[1]Fraser, D. B.; Cook, H. D. Highly conductive, transparent films of sputtered In2–xSnxO3–y. J. Electrochem. Soc. 119, 1368–1374, 1972.
[2]D. Raoufi, A. Kiasatpour, H. Reza, Fallah and A. S. H. Rozatian, Surface characterization and microstructure of ITO thin films at different annealing temperatures, Applied Surface Science, 253, 9085–9090, 2007.
[3]D. H. Lee, S. H. Shim, J. S. Choi and K. B. Yoon, The effect of electro-annealing on the electrical properties of ITO film on colorless polyimide substrate, Applied Surface Science, 254, 4650–4654, 2008.
[4]Leterrier Y, Medico L, Demarco F, Manson J A E, Betz U, Escola M F, Olsson M K and Atamny F, Mechanical integrity of transparent conductive oxide films for flexible polymer-based displays, Thin Solid Films, 460, 156–66, 2004.
[5]Cathleen A. Hoel, Thomas O. Mason, Jean-François Gaillard, Kenneth R. Poeppelmeier, Transparent Conducting Oxides in the ZnO-In2O3-SnO2 System, Chem. Mater., 22, 3569-3579, 2010.
[6]G. Frank, H. Köstlin, Electrical properties and defect model of tin-doped indium oxide layers, Applied Physics A, 27, 197-206, 1982.
[7]J.K. Rath, Y. Liu, M.M. de Jong, J. de Wild, J.A. Schuttauf, M. Brinza, R.E.I. Schropp, Transparent conducting oxide layers for thin film silicon solar cells, Thin Solid Films, 518, e129-135, 2010.
[8]J. Hüpkes, B. Rech, S. Calnan, O. Kluth, U. Zastrow, H. Siekmann, M. Wuttig, Material study on reactively sputtered zinc oxide for thin film silicon solar cells, Thin Solid Films, 502, 286-291, 2006.
[9]Alan J. Heeger, Semiconducting and Metallic Polymers: The Fourth Generation of Polymeric Materials, J. Phys. Chem. B, 105, 8475–8491, 2001.
[10]Hideki Shirakawa, Nobel Lecture: The discovery of polyacetylene film—the dawning of an era of conducting polymers, Rev. Mod. Phys., 73, 713-718, 2001.
[11]Zhang H., Li C., Chemical synthesis of transparent and conducting polyanilinepoly (ethylene terephthalate) composite films, Synth. Met., 44, 143-146, 1991.
[12]Cao Y., Treacy G.M., Smith P., Heeger A.J., Optical-quality transparent conductive polyanilinefilms. Synth. Met., 57, 3526–3531, 1993.
[13]Wan, M.X.; Li, M.; Li, J.C.; Liu, Z.X. Transparent and conducting coatings of polyaniline composite. Thin Solid Films, 259, 188–193, 1995.
[14]Jonas F., Krafft W., Muys B., Poly(3,4-ethylenedioxythiophene): Conductive coatings, technical applications and properties, Macromol. Symp., 100, 169–173, 1995.
[15]Groenendaal L.B., Jonas F., Freitag D., Pielartzik H., Reynolds J.R., Poly(3,4-ethylenedioxythiophene) and its derivatives: Past, present, and future, Adv. Mater., 12, 481–494, 2000.
[16]Yan H., Jo T., Okuzaki H, Highly conductive and transparent poly(3,4-ethylene dioxythiophene)/poly(4-styrenesulfonate) thin films, Polym. J., 41, 1028–1029, 2009.
[17]Wu Z C et al, Transparent, conductive carbon nanotube films, Science, 305, 1273–6, 2004.
[18]Geng H Z, Kim K K, So K P, Lee Y S, Chang Y and Lee Y H, Effect of acid treatment on carbon nanotube-based flexible transparent conducting films, J. Am. Chem. Soc. 129 7758, 2007.
[19]Dan B, Irvin G C and Pasquali M, Continuous and scalable fabrication of transparent conducting carbon nanotube films, ACS Nano, 2009.
[20]Becerril H A, Mao J, Liu Z, Stoltenberg R M, Bao Z and Chen Y, Evaluation of solution-processed reduced graphene oxide films as transparent conductors, ACS Nano, 2, 463–470, 2008.
[21]Eda G, Fanchini G and Chhowalla M, Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material, Nature Nano, 3, 270–274, 2008.
[22]Mattevi C, Eda G, Agnoli S, Miller S, Mkhoyan K A, Celik O, Mostrogiovanni D, Granozzi G, Garfunkel E and Chhowalla M, Evolution of electrical, chemical, and structural properties of transparent and conducting chemically derived graphene thin films, Adv. Funct. Mater. 19, 2577–2583, 2009.
[23]De S, King P J, Lyons P E, Khan U and Coleman J N, Size effects and the problem with percolation in nanostructured transparent conductor,s ACS Nano, 4, 7064–7072, 2010.
[24]Hu L B, Kim H S, Lee J Y, Peumans P and Cui Y, Scalable coating and properties of transparent, flexible, silver nanowire electrodes, ACS Nano, 4, 2955–2963, 2010.
[25]Madaria A R, Kumar A and Zhou C W, Large scale, highly conductive and patterned transparent films of silver nanowires on arbitrary substrates and their application in touch screens, Nanotechnology, 22, 245201, 2011.
[26]Rathmell A R, Bergin S M, Hua Y L, Li Z Y and Wiley B J, The growth mechanism of copper nanowires and their properties in flexible, transparent conducting films, Adv. Mater. 22, 3558–3563, 2010.
[27]J.-Y. Lee, S. T. Connor, Y. Cui, P. Peumans, Solution-processed metal nanowire mesh transparent electrodes, Nano Lett, 8, 689-692, 2008.
[28]S. De, T. M. Higgins, P. E. Lyons, E. M. Doherty, P. N. Nirmalraj, W. J. Blau, J. J. Boland, J. N. Coleman, Silver Nanowire Networks as Flexible, Transparent, Conducting Films: Extremely High DC to Optical Conductivity Ratios, ACS Nano, 3, 1767-1774, 2009.
[29]De S, Higgins T M, Lyons P E, Doherty E M, Nirmalraj P N, Blau W J, Boland J J and Coleman J N, Silver nanowire networks as flexible, transparent, conducting films: extremely high DC to optical conductivity ratios ACS Nano, 3, 1767–1774, 2009.
[30]Hu L, Kim H S, Lee J-Y, Peumans P and Cui Y, Scalable coating and properties of transparent, flexible, silver nanowire electrodes, ACS Nano, 4, 2955–2963, 2010.
[31]Rathmell A R, Bergin S M, Hua Y-L, Li Z-Y and Wiley B J, The growth mechanism of copper nanowires and their properties in flexible, transparent conducting films, Adv. Mater., 22, 3558–3563, 2010.
[32]Aaron R. Rathmell and Benjamin J. Wiley, The Synthesis and Coating of Long, Thin Copper Nanowires to Make Flexible, Transparent Conducting Films on Plastic Substrates, Advanced Materials, 4798-4803, 2011.
[33]Philip E Lyons, Sukanta De, Jamil Elias, Matthias Schamel, Laetitia Philippe, Allen T Bellew,John J Boland, and Jonathan N Coleman, High-Performance Transparent Conductors from Networks of Gold Nanowires, The Journal of Physical Chemistry Letters, 3058-3062, 2011.
[34]Lee J Y, Connor S T, Cui Y and Peumans P, Solution-processed metal nanowire mesh transparent electrodes, Nano Lett. 8, 689–692, 2008.
[35]Hu L B, Kim H S, Lee J Y, Peumans P and Cui Y, Scalable coating and properties of transparent, flexible, silver nanowire electrodes, ACS Nano, 4, 2955–2963, 2010.
[36]Madaria A R, Kumar A, Ishikawa F N and Zhou C W, Uniform, highly conductive, and patterned transparent films of a percolating silver nanowire network on rigid and flexible substrates using a dry transfer technique, Nano Res. 3, 564–573, 2010.
[37]Tokuno T, Nogi M, Karakawa M, Jiu J, Nge T, Aso Y and Suganuma K, Fabrication of silver nanowire transparent electrodes at room temperature, Nano Res. 4, 1215–1222, 2011.
[38]B. T. Liu and H. L. Kuo, Graphene/silver nanowire sandwich structures for transparent conductive films, Carbon, 63, 390-396, 2013.
[39]Allen T. Bellew, Hugh G. Manning, Claudia Gomes da Rocha, Mauro S. Ferreira, John J. Boland, Resistance of Single Ag Nanowire Junctions and Their Role in the Conductivity of Nanowire Networks, ACS Nano, 9, 11422-11429, 2015.
[40]Sorel S, Lyons P E, De S, Dickerson J C and Coleman J N, The dependence of the optoelectrical properties of silver nanowire networks on nanowire length and diameter, Nanotechnology, 23, 185201, 2012.
[41]A.B.V.Kiran Kumar, Silver nanowire based flexible electrodes with improved properties:High conductivity, transparency, adhesion and low haze, Materials Research Bulletin 48,2944–2949, 2013.
[42]Keisuke Azuma, Koichi Sakajiri, Hidetoshi Matsumoto, Sungmin Kang, Junji Watanabe, Masatoshi Tokita, Facile fabrication of transparent and conductive nanowire networks by wet chemical etching with an electrospun nanofiber mask template, Materials Letters115, 187-189, 2014.
[43]Shihuy Chen, Chehung Wei, On the Electrical and Optical Properties of Different Size Silver Nanowires Film via Dielectrophoresis Purification, 2014.
[44]Wenchen Fu, Chehung Wei, The Effect of Substrate and Suface Treatment on the Electrical and Optical Properties of Dielectrophoresisi Purified Silver Nanowires Films, 2014.
[45]Daniel Langley, Silver nanowire networks : effects of percolation and thermal annealing on physical properties. Materials. Universite de Grenoble, 2014.
[46]R. H. Hansen, J. V. Pascale, T. De Benedictis, and P. M. Rentepis, Effect of Atomic Oxygen on Polymers, Journal of Polymer Science, 3, 2205-2214, 1965.
[47]http://plasmatreatment.co.uk/henniker-plasma-technology/plasma-surface-technology/plasma-technology/plasma-surface-activation/
[48]鄭總輝、陳振鑾、陳致源、鄭欽峰,疏水自潔塗層結構概論,工業材料雜誌,218期2月號,2015年[49]T. Nishino, M. Meguro, K. Nakamae, M. Matsushita, Y. Ueda, The Lowest Surface Free Energy Based on −CF3 Alignment, Langmuir, 15, 4321-4323, 1999.
[50]http://www.sindatek.com/Bmyl.htm
[51]陳克紹、沈昕平、吳仁淵、陳儒言、洪翠禪、廖淑娟、陳威、薛存洧,冷電漿處理與接枝聚合高分子以增進鈦金屬表面親水性,中華民國防蝕工程學會度防蝕工程年會暨論文發表會,1999年
[52]Robert D. Deegan, Olgica Bakajin, Todd F. Dupont, Greg Huber, Sidney R. Nagel, Thomas A. Witten, Capillary flow as the cause of ring stains from dried liquid drops, typeset July 15, 1997.
[53]Ko Shao Chen, Wan Yu Lin, Thin film prepared by cold plasma deposition of hexamethyldisilazane and vinyltrimethylsilane for transparent optical and water vapor barrier application, Thesis for Master, 2014.