12
2.3.3.薄膜微結構型態14
2.4.陰極電弧沉積技術16
2.4.1.起源與原理16
2.4.2.真空電弧源18
2.4.3.離子轟擊效應20
2.4.4.微粒21
2.4.5.陰極電弧沉積之特性23
2.5.本研究相關鍍膜24
2.5.1.中介層簡介24
2.5.2.氮化鈦25
2.5.3.氮化物薄膜參雜合金元素原子強化27
2.6.鍍膜附著性檢測29
2.7.鍍膜硬度量測30
2.8.鍍膜磨耗試驗31
2.9.鍍膜腐蝕機構32
2.10.抗菌試驗35
第三章 實驗方法與步驟36
3.1.實驗設計與流程36
3.2.基材準備38
3.3.鍍膜前處理38
3.4.CAD鍍膜製程39
3.5.鍍膜成分、結構及形貌分析41
3.5.1.EPMA成分分析41
3.5.2.XRD結構分析42
3.5.3.TEM結構分析42
3.5.4.SEM表面形貌觀察43
3.5.5.FE-SEM橫截面觀察43
3.5.6.AFM表面形貌分析43
3.5.7.表面粗糙度量測44
3.6.鍍膜特性分析44
3.6.1.附著性檢測44
3.6.2.奈米壓痕硬度試驗44
3.6.3.水接觸角檢測45
3.7.磨耗試驗46
3.8.極化試驗46
3.9.浸漬試驗47
3.10.耐候試驗47
3.11.抗菌試驗48
第四章 結果與討論49
4.1.鍍膜成分分析49
4.2.鍍膜結構分析51
4.2.1.XRD結構分析51
4.2.2.TEM結構分析53
4.3.鍍膜顯微觀察57
4.3.1.橫截面觀察57
4.3.2.鍍膜表面形貌觀察59
4.3.3.度膜表面與粗糙度61
4.4.鍍膜特性分析63
4.4.1.鍍膜附著性檢測63
4.4.2.水接觸角量測65
4.4.3.鍍膜硬度與楊氏係數量測67
4.4.4.磨耗試驗69
4.4.5.極化腐蝕分析73
4.4.6.浸漬試驗分析76
4.4.7.耐候試驗分析78
4.4.8.抗菌試驗分析78
第五章 結論87
參考文獻89
圖目錄
Fig. 2.1 Autocatalytic processes occurring in a corrosion pit.7
Fig. 2.2 PVD processing techniques1(a) vacuum evaporation. (1b and 1c)sputter deposition in a plasma environment. (1d) sputter deposition in a vacuum. (1e) ion plating in a plasma environment with a thermal evaporation source. (1f) ion plating with a sputtering source. (1g) ion plating with an arc vaporization source. (1h) Ion Beam Assisted Deposition (IBAD) with a thermal evaporation source and ion bombardment from an ion gun11
Fig. 2.3 Stages of structure evolution in polycrystalline thin films: (a) nucleation, (b) grain growth,(c) coalescence, (d) filling of channels ,and (e) film growth.13
Fig. 2.4 Coalescence of islands due to (a) Ostwald ripening, (b) sintering,
(c) cluster migration.13
Fig. 2.5 Structure zone model of sputter deposited material.15
Fig. 2.6 Revised structure zone model for film.15
Fig. 2.7 Schematic diagram of a cathodic arc deposition system.17
Fig. 2.8 Cathode spot region of a vacuum arc.17
Fig. 2.9 Current-voltage characteristics of arc discharge.18
Fig. 2.10 Cathodic arc source design.19
Fig. 2.11 (a)Excess bombard energy (b)Moderate bombard energy (c) Insufficient bombard energy.20
Fig. 2.12 A schematic representation of the dynamics of the formation of the surface structure on a cathode revealing explosive emission.21
Fig. 2.13 Non-line-of-sight filtering methods: (a) toroidal magnetic filter, (b) ‘S’-shape filter, (c) industrial scale system, (d) laser-arc and electrostatic deflection.22
Fig. 2.14 Possible hardness sequencing of individual layers in a multilayer coating.24
Fig. 2.15 Schematic representation of the titanium-nitrides crystal.25
Fig. 2.16 Equilibrium phase diagram of Ti-N binary system.26
Fig. 2.17 Effect of Cu Content on Hardness and Friction Coefficient of Ti-CuN Thin Films.28
Fig. 2.18 Ti-Cu Binary system phase diagram.28
Fig. 2.19 Ti-Ag Binary system phase diagram.28
Fig. 2.20 Adhesion strength quality HF1 to HF6.29
Fig. 2.21 A schematic representation of load versus indenter displacement data for an indentation experiment. The quantities shown are Pmax:the peak indentation load;hmax:the indenter displacement at peak load;hf:the final depth of the contact impression after unloading;and S:the initial unloading stiffness.30
Fig. 2.22 Six stages of friction mechanisms occurring in sliding steel contacts in the initial period of sliding.35
Fig. 2.23 The schematic diagram of partial corrosion mechanicsm.36
Fig. 3.1 Schematic diagram of Ti-X-N composite coating.36
Fig. 3.2 Flowchart of this experimental detail.37
Fig. 3.3 Schematic diagram of cathodic arc deposition system.40
Fig. 3.4 The picture of the nanoindentation used in this experiment.45
Fig. 3.5 Water contact angle measurement principle diagram.45
Fig. 3.6 Weathering salt spray test machine.48
Fig. 4.1 Comparison of atomic concentration for the coating specimens.50
Fig. 4.2 Comparison of Ag atomic concentration for the Ti-Ag-N’s coating specimens.50
Fig. 4.3 XRD patterns of coated specimens (a) TiAgN (b) TiCuN.52
Fig. 4.4 selected area electron diffraction pattern(a)TiAgN (b)TiCuN.54
Fig. 4.5 EDS analysis of the coated (a)TiAgN (b)TiCuN.55
Fig. 4.6 Cross-sectional TEM image of the thin film structure (a)TiAgN (b)TiCuN .56
Fig. 4.7 FE-SEM cross-sectional of the coated specimen. (a)TiAgN45 (b)TiAgN60 (c) TiAgN75 (d)TiCuN45 (e)TiCuN60 (f)TiCuN75 (g)TiN.58
Fig. 4.8 SEM surface morphologies of the coated specimens (a) TiAgN45 (b) TiAgN60 (c) TiAgN75 (d) TiCuN45 (e) TiCuN60 (f) TiCuN75 (g) TiN.60
Fig. 4.9 Comparison of the roughness for the coating specimens.61
Fig. 4.10 AFM surface morphologies of the coated specimens (a)TiAgN45 (b)TiAgN60 (c)TiAgN45 (d)TiCuN45 (e)TiCuN60 (f)TiCuN75 (g)TiN.62
Fig. 4.11 Fractured morphology of coated specimens (a)TiAgN45 (b)TiAgN60 (c)TiAgN75 (d)TiCuN45 (e)TiCuN60 (f)TiCuN75 (g)TiN.64
Fig. 4.12 Comparison of the water contact angle for the various specimens.65
Fig. 4.13 Surface morphology of coated specimens after the water contact angle test: (a)TiAgN45 (b)TiAgN60 (c)TiAgN75 (d)TiCuN45 (e)TiCuN60 (f)TiCuN75 (g)TiN.66
Fig. 4.14 Comparison of hardness(H), Young's modulus(E), and H/E values of the TiAgN coated specimens.68
Fig. 4.15 Comparison of hardness(H), Young's modulus(E), and H/E values of the TiCuN coated specimens.68
Fig. 4.16 Comparison of friction coefficient among the coated specimens.71
Fig. 4.17 Comparison of weight change among the coated specimens.71
Fig. 4.18 Surface morphologies of the coated specimens after ball-on-disc wear test. (a)TiAgN45 (b)TiAgN60 (c)TiAgN75 (d)TiCuN45 (e)TiCuN60 (f)TiCuN75 (g)TiN.72
Fig. 4.19 The polarization curves of the coated specimens.74
Fig. 4.20 Surface morphology of the coated specimen after test in 3.5wt% NaCl aqueous solution (a)TiAgN45 (b)TiAgN60 (c)TiAgN75 (d)TiCuN45 (e)TiCuN60 (f)TiCuN75 (g)TiN.75
Fig. 4.21 Comparison of weight loss present of the various specimen in vol.%10 HCl solution.76
Fig. 4.22 Surface morphology of the coated specimens after 1200 min immersion test in 10vol.% HCl solution: (a)TiAgN45 (b)TiAgN60 (c)TiAgN75 (d)TiCuN45 (e)TiCuN60 (f)TiCuN75 (g)TiN.77
Fig. 4.23 The comparison of total weight loss persent for the coated specimens after the salt spray test in 5days.79
Fig. 4.24 Surface morphology of the coated specimens after the salt spray test in 5days : (a)TiAgN45 (b)TiAgN60 (c)TiAgN75 (d)TiCuN45 (e)TiCuN60 (f)TiCuN75 (g)TiN.80
Fig. 4.25 Comparison of Antibacterial rate of the coated specimens.83
Fig. 4.26 E. coli colonies formed on Petri dishes corresponding to inoculum that was previously inoculated on(a)TiAgN45 (b)TiAgN60 (c)TiAgN75 (d)TiCuN45 (e)TiCuN60 (f)TiCuN75 (g)TiN.84
Fig. 4.27 E. coli colonies formed on Petri dishes corresponding to inoculum that was previously inoculated on (a)TiCuN45 (b)TiCuN60(c)TiCuN75.85
.


表目錄
Table 2.1 Three techniques for applying PVD coatings and their processing properties.11
Table 2.2 Characteristics and properties of titanium nitride.25
Table 3.1 Chemical compositions of AISI 304 stainless steel.(wt%).38
Table 3.2 CAD processing parameters for TiAgN and Ti-Cu-N coatings in this study.41
Table 3.3 The parameter of current by right and left target in this study.41
Table 4.1 Chemical composition of the coatings analyzed by EPMA (at.%).49
Table 4.2 Interplanar distances of TiAgN and TiCuN for the coated.55
Table 4.3 Comparison of the coating thickness for the various coating.57
Table 4.4 Surface roughness of the coated specimens.61
Table 4.5 Adhesion strength quality (ASQ) between the coatings.63
Table 4.6 The water contact angle for coated specimens.65
Table 4.7 Hardness(H), Young's modulus(E), and H/E values of the coated specimens.68
Table 4.8 The polarization and porosity measurements in this experiment.74
Table 4.9 The coated specimen’s weight change for the salt spray test in 5days.79
Table 4.10 Comparison of Antibacterial effect of the coated specimens.82
Table 4.11 Comparison of Antibacterial rate of the coated specimens.83
【1】感染控制雜誌, (101年) 第22卷, 第6期, pp.326-329.
【2】http://cctechnologies.com.au/anc_text/ch_How%20dose%20the%20silver%20work.pdf
【3】H. Wang, X. Shu, M. Guo, D. Huang, Z. Li, X. Li, B. Tang, “Structure, tribological and antibacterial activities of Ti-Cu-N hard coatings prepared by plasma surface alloying technique”, Surface and Coatings Technology, Vol.235 (2013) pp.235-240.
【4】P.J. Kelly, H. Li, K.A. Whitehead, J. Verran, R.D. Arnell, I. Iordanova, “A study on the antimicrobial and tribological properties of TiN/Ag nanocomposite coatings”, Surface and Coatings Technology, Vol.204 (2009) pp.1137-1140.
【5】S.M. Marques, I. Carvalho, M. Henriques, T. Polcar, S. Carvalho, “PVD-grow antibacterial Ag-TiN films on piezoelectric PVDF substrates for sensor applications”, Surface and Coatings Technology, Vol.281 (2015) pp.117-124.
【6】J.C. Lippold, D. J. Kotecki:Welding Metallurgy and Weldability of Stainless Steel, John Wiley & Sons, Inc., New Jersey, 2005, pp.2-4.
【7】蕭玉祥,“認識不銹鋼”,科學月刊,第31卷,第3期,2000,pp.198-204。
【8】柯賢文,腐蝕及其防治.台北市:全華科技圖書股份有限公司,1994,pp. 1-135
【9】M. Milad, N. Zreiba, F. Elhalouani, and C. Baradai, "The effect of cold work on structure and properties of AISI 304 stainless steel," Journal of Materials Processing Technology, vol. 203, pp. 80-85, 2008.
【10】B. R. Kumar, A. K. Singh, S. Das, and D. K. Bhattacharya, "Cold rolling texture in AISI 304 stainless steel," Materials Science and Engineering: A, vol. 364, pp. 132-139, 2004.
【11】羅永昶, 鑄造、熱處理技術現況與趨勢分析 vol. 第七章: 金屬中心, 2004, pp. 1-7.
【12】K.L. Choy, "Chemical vapour deposition of coatings," Progress in Materials Science, vol. 48, pp. 57-170, 2003.
【13】A.Y. Cho, "How molecular beam epitaxy (MBE) began and its projection into the future," Journal of Crystal Growth, vol. 201/202, pp. 1-7, 1999.
【14】A.L. Yerokhin , X. Nie , A. Leyland , A. Matthews , and S.J. Dowey, "Plasma electrolysis for surface engineering Plasma electrolysis for surface engineering," Surface and Coatings Technology, vol. 122,, pp. 73-93, 1999.
【15】D. M. Mattox, Handbook of Physical Vapor Deposition (PVD) Processing, Second Edition ed. United States: William Andrew, 2010, pp. 1-398.
【16】莊達人,VLSI 製造技術,高立圖書公司,台北市,1997,pp.150-161.
【17】R. Messier, A. P. Giri and R. A. Roy, “Revised structure zone model for thin film physical structure”, Journal of Vacuum Science Technology A, 2(1984) , pp.500-503.
【18】柯賢文,表面與薄膜處理技術,全華科技圖書股份有限公司,台北市,2005,pp.8-5~8-14。
【19】D. S. Rickerby and A. Matthews, Advanced Surface Coatings: a Habdbook of Surface Engineering, Blackie & Son Ltd., (1991) p.196.
【20】Milton Ohring : Material Science of Thin Films, 2nd Ed, Academic Press,London, 2002, pp.95-96, 357-399, 497-504, 716-719, 766-776.
【21】Donald M. Mattox: Handbook of Physical Vapor Deposition (PVD) Processing, Noyes Publications, New Jersey, 1998, pp.1-98, 378-397, 444-495.
【22】S. R. Pulugurtha, D. G. Bhat, M. H. Gordon, and J. Shultz, "Effect of substrate orientation on film properties using AC reactive magnetron sputtering," Surface and Coatings Technology, vol. 202, pp. 755-761, 2007.
【23】I. I. Beilis ,“State of the theory of vacuum arcs”, IEEE Transactions on Plasma science, 29(2001), pp.657-670.
【24】A. E. Guile and B. Juttner, "Basic erosion processes of oxidized and clean metal cathodes by electric arcs," IEEE Transactions On Plasma Science, vol. PS-8, pp. 259-269, 1980.
【25】J. E. Daalder, “Diameter and current density of single and multiple cathode discharges in vacuum”, IEEE Transactions Power Application Systems, PAS-93 (1974), pp.1747-1757.
【26】D. M. Mattox, Noyes, Park Ridge NJ, “Handbook of physical vapor deposition (PVD) processing”, (1998), p.378.
【27】丁南宏,“真空技術與應用”,行政院國家科學委員會精密儀器發展中心出版,2001, pp. 96- 98。
【28】陳柏諺,“Ti-Al-Si-N沉積在不銹鋼基材之高溫氧化性能研究” 明道大學碩士論文,2009,pp.4-6。
【29】沈家煌,“陰極電弧蒸鍍技術沉積Cr(N,O)/CrN 四層薄膜之機械性質與耐腐蝕行為研究”,明道大學碩士論文,2007,p.19。
【30】S. PalDey, S.C. Deevi, “ Single layer and multilayer wear resistant coatings of (Ti,Al)N: a review”, Materials Science and Engineering A, 342 (2003), pp.58-79.
【31】P. J. Martin, A. Bendavid, “Review of the filtered vacuum arc process and materials deposition”, Thin Solid Films, 394(2001), pp.1-15.
【32】R.L. Boxman and S. Goldsmith, “Macroparticle contamination in cathodic arc coatings: generation, transport and control”, Surface and Coatings Technology, 52(1992), pp.39-50.
【33】S.P. Lau, Y.H. Cheng , J.R. Shi , P. Cao , B.K. Tay , X. Shi, “Filtered cathodic vacuum arc deposition of thin film copper”, Thin Solid Films, 398-399(2001), pp.539-543.
【34】J.S. Yoon, J. G. Han. “The ion current density and spectroscopic study in a straight magnetic filtering arc deposition system”, Surface and Coatings Technology, 94(1997), pp.201-206.
【35】N. A. G. Ahmed:“Ion Plating Technology Developments and Applications”, John Wiley & Sons, Manchester, 1987, pp.53-55.
【36】Yung-I Chen and Jenq-Gong Duh, “TiN coatings on mild steel substrates with electroless nickel as an interlayer”, Surface and Coatings Technology, 48 (1991), pp.163-168.
【37】F. S. Shieu, L. H. Cheng, M. H. Shiao and S. H. Lin , “Effects of Ti interlayer on the microstructure of ion-plated TiN coatings on AISI 304 stainless stee”, Thin Solid Films, 311(1997), pp.138-145.
【38】J.-H. Huang, C.-H. Ma, H.Chen, “Effect of Ti interlayer on the residual stress and texture development of TiN thin films”, Surface and Coatings Technology, 200(2006), pp.5937-5945.
【39】K.N. Strafford, “Tribological properties of coatings—expectations, performance and the design dilemma”, Surface and Coatings Technology, 81 (1996), pp.106-117.
【40】W. Ensinger, “Low energy ion assist during deposition — an effective tool for controlling thin film microstructure”, Nucl. Instr. Meth. B, 127-128 (1997), pp.796-808.
【41】V.V. Lyubimov, A.A. Voevodin, S.E. Spassky and A.L. Yerokhin, ” Stress analysis and failure possibility assessment of multilayer physically vapour deposited coatings”, Thin Solid Films, 207(1992) ,pp.117-125.
【42】Hugh O. Pierson: Handbook of Refractory Carbides and Nitrides, Noyes Publications, New Jersey, 1996, pp.156-208.
【43】H. A. Wriedt and J. L. Murray, “The N-Ti (Nitrogen-Titanium) System”, Bulletin of Alloy Phase Diagrams, 8 (1987), pp.378-388.
【44】G.A. Cheng, D.Y Han, C.L. Liang, X.l. Wu , R.T. Zheng, “Influence of residual stress on mechanical properties of TiAlN thin films”, Surface and Coatings Technology, Vol.228 (2013) pp.S328-S330.
【45】L. Rebouta, C.J. Tavares, R. Aimo, Z. Wang, K. Pischow, E. Alves, T.C. Rojas, J.A. Odriozola, “Hard nanocomposite Ti-Si-N coatings prepared by DC reactive magnetron sputtering”, Surface and Coatings Technology, Vol.133-134 (2000) pp.234-239.
【46】J.C. Caicedo, L. Yate, J. Montes, “Improving the physicochemical surface properties on AISI D3 steel coated with Ti-W-N”, Surface and Coatings Technology, Vol.205(2011) pp.2947-2953.
【47】Z.G. Li, S. Miyake, M. Kumagai, H. Saito, Y. Muramatsu, “Hard manocomposite Ti-Cu-N films prepared by d.c. reactive magnetron co-sputtering”, Surface and Coatings Technology, Vol.183 (2004) pp.62-68.
【48】H.S. Myung, H.M. Lee, L.R. Shaginyan, J.G. Han, “Microstructure and mechanical properties of Cu doped TiN superhard nanocomposite coatings”, Surface and Coatings Technology, Vol.163-164 (2003) pp.591-596.
【49】I.T. Hong, C.H. Koo, “Antibacterial properties, corrosion resistance and mechanical properties of Cu-modified SUS 304 stainless steel”, Materials Science and Engineering A Vol.393 (2005) pp.213-222.
【50】http://cctechnologies.com.au/anc_text/ch_How%20dose%20the%20silver%20work.pdf
【51】P.J. Kelly, H. Li, K.A. Whitehead, J. Verran, R.D. Arnell, I. Iordanova, “A study on the antimicrobial and tribological properties of TiN/Ag nanocomposite coatings”, Surface and Coatings Technology, Vol.204 (2009) pp.1137-1140.
【52】S.M. Marques, I. Carvalho, M. Henriques, T. Polcar, S. Carvalho, “PVD-grow antibacterial Ag-TiN films on piezoelectric PVDF substrates for sensor applications”, Surface and Coatings Technology, Vol.281 (2015) pp.117-124.
【53】http://baike.baidu.com/view/2904302.htm (金屬二元系相圖手冊)
【54】許正勳, 房瑛展, 謝宗翰, 歐耿良, “球墨鑄鐵添加Cu/Mo合金元素之抗菌性研究”, 鑄造工程學刊, Vol.40 (1) (2014) pp.27-33.
【55】W. Heinke, A. Leyland, A. Matthews, G. Berg, C. Friedrich, E. Broszeit, “Evaluation of PVD nitride coatings, using impact, scratch, and Rockwell-C adhesion test”, Thin Solid Films, 270 (1995), pp.431-438.
【56】W. C. Oliver and G. M. Phar, “An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments”, Journal of Materials Research, 7(1992), pp.1564-1583.
【57】Kenneth Holmberg, Allan Matthews: Coatings Tribology, Elesevier Science B.V., Amsterdam, 1994, pp.1-6, 33-124.
【58】S. H. Ahn, J. H. Lee, J.G. Kim, J. G. Han, ”Localized corrosion mechanicsms of the multilayered coatings related to growth defects”, Surface and Coatings Technology 177-178 (2004), pp.638-644.
【59】B. Matthes, E. Broszeit, J. Aromaa, H. Ronkainen, S. P. Hannula, A. Matthews, “Corrosion Performance of Some Titanium-Based Hard Coatings”, Surface and Coatings Technology, 49 (1991), pp.489-495.
【60】朱榮聰、朱士亭, "析出銅離子對不銹鋼抗菌之影響," 遠東學報第二十一卷第四期, pp. 707-717, 93年6月.
【61】P.J. Kelly, H. L. ⁎, P.S. Benson, K.A. Whitehead, J. Verran, R.D. Arnell, et al., "Comparison of the tribological and antimicrobial properties of CrN/Ag, ZrN/Ag, TiN/Ag, and TiN/Cu nanocomposite coatings," Surface and Coatings Technology, vol. 205, pp. 1606-1610, 2010.
【62】彭俊豪, “電弧披覆 TiCuN 薄膜於 304 不銹鋼之特性研究” 大同大學碩士論文 , 2009 , p45-p49
【63】Hongbo Ju, Lihua Yu, Dian Yu, Isaac Asempah, Junhua Xu, “Microstructure, mechanical and trobological properties of TiN-Ag films deposited by reactive magnetron sputtering”, Vacuum 141 (2017) p82-p88
【64】曾之繁,“氮化鉻銅奈米複合薄膜之耐蝕、抗菌與熱處理性質”台灣科技大學碩士論文,pp.51-53, 2008。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top