跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.171) 您好!臺灣時間:2024/12/09 13:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李政嶽
研究生(外文):Cheng-Yueh Lee
論文名稱:應用靜電紡絲法製作鉑鈀奈米纖維技術研究與性能測試分析
論文名稱(外文):Fabrication of PtPd nanowires by the electrospinning technique and performance analysis
指導教授:張敏興戴兢志
指導教授(外文):Min-Hsing ChangChing-Chih Tai
口試委員:張敏興戴兢志
口試委員(外文):Min-Hsing ChangChing-Chih Tai
口試日期:2017-07-18
學位類別:碩士
校院名稱:大同大學
系所名稱:機械工程學系(所)
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:48
中文關鍵詞:電極觸媒鉑鈀奈米纖維靜電紡絲技術質子交換膜燃料電池
外文關鍵詞:ElectrocatalystsPtPd nanowiresElectrospinningPEMFC
相關次數:
  • 被引用被引用:2
  • 點閱點閱:208
  • 評分評分:
  • 下載下載:33
  • 收藏至我的研究室書目清單書目收藏:0
以靜電紡絲法所製作出的金屬奈米纖維對於質子交換膜燃料電池的效能提升有很大的應用潛力,但在眾多相關文獻中,卻未有以鉑鈀奈米纖維應用於燃料電池中觸媒層的研究。本研究使用聚乙烯吡咯烷酮(Polyvinylpyrrolidone,PVP)高分子混合Pt前驅物(六氯鉑酸)與Pd前驅物(氯化鈀)配置高分子溶液,以靜電紡絲的方法製作鉑鈀二元金屬奈米纖維作為質子交換膜燃料電池的電極觸媒,並進行性能測試分析。實驗過程中,詳細探討奈米纖維製作參數條件變化對纖維型態產生的效應。研究結果顯示,當PVP高分子濃度為8 wt%且六氯鉑酸與氯化鈀的重量百分比濃度為2 wt%,並在鉑與鈀的莫耳數比為3:1時,能夠得到最為完整且平均直徑44.12 nm的纖維,接著使用三電極系統進行循環伏安法測試不同組成比例的纖維性能後發現,當鉑與鈀的莫耳數比例同樣為3:1時,氫氣吸附的總電荷可達2.45×〖10〗^(-4) C,高於其他混合比例的纖維,本研究實驗結果證明了以靜電紡絲法製作鉑鈀奈米纖維以及應用於燃料電池的可能性。
The metal nanowires which were produced by electrospinning method have great potential at proton exchange membrane fuel cell (PEMFC). However, there is almost none research about PtPd nanowires for electrode catalyst in PEMFC. The electrospun nanofibers were produced by electrospun solution made of PVP polymer mixed with Pt precursor (H2PtCl6) and Pd precursor (PdCl2) to be catalyst layers and the performance was tested. The experiment results indicated that while the 8wt% of PVP, 2wt% of H2PtCl6 with PdCl2, and the mole ratio of Pt to Pd was 3:1 which acquired the complete fiber with average diameter 44.12 nm. Using the three electrode method for cyclic voltammetry to test the fiber properties of different proportions. Results showed that when the mole ratio of Pt to Pd was 3:1, and the total charge of hydrogen adsorption was 2.45×〖10〗^(-4) C. It was higher than the other mixing ratio of the fiber. The experiment results showed that the possibility which PtPd nanofibers produced by electrospinning method and the application of fuel cells.
第一章 緒論1
1.1 前言1
1.2 文獻回顧3
1.2.1觸媒的材料與形態選用3
1.2.2 靜電紡絲法6
1.3 研究目的7
第二章 實驗規劃9
實驗藥品材料清單9
實驗儀器設備清單10
2.1 高分子溶液調配10
2.1.1 Pd高分子溶液11
2.1.2 PtPd高分子溶液11
2.2 靜電紡絲法製備Pd、PtPd奈米纖維11
2.3 Pd、PtPd奈米纖維穩定化12
2.4 以FE-SEM觀測奈米纖維型態12
2.5 觸媒漿料的配製13
2.6 循環伏安法量測13
第三章 結果討論20
3.1 以靜電紡絲法製作Pd奈米纖維20
3.1.1 高分子溶液濃度對Pd奈米纖維型態的效應21
3.1.2 收集距離對Pd奈米纖維型態的效應22
3.1.3 其他參數對Pd奈米纖維型態的效應23
3.2 電紡系統收集PtPd奈米纖維24
3.2.1 不同的鉑鈀莫耳數比對PtPd奈米纖維的影響25
3.2.2 不同的溶液濃度對PtPd奈米纖維的影響26
3.3 三電極法量測循環伏安圖29
第四章 結論與未來展望42
4.1 結論42
4.2 未來展望43
參考文獻44
[1] Z. Yan, B. Li, D. Yang, J. Ma, “Pt nanowire electrocatalysts for proton exchange membrane fuel cells,” Chinese Journal of Catalysis, 34 (2013) 1471-1481.
[2] Y. Lu, S. Du, R. Steinberger-Wilckens, “One-dimensional nanostructured electrocatalysts for polymer electrolyte membrane fuel cell-A review,” Applied Catalysis B: Environmental, 199 (2016) 292-314.
[3] F. Liu, C. Wang, J. Zhang, A. Lan, J. Li, M. Ouyang, “Ordered membrane electrode assembly of proton exchange membrane fuel cell,” Progress in Chemistry, 26 (2014) 1763-1771.
[4] H. J. Kim, Y. S. Kim, M. H. Seo, S. M. Choi, J. Cho, “Highly improved oxygen reduction performance over Pt/C-dispersed nanowire network catalysts,” Electrochemistry Communications, 12 (2010) 32-35.
[5] J. Wang, G. Yin, Y. Shao, S. Zhang, Z. Wang, Y. Gaoa, “Effect of carbon black support corrosion on the durability of Pt/C catalyst,” Journal of Power Sources, 171 (2007) 331-339.
[6] W. Wang, O. Savadogo, Z. F. Ma, “The oxygen reduction reaction on Pt/TiOxNy-based electrocatalyst for PEM fuel cell applications,” Journal of Applied Electrochemistry, 42 (2012) 857-866.
[7] Y. S. Kim, H. J. Kim, W. B. Kim, “Composited hybrid electrocatalysts of Pt-based nanoparticles and nanowires for low temperature polymer electrolyte fuel cells,” Electrochemistry Communications, 11 (2009) 1026-1029.
[8] J. Huang, H. Hou, T. You, “Highly efficient electrocatalytic oxidation of formic acid by electrospun carbon nanofiber-supported PtXAu100-X bimetallic electrocatalyst,” Electrochemistry Communications, 11 (2009) 1281-1284.
[9] Y. Lu, S. Du, R. Steinberger-Wilckens, “Three-dimensional catalyst electrodes based on PtPd nanodendrites for oxygen reduction reaction in PEFC applications,” Applied Catalysis B: Environmental, 187 (2016) 108-114.
[10] Y. Zhang, X. Wu, Y. Fu, W. Shen, X. Zeng, W. Ding, “Carbon aerogel supported Pt–Zn catalyst and its oxygen reduction catalytic performance in magnesium-air batteries,” Materials Research Society, 29 (2014) 2863-2870.
[11] L. B. Venarusso, J. Bettini, G. Maia, “Catalysts for oxygen reduction reaction based on nanocrystals of a Pt or Pt–Pd alloy shell supported on a Au core,” Journal of Solid State Electrochemistry, 20 (2016) 1753-1764.
[12] G. H. An, H. J. Ahn, W. K. Hong, “Electrochemical properties for high surface area and improved electrical conductivity of platinum-embedded porous carbon nanofibers,” Journal of Power Sources, 274 (2015) 536-541.
[13] K. K. Maniam, R. Chetty, “Electrochemical synthesis of palladium dendrites on carbon support and their enhanced electrocatalytic activity towards formic acid oxidation,” Journal of Applied Electrochemistry, 45 (2015) 953–962.
[14] X. Zhang, W. Pan, J. Dong, Q. Liu, J. Wang, “Fabrication and characterization of FePt magnetic nanofibers via electrospinning technique,” Journal of Materials Science, 50 (2015) 7218–7226.
[15] Y. Wang, G. Li, J. Jin, S. Yang, “Hollow porous carbon nanofibers as novel support for platinum-based oxygen reduction reaction electrocatalysts,” International Journal of Hydrogen Energy, 42 (2017) 5938-5947.
[16] Y. T. Pan, J. Wu, X. Yin, H. Yang, “In situ ETEM study of composition redistribution in Pt-Ni octahedral catalysts for electrochemical reduction of oxygen,” AIChE Journal, 62 (2016) 399-407.
[17] M. A. Garcı´a-Contreras, S. M. Ferna´ndez-Valverde, R. Basurto-Sa´nchez, “Investigation of oxygen reduction in alkaline media on electrocatalysts prepared by the mechanical alloying of Pt, Co, and Ni,” Journal of Applied Electrochemistry, 45 (2015) 1101–1112.
[18] Q. Wang, Z. Liu, W. Wang, D. Liu, W. Shi, J. He, P. Shao, R. Shi, F. Cui, “Nanostructured palladium/polypyrrole composite paper for enhanced catalytic hydrogen generation from ammonia borane,” International Journal of Hydrogen Energy, 41 (2016) 8470-8478.
[19] M. Yaldagard, N. Seghatoleslami, M. Jahanshah, “Oxygen reduction reaction activity improvement in Cu/PtPd nanocatalyst based on core-shell structured through electrochemical synthesis on porous gas diffusion electrodes in polymer electrolyte membrane fuel cells,” Journal of Nano Research, 31 (2015) 62-80.
[20] W. J. Khudhayer, M. Begum, U. B. Nasini, M. F. Cansizoglu, M. Yurukcu, A. U. Shaikh, T. Karabacak, “Oxygen reduction reaction electrocatalytic activity of tilted pt nanorod arrays fabricated by glancing angle deposition,” Journal of Applied Electrochemistry, 45 (2015) 1113-1121.
[21] F. N. Pardo, D. Benetti, H.G. Zhao, V.M. Castano, A. Vomiero, F. Rosei, “Platinum/Palladium hollow nanofibers as high-efficiency counter electrodes for enhanced charge transfer,” Journal of Power Sources, 335 (2016) 138-145.
[22] A. Ashikawa, R. Yoshie, K. Kato, K. Miyazawa, H. Murata, K. Hotozuka, M. Tachibana, “Pt nanoparticles supported on carbon nanowalls with different domain sizes for oxygen reduction reaction,” Journal of Applied Physics, 118 (2015) 214-303.
[23] Y. S. Kim, S. H. Nam, H. S. Shim, ”Electrospun bimetallic nanowires of PtRh and PtRu with compositional variation for methanol electrooxidation,” Electrochemistry Communications, 10 (2008) 1016-1019.
[24] G. Sun, L. Sun, H. Xie, J. Liu, “Electrospinning of Nanofibers for Energy Applications,” Nanomaterials, 6 (2016).
[25] P. N. Pintauro, P. Mather, O. Amoult, J. Choi, R. Wycisk, K. M. Lee, “Composite membranes for hyfrogen/air PEM fuel cell,” ECS Transactions, 11 (2007) 79-87.
[26] P. Schecher, E. Kroll, E. Bubis, S. Chervinsky, E. Zussman, “Silver-plated electrospun fibrous anode for glucose alkaline fuel cells,” Journal of the Electrochemical Society, 154 (2007) 8942-8948.
[27] H. J. Kim, Y. S. Kim, M. H. Seo, S. M. Choi, W. B. Kim, “Pt and PtRh nanowire electrocatalysts for cyclohexane-fuels polymer electrolyte membrane fuel cell,” Electrochemistry Communications, 11 (2009) 446-449.
[28] R. Bajon, S. Balaji, S. M. Guo, “Electrospun Nafion nanofiber for proton exchange membrane fuel cell application,” Journal of Fuel Cell Science and Technology, 6 (2009).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊