跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2025/01/20 21:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:彭靖婷
研究生(外文):Ching-Ting Peng
論文名稱:退火與表面改質對奈米銀線薄膜電學光學性質之影響
論文名稱(外文):The Effects of Annealing and Plasma Treatment on the Optical and Electrical Properties of Silver Nanowires Film
指導教授:魏哲弘
指導教授(外文):Chehung Wei
口試委員:魏哲弘
口試委員(外文):Chehung Wei
口試日期:2017-07-06
學位類別:碩士
校院名稱:大同大學
系所名稱:機械工程學系(所)
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:87
中文關鍵詞:熱退火奈米銀線奈米線薄膜表面改質
外文關鍵詞:surface wettabilityannealingsilver nanowire filmssilver nanowires
相關次數:
  • 被引用被引用:1
  • 點閱點閱:230
  • 評分評分:
  • 下載下載:28
  • 收藏至我的研究室書目清單書目收藏:0
  奈米銀線應用於透明導電膜時需考慮許多因素,舉凡長度、線徑、塗佈方式、退火或基材表面性質都會影響銀線排列。本研究主要探討為銀線退火效應與基材表面性質對銀線薄膜的電學與光學性質影響與機制。探討退火效應時,先將奈米銀線製成薄膜後,之後進行不同溫度退火處理;基材性質效應則是先將玻璃基板進行不同程度親疏水改質,然後將奈米銀線沉積於基板之上觀察其分布情況。這些實驗分別利用四點探針量測電學性值、光譜儀量測透光率及掃描式電子顯微鏡觀察薄膜表面性質,藉以探討退火及表面改質對電學及光學性質影響。
  研究結果顯示,奈米銀線薄膜進行不同溫度熱退火處理,能有效降低片電阻率。其機制為生產奈米銀線過程中所殘留的PVP活性劑附著在奈米銀線表面,當退火溫度100℃時,伴隨著PVP活性劑的揮發,使得奈米銀線的接點貼合造成片電阻初步下降,當退火溫度在150℃至200℃時,奈米銀線開始融解使得大部分接點融合在一起,此時具有更低片電阻。然而當退火溫度在250℃至300℃時,奈米銀線由於溫度過高而開始大量的斷裂且球化,使得銀線之間無法產生連接,因此失去電學性質。不同退火溫度對光學性質影響不大,不同退火溫度的透光率其差異低於5%,然而其電學性質卻最高則能提升77%。
  另一方面,使用不同電漿改質會改變基材表面親疏水性,改變沉積時奈米銀線的排列進而影響到電學與光學性質。當奈米銀線沉積於疏水性基板時,容易產生叢聚現象,反之當其沉積於親水性基板則分佈較均勻。此種分佈的均勻性連帶影響奈米銀線薄膜的電學性質;當銀線叢聚在疏水基板,其電學性質呈現劣化現象,反之在親水性基板由於均勻分佈,其電學呈現改善現象。此外,叢聚現象與銀線的尺寸有很大的關係,當奈米銀線的線徑愈大時,愈容易產生叢聚的現象,進而影響其相關性質。
Many factors affect the performance of silver nanowires (AgNWs) as transparent conductive films e.g. wire length, diameter, deposition, annealing and substrate wettability. In this study, we investigate the effects of annealing and substrate wettability on AgNW films and the associated mechanisms. In annealing effect, the different diameter size AgNWs were drop-casting on glass substrate and then on a hot plate at various temperature as annealing. In substrate wettability, the glass was under different plasma treatment to modify its wettability. The electrical, optical and surface properties in AgNW films were examined by 4 point probe, spectrometer and SEM, respectively.
The results indicate for annealing under certain temperature, the electrical properties are improved as long as the temperature is less than 200 degree C. The annealing mechanism in different in various temperature range. For annealing temperature 100 degree C, the evaporation of residual PVP particles leads to the reduction of resistivity. As the annealing temperature raised to 150-200 degree C, the fusion of inter-connection between AgNWs results in further improvement of conductivity. When the annealing temperature is 250-300 degree C, the AgNWs become spheroidization and the networks between AgNWs disappear and the conductivity of AgNWs breaks down. Different annealing temperature seems to be insensitive to optical properties and the variation is less than 5%. On the other hand, the electrical conductivity can be improved up to 77%.
The wettability of substrate surface can be modified by different plasma treatment. The results show when AgNWs deposited on hydrophobic substrate surface, AgNWs tends to aggregate. On the other hand, there is more dispersion when AgNWs deposited on hydrophilic substrate surface. This distribution of AgNWs influence the associated electrical property. The conductivity of AgNW films became worse when AgNWs deposited on hydrophobic surface. The aggregation of AgNWs reduces the number of junction might be the reason. However, the more dispersive AgNWs on hydrophilic surface improves the conductivity by increasing the network interconnectivity. The large diameter AgNWs tends to form aggregation and this explain why smaller AgNWs has better conductivity.
謝誌 i
摘要 ii
ABSTRACT iv
目錄 vi
圖目錄 ix
表目錄 xv
第一章 序論 1
1.1 前言 1
1.2 研究動機 4
1.3 文獻探討 5
第二章 實驗原理 12
2.1 熱處理原理 12
2.2 電漿改質原理 13
2.2.1 氧氣電漿改質 14
2.2.2 HMDSZ電漿改質 15
2.3 接觸角與表面能原理 16
2.3.1 接觸角原理 16
2.3.2 表面能計算 17
第三章 研究方法 19
3.1 奈米銀線薄膜製作 19
3.2 熱退火實驗 20
3.3 電漿改質實驗 21
3.3.1 氧氣電漿改質 21
3.3.2 HMDSZ電漿改質 22
3.4電學性質量測 23
3.5光學性質量測 24
3.6表面性質量測 25
3.7 實驗流程與架構 26
第四章 結果討論 28
4.1 奈米銀線薄膜在不同退火溫度下的熱處理 28
4.1.1 奈米銀線薄膜誤差探討 28
4.1.2 熱退火溫度穩定度 29
4.1.3 奈米銀線薄膜在不同退火溫度下的電學性質 31
4.1.4 奈米銀線薄膜在不同退火溫度下的光學性質 34
4.1.5 奈米銀線薄膜在不同退火溫度下的表面性質 40
4.1.5.1 FESEM 40
4.1.5.2 AFM 48
4.1.6 奈米銀線薄膜在不同退火溫度下的元素分析 54
4.2 電漿改質對奈米銀線薄膜的影響 58
4.2.1 電漿改質下水接觸角與表面能探討 59
4.2.2 電漿改質後奈米銀線薄膜的電學性質 61
4.2.3 電漿改質後奈米銀線薄膜的光學性質 65
4.2.4 電漿改質後奈米銀線薄膜的表面性質 70
第五章 結論與未來展望 77
5.1 結論 77
5.1.1 退火對奈米銀線薄膜影響 77
5.1.2 表面改質對奈米銀線薄膜影響 78
5.2 未來展望 79
參考文獻 80
[1]Fraser, D. B.; Cook, H. D. Highly conductive, transparent films of sputtered In2–xSnxO3–y. J. Electrochem. Soc. 119, 1368–1374, 1972.
[2]D. Raoufi, A. Kiasatpour, H. Reza, Fallah and A. S. H. Rozatian, Surface characterization and microstructure of ITO thin films at different annealing temperatures, Applied Surface Science, 253, 9085–9090, 2007.
[3]D. H. Lee, S. H. Shim, J. S. Choi and K. B. Yoon, The effect of electro-annealing on the electrical properties of ITO film on colorless polyimide substrate, Applied Surface Science, 254, 4650–4654, 2008.
[4]Leterrier Y, Medico L, Demarco F, Manson J A E, Betz U, Escola M F, Olsson M K and Atamny F, Mechanical integrity of transparent conductive oxide films for flexible polymer-based displays, Thin Solid Films, 460, 156–66, 2004.
[5]Cathleen A. Hoel, Thomas O. Mason, Jean-François Gaillard, Kenneth R. Poeppelmeier, Transparent Conducting Oxides in the ZnO-In2O3-SnO2 System, Chem. Mater., 22, 3569-3579, 2010.
[6]G. Frank, H. Köstlin, Electrical properties and defect model of tin-doped indium oxide layers, Applied Physics A, 27, 197-206, 1982.
[7]J.K. Rath, Y. Liu, M.M. de Jong, J. de Wild, J.A. Schuttauf, M. Brinza, R.E.I. Schropp, Transparent conducting oxide layers for thin film silicon solar cells, Thin Solid Films, 518, e129-135, 2010.
[8]J. Hüpkes, B. Rech, S. Calnan, O. Kluth, U. Zastrow, H. Siekmann, M. Wuttig, Material study on reactively sputtered zinc oxide for thin film silicon solar cells, Thin Solid Films, 502, 286-291, 2006.
[9]Alan J. Heeger, Semiconducting and Metallic Polymers:  The Fourth Generation of Polymeric Materials, J. Phys. Chem. B, 105, 8475–8491, 2001.
[10]Hideki Shirakawa, Nobel Lecture: The discovery of polyacetylene film—the dawning of an era of conducting polymers, Rev. Mod. Phys., 73, 713-718, 2001.
[11]Zhang H., Li C., Chemical synthesis of transparent and conducting polyanilinepoly (ethylene terephthalate) composite films, Synth. Met., 44, 143-146, 1991.
[12]Cao Y., Treacy G.M., Smith P., Heeger A.J., Optical-quality transparent conductive polyanilinefilms. Synth. Met., 57, 3526–3531, 1993.
[13]Wan, M.X.; Li, M.; Li, J.C.; Liu, Z.X. Transparent and conducting coatings of polyaniline composite. Thin Solid Films, 259, 188–193, 1995.
[14]Jonas F., Krafft W., Muys B., Poly(3,4-ethylenedioxythiophene): Conductive coatings, technical applications and properties, Macromol. Symp., 100, 169–173, 1995.
[15]Groenendaal L.B., Jonas F., Freitag D., Pielartzik H., Reynolds J.R., Poly(3,4-ethylenedioxythiophene) and its derivatives: Past, present, and future, Adv. Mater., 12, 481–494, 2000.
[16]Yan H., Jo T., Okuzaki H, Highly conductive and transparent poly(3,4-ethylene dioxythiophene)/poly(4-styrenesulfonate) thin films, Polym. J., 41, 1028–1029, 2009.
[17]Wu Z C et al, Transparent, conductive carbon nanotube films, Science, 305, 1273–6, 2004.
[18]Geng H Z, Kim K K, So K P, Lee Y S, Chang Y and Lee Y H, Effect of acid treatment on carbon nanotube-based flexible transparent conducting films, J. Am. Chem. Soc. 129 7758, 2007.
[19]Dan B, Irvin G C and Pasquali M, Continuous and scalable fabrication of transparent conducting carbon nanotube films, ACS Nano, 2009.
[20]Becerril H A, Mao J, Liu Z, Stoltenberg R M, Bao Z and Chen Y, Evaluation of solution-processed reduced graphene oxide films as transparent conductors, ACS Nano, 2, 463–470, 2008.
[21]Eda G, Fanchini G and Chhowalla M, Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material, Nature Nano, 3, 270–274, 2008.
[22]Mattevi C, Eda G, Agnoli S, Miller S, Mkhoyan K A, Celik O, Mostrogiovanni D, Granozzi G, Garfunkel E and Chhowalla M, Evolution of electrical, chemical, and structural properties of transparent and conducting chemically derived graphene thin films, Adv. Funct. Mater. 19, 2577–2583, 2009.
[23]De S, King P J, Lyons P E, Khan U and Coleman J N, Size effects and the problem with percolation in nanostructured transparent conductor,s ACS Nano, 4, 7064–7072, 2010.
[24]Hu L B, Kim H S, Lee J Y, Peumans P and Cui Y, Scalable coating and properties of transparent, flexible, silver nanowire electrodes, ACS Nano, 4, 2955–2963, 2010.
[25]Madaria A R, Kumar A and Zhou C W, Large scale, highly conductive and patterned transparent films of silver nanowires on arbitrary substrates and their application in touch screens, Nanotechnology, 22, 245201, 2011.
[26]Rathmell A R, Bergin S M, Hua Y L, Li Z Y and Wiley B J, The growth mechanism of copper nanowires and their properties in flexible, transparent conducting films, Adv. Mater. 22, 3558–3563, 2010.
[27]J.-Y. Lee, S. T. Connor, Y. Cui, P. Peumans, Solution-processed metal nanowire mesh transparent electrodes, Nano Lett, 8, 689-692, 2008.
[28]S. De, T. M. Higgins, P. E. Lyons, E. M. Doherty, P. N. Nirmalraj, W. J. Blau, J. J. Boland, J. N. Coleman, Silver Nanowire Networks as Flexible, Transparent, Conducting Films: Extremely High DC to Optical Conductivity Ratios, ACS Nano, 3, 1767-1774, 2009.
[29]De S, Higgins T M, Lyons P E, Doherty E M, Nirmalraj P N, Blau W J, Boland J J and Coleman J N, Silver nanowire networks as flexible, transparent, conducting films: extremely high DC to optical conductivity ratios ACS Nano, 3, 1767–1774, 2009.
[30]Hu L, Kim H S, Lee J-Y, Peumans P and Cui Y, Scalable coating and properties of transparent, flexible, silver nanowire electrodes, ACS Nano, 4, 2955–2963, 2010.
[31]Rathmell A R, Bergin S M, Hua Y-L, Li Z-Y and Wiley B J, The growth mechanism of copper nanowires and their properties in flexible, transparent conducting films, Adv. Mater., 22, 3558–3563, 2010.
[32]Aaron R. Rathmell and Benjamin J. Wiley, The Synthesis and Coating of Long, Thin Copper Nanowires to Make Flexible, Transparent Conducting Films on Plastic Substrates, Advanced Materials, 4798-4803, 2011.
[33]Philip E Lyons, Sukanta De, Jamil Elias, Matthias Schamel, Laetitia Philippe, Allen T Bellew,John J Boland, and Jonathan N Coleman, High-Performance Transparent Conductors from Networks of Gold Nanowires, The Journal of Physical Chemistry Letters, 3058-3062, 2011.
[34]Lee J Y, Connor S T, Cui Y and Peumans P, Solution-processed metal nanowire mesh transparent electrodes, Nano Lett. 8, 689–692, 2008.
[35]Hu L B, Kim H S, Lee J Y, Peumans P and Cui Y, Scalable coating and properties of transparent, flexible, silver nanowire electrodes, ACS Nano, 4, 2955–2963, 2010.
[36]Madaria A R, Kumar A, Ishikawa F N and Zhou C W, Uniform, highly conductive, and patterned transparent films of a percolating silver nanowire network on rigid and flexible substrates using a dry transfer technique, Nano Res. 3, 564–573, 2010.
[37]Tokuno T, Nogi M, Karakawa M, Jiu J, Nge T, Aso Y and Suganuma K, Fabrication of silver nanowire transparent electrodes at room temperature, Nano Res. 4, 1215–1222, 2011.
[38]B. T. Liu and H. L. Kuo, Graphene/silver nanowire sandwich structures for transparent conductive films, Carbon, 63, 390-396, 2013.
[39]Allen T. Bellew, Hugh G. Manning, Claudia Gomes da Rocha, Mauro S. Ferreira, John J. Boland, Resistance of Single Ag Nanowire Junctions and Their Role in the Conductivity of Nanowire Networks, ACS Nano, 9, 11422-11429, 2015.
[40]Sorel S, Lyons P E, De S, Dickerson J C and Coleman J N, The dependence of the optoelectrical properties of silver nanowire networks on nanowire length and diameter, Nanotechnology, 23, 185201, 2012.
[41]A.B.V.Kiran Kumar, Silver nanowire based flexible electrodes with improved properties:High conductivity, transparency, adhesion and low haze, Materials Research Bulletin 48,2944–2949, 2013.
[42]Keisuke Azuma, Koichi Sakajiri, Hidetoshi Matsumoto, Sungmin Kang, Junji Watanabe, Masatoshi Tokita, Facile fabrication of transparent and conductive nanowire networks by wet chemical etching with an electrospun nanofiber mask template, Materials Letters115, 187-189, 2014.
[43]Shihuy Chen, Chehung Wei, On the Electrical and Optical Properties of Different Size Silver Nanowires Film via Dielectrophoresis Purification, 2014.
[44]Wenchen Fu, Chehung Wei, The Effect of Substrate and Suface Treatment on the Electrical and Optical Properties of Dielectrophoresisi Purified Silver Nanowires Films, 2014.
[45]Daniel Langley, Silver nanowire networks : effects of percolation and thermal annealing on physical properties. Materials. Universite de Grenoble, 2014.
[46]R. H. Hansen, J. V. Pascale, T. De Benedictis, and P. M. Rentepis, Effect of Atomic Oxygen on Polymers, Journal of Polymer Science, 3, 2205-2214, 1965.
[47]http://plasmatreatment.co.uk/henniker-plasma-technology/plasma-surface-technology/plasma-technology/plasma-surface-activation/
[48]鄭總輝、陳振鑾、陳致源、鄭欽峰,疏水自潔塗層結構概論,工業材料雜誌,218期2月號,2015年
[49]T. Nishino, M. Meguro, K. Nakamae, M. Matsushita, Y. Ueda, The Lowest Surface Free Energy Based on −CF3 Alignment, Langmuir, 15, 4321-4323, 1999.
[50]http://www.sindatek.com/Bmyl.htm
[51]陳克紹、沈昕平、吳仁淵、陳儒言、洪翠禪、廖淑娟、陳威、薛存洧,冷電漿處理與接枝聚合高分子以增進鈦金屬表面親水性,中華民國防蝕工程學會度防蝕工程年會暨論文發表會,1999年
[52]Robert D. Deegan, Olgica Bakajin, Todd F. Dupont, Greg Huber, Sidney R. Nagel, Thomas A. Witten, Capillary flow as the cause of ring stains from dried liquid drops, typeset July 15, 1997.
[53]Ko Shao Chen, Wan Yu Lin, Thin film prepared by cold plasma deposition of hexamethyldisilazane and vinyltrimethylsilane for transparent optical and water vapor barrier application, Thesis for Master, 2014.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top