跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2024/12/14 21:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:古志強
研究生(外文):Chih-Chiang Ku
論文名稱:改良株落選擇演算法於結構拓樸及多冰機負載最佳化
論文名稱(外文):A Modified Clonal Selection Algorithm Applied to Structural Topology and Multiple Chiller Loading Optimization
指導教授:吳俊瑩吳俊瑩引用關係
指導教授(外文):Chun-Yin Wu
口試委員:吳俊瑩
口試委員(外文):Chun-Yin Wu
口試日期:2017-07-24
學位類別:博士
校院名稱:大同大學
系所名稱:機械工程學系(所)
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:72
中文關鍵詞:每日冰水主機負載分配最佳化問題株落選擇演算法結構拓樸最佳化問題應力強化之超突變操作機制冰水主機負載分配最佳化問題
外文關鍵詞:clonal selection algorithmstructural topology optimizationstress-enhanced hypermutation operatoroptimal chiller loading problemdaily optimal chiller loading problem
相關次數:
  • 被引用被引用:0
  • 點閱點閱:159
  • 評分評分:
  • 下載下載:7
  • 收藏至我的研究室書目清單書目收藏:0
近期有許多版本之改良式株落選擇演算法已經被大量地運用到理論和實際的應用上。然而,這些研究中卻少有被應用到結構拓樸最佳化問題及多台冰水主機負載最佳化問題的求解上。此外對於使用二進位編碼表示且以群體為基礎(population-based)的結構拓樸最佳化方法而言,結構設計連結情況的處理及單點連結的預防是十分重要的一個環節,卻尚未被考量於文獻上的類免疫演算法。本研究提出一個應力強化的株落選擇演算法(stress-enhanced clonal selection algorithm, SECSA),其結合了使用以支配為基礎的限制條件處理機制(dominance-based constraint-handling)和新的應力強化之超突變操作機制(stress-enhanced hypermutation operator)等於類免疫演算法中。為了展示所提出之方法的高可行性,本研究所提出之SECSA將和其他基因遺傳演算法類的方法在最小撓度問題(二維度及三維度)和最小重量問題(單一負載及多負載)等基準結構拓樸設計問題(benchmark structural topology design problems)上進行比較。而從這些比較中得到的結果可以發現到,本研究所提出之SECSA和其他方法相比較,不論在收斂的速度上及答案品質上皆具有不錯的競爭力。

對於冰水主機負載分配最佳化 (Optimal Chiller Loading, OCL) 問題的求解上,本研究先藉由把問題指定之限制條件(冷卻需求)視為一個新增加的求解目標,而將原本具有限制條件的單目標冰水主機負載分配最佳化的問題,轉成無限制條件的多目標冰水主機負載分配最佳化的問題。然後,再以一改良式株落選擇演算來求解此問題。一旦取得了這個多目標最佳化問題的一系列妥協解後,便可直接從中挑選出最符合冷卻需求的妥協解,作為原來冰水主機負載分配最佳化問題的最佳解。此外,運用此一相同系列的妥協解和挑選流程,不但可直接求解符合不同冷卻需求條件的冰水主機負載分配最佳化問題,甚至是擁有大量變數和等式限制條件之高難度的每日冰水主機負載分配最佳化問題,也只需要按各時間之冷卻需求的條件,逐一挑選出相符合的妥協解即可。其所得之結果和文獻進行比較,顯示出本研究所提出之方法,能夠穩健地以較少的計算次數,找出每日冰水主機負載分配最佳化問題的最佳部分負載組合。

本研究不但探索類免疫演算法的能力之外,還展示出類免疫演算法搭配適當之加強機制可發展出效能與求解品質都很優異的最佳化求解方法。
Recently, numerous modified versions of clonal selection algorithms (CSAs) have been adopted in both theoretical and practical applications. However, few have been proposed for solving structural topology optimization problems and optimal chiller loading problems. In addition, the design connectivity handling and one-node connected hinge prevention, which are vital in the application of population-based methods with binary representation for structural topology optimization, have not been applied to IAs in literature. A stress-enhanced clonal selection algorithm (SECSA) incorporating an IA with a dominance-based constraint-handling technique and a new stress-enhanced hypermutation operator is proposed to rectify those deficiencies. To demonstrate the high viability of the presented method, comparisons between the presented SECSA and GA-based methods were made on minimum compliance and minimum weight benchmark structural topology design problems in 2D, 3D, and multi-loading cases. In each case, SECSA was shown to be competitive in terms of convergence speed and solution quality.

In solving optimal chiller loading (OCL) problems, the original constrained single-objective problem is firstly transformed into an unconstrained multi-objective optimization problem by defining the given constraint (cooling demand) as an additional objective. Then this transformed unconstraint multi-objective optimization problem is solved by the adopted modified clonal selection algorithm. Once a series of compromise solutions for this multi-objective optimization problem is obtained, the compromise solution with closest matching cooling load to the given cooling demand can be directly selected as the optimal solution to the original OCL problem. Furthermore, by the same series of compromise solutions and selection process, a new multiple chiller loading optimization problem with a different cooling demand can be directly handled. Even for the more complex daily optimal chiller loading (DOCL) problem with excessive decision variables and equality constraints, it still works by individually selecting the compromise solution with closest matching cooling load to the given cooling demand at each time interval merely. The obtained results, compared with those reported in the literature, show that the adopted approach can robustly find the optimal solution to a DOCL problem with less function evaluations.

The main goal of this study is not only to further explore the capabilities of IAs, but also to show that an IA with appropriate enhancements can lead to the development of attractive optimization computational tools.
ACKNOWLEDGEMENT i
摘要 ii
ABSTRACT iv
TABLE OF CONTENTS vi
LIST OF TABLES viii
LIST OF FIGURES ix
NOMENCLATURE xi
CHAPTER 1 INTRODUCTION 1
1.1 STRUCTURAL TOPOLOGY OPTIMIZATION 2
1.2 OPTIMAL CHILLER LOADING PROBLEM 5
CHAPTER 2 OVERVIEW OF THE CLONAL SELECTION ALGORITHM 9
2.1 CLONAL SELECTION THEORY 10
2.2 CLONAL SELECTION ALGORITHM 13
CHAPTER 3 STRESS-ENHANCED CLONAL SELECTION ALGORITHM 15
3.1 DESIGN PROBLEM REPRESENTATION 15
3.2 CONNECTIVITY ANALYSIS 17
3.3 CONNECTIVITY HANDLING TECHNIQUE 18
3.4 DOMINANCE-BASED CONSTRAINT-HANDLING TECHNIQUE 20
3.5 CLONING OPERATOR 21
3.6 ENHANCED HYPERMUTATION OPERATOR 23
3.7 ELITIST AGING OPERATOR 27
3.8 OUTLINE OF THE PRESENTED SECSA 28
CHAPTER 4 MODIFIED CSA APPROACH FOR OPTIMAL CHILLER LOADING OPTIMIZATION 30
4.1 MULTIPLE CHILLER SYSTEM 31
4.2 MULTI-OBJECTIVE OPTIMIZATION CONSTRAINT-HANDLING TECHNIQUE 34
4.3 DESIGN PROBLEM REPRESENTATION 35
4.4 AFFINITY EVALUATION AND NON-DOMINATED SORTING 36
4.5 CLONING OPERATOR 37
4.6 HYPERMUTATION OPERATOR 38
4.7 MEMORY CELL MATURATION OPERATOR 39
4.8 PSEUDO CODE OF MODIFIED CSA FOR OCL PROBLEM 39
CHAPTER 5 RESULTS AND DISCUSSIONS 41
5.1 STRUCTURAL TOPOLOGY OPTIMIZATION USING SECSA 41
5.1.1 MINIMUM COMPLIANCE DESIGN 42
5.1.2 MINIMUM WEIGHT DESIGN 49
5.2 OPTIMAL CHILLER LOADING USING MODIFIED CSA APPROACH 56
CHAPTER 6 CONCLUSIONS 66
REFERENCES 69
[1]Bends?e, M. P., & Kikuchi, N. (1988). Generating optimal topologies in structural design using a homogenization method. Computer methods in applied mechanics and engineering, 71(2), 197-224.
[2]Bends?e, M. P. (1989). Optimal shape design as a material distribution problem. Structural and multidisciplinary optimization, 1(4), 193-202.
[3]Rozvany, G. I., Zhou, M., & Birker, T. (1992). Generalized shape optimization without homogenization. Structural and Multidisciplinary Optimization, 4(3), 250-252.
[4]Xie, Y. M., & Steven, G. P. (2012). Evolutionary structural optimization. Springer.
[5]Querin, O. M., Steven, G. P., & Xie, Y. M. (1998). Evolutionary structural optimisation (ESO) using a bidirectional algorithm. Engineering computations, 15(8), 1031-1048.
[6]Allaire, G., Jouve, F., & Toader, A. M. (2004). Structural optimization using sensitivity analysis and a level-set method. Journal of computational physics, 194(1), 363-393.
[7]Wang, M. Y., Chen, S., Wang, X., & Mei, Y. (2005). Design of multimaterial compliant mechanisms using level-set methods. Journal of Mechanical Design, 127(5), 941-956.
[8]Chapman C. D., Saitou K., Jakiela M. J. (1994) Genetic algorithms as an approach to configuration and topology design. Journal of Mechanical Design, 116, 1005-1012.
[9]Jakiela, M. J., Chapman, C., Duda, J., Adewuya, A., & Saitou, K. (2000). Continuum structural topology design with genetic algorithms. Computer Methods in Applied Mechanics and Engineering, 186(2), 339-356.
[10]Fanjoy, D. W., & Crossley, W. A. (2002). Topology design of planar cross-sections with a genetic algorithm: part 1—overcoming the obstacles. Engineering Optimization, 34(1), 1-22.
[11]Hamda, H., Jouve, F., Lutton, E., Schoenauer, M., & Sebag, M. (2002). Compact unstructured representations for evolutionary design. Applied intelligence, 16(2), 139-155.
[12]Su, Y. H., Shyr, W. J., & Su, T. J. (2005). Optimal design using clonal selection algorithm. In Knowledge-Based Intelligent Information and Engineering Systems (pp. 153-153). Springer Berlin/Heidelberg.
[13]Hamda, H., & Schoenauer, M. (2000). Adaptive techniques for evolutionary topological optimum design. In Evolutionary design and manufacture (pp. 123-136). Springer, London.
[14]Wu, C. Y. & Luh, G. C. (2002). Multi-model topological optimization of structure using subpopulation-based niche genetic algorithms. The Second China-Japan-Korea Joint Symposium on Optimization of Structure and Mechanical Systems, 63-68.
[15]Wang, S. Y., & Tai, K. (2005). Structural topology design optimization using genetic algorithms with a bit-array representation. Computer methods in applied mechanics and engineering, 194(36), 3749-3770.
[16]Wang, S. Y., Tai, K., & Wang, M. Y. (2006). An enhanced genetic algorithm for structural topology optimization. International Journal for Numerical Methods in Engineering, 65(1), 18-44.
[17]Balamurugan, R., Ramakrishnan, C. V., & Singh, N. (2008). Performance evaluation of a two stage adaptive genetic algorithm (TSAGA) in structural topology optimization. Applied Soft Computing, 8(4), 1607-1624.
[18]Li, C., Hiroyasu, T., & Miki, M. (2008, June). Mesh dependency of stress-based crossover for structural topology optimization. In Evolutionary Computation, 2008. CEC 2008.(IEEE World Congress on Computational Intelligence). IEEE Congress on (pp. 1856-1861). IEEE.
[19]De Castro, L. N., & Von Zuben, F. J. (2000, July). The clonal selection algorithm with engineering applications. In Proceedings of GECCO (Vol. 2000, pp. 36-39).
[20]De Castro, L. N., & Von Zuben, F. J. (2002). Learning and optimization using the clonal selection principle. IEEE transactions on evolutionary computation, 6(3), 239-251.
[21]Cutello, V., & Nicosia, G. (2002). An immunological approach to combinatorial optimization problems. Advances in Artificial Intelligence—IBERAMIA 2002, 361-370.
[22]Luh, G. C., & Chueh, C. H. (2004). Multi-modal topological optimization of structure using immune algorithm. Computer Methods in Applied Mechanics and Engineering, 193(36), 4035-4055.
[23]Campelo, F., Guimarães, F. G., Igarashi, H., Watanabe, K., & Ramirez, J. A. (2006). An immune-based algorithm for topology optimization. In Evolutionary Computation, 2006. CEC 2006. IEEE Congress on (pp. 3204-3211). IEEE.
[24]Dong, W., Shi, G., & Zhang, L. (2007). Immune memory clonal selection algorithms for designing stack filters. Neurocomputing, 70(4), 777-784.
[25]Gao, S., Tang, Z., Dai, H., & Zhang, J. (2007). An improved clonal selection algorithm and its application to traveling salesman problems. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 90(12), 2930-2938.
[26]Panigrahi, B. K., Yadav, S. R., Agrawal, S., & Tiwari, M. K. (2007). A clonal algorithm to solve economic load dispatch. Electric Power Systems Research, 77(10), 1381-1389.
[27]Das, S., Natarajan, B., Stevens, D., & Koduru, P. (2008). Multi-objective and constrained optimization for DS-CDMA code design based on the clonal selection principle. Applied Soft Computing, 8(1), 788-797.
[28]Batista, L. D. S., Guimaraes, F. G., & Ramirez, J. A. (2009). A distributed clonal selection algorithm for optimization in electromagnetics. IEEE Transactions on magnetics, 45(3), 1598-1601.
[29]Li, F., Gao, S., Wang, W., & Tang, Z. (2009). An adaptive clonal selection algorithm for edge linking problem. IJCSNS International Journal of Computer Science and Network Security, 9(7), 57-65.
[30]Hart, E., & Timmis, J. (2008). Application areas of AIS: The past, the present and the future. Applied soft computing, 8(1), 191-201.
[31]Bernardino, H., & Barbosa, H. (2009). Artificial immune systems for optimization. Nature-Inspired Algorithms for Optimisation, 389-411.
[32]Poulsen, T. A. (2002). A simple scheme to prevent checkerboard patterns and one-node connected hinges in topology optimization. Structural and Multidisciplinary Optimization, 24(5), 396-399.
[33]DasGupta, D. (1999). An overview of artificial immune systems and their applications. Artificial immune systems and their applications, 15, 3-21.
[34]Cutello, V., Lee, D., Leone, S., Nicosia, G., & Pavone, M. (2006). Clonal selection algorithm with dynamic population size for bimodal search spaces. Advances in Natural Computation, 949-958.
[35]He, Y., & Jian, C. (2007, December). Clonal selection algorithm with adaptive mutation and roulette wheel selection. In Computational Intelligence and Security Workshops, 2007. CISW 2007. International Conference on (pp. 93-96). IEEE.
[36]Khilwani, N., Prakash, A., Shankar, R., & Tiwari, M. K. (2008). Fast clonal algorithm. Engineering Applications of Artificial Intelligence, 21(1), 106-128.
[37]Deb, K. (2000). An efficient constraint handling method for genetic algorithms. Computer methods in applied mechanics and engineering, 186(2), 311-338.
[38]Beghi, A., Cecchinato, L., Cosi, G., & Rampazzo, M. (2012). A PSO-based algorithm for optimal multiple chiller systems operation. Applied Thermal Engineering, 32, 31-40.
[39]Chang, Y. C., Lin, J. K., & Chuang, M. H. (2005). Optimal chiller loading by genetic algorithm for reducing energy consumption. Energy and Buildings, 37(2), 147-155.
[40]Chang, Y. C. (2005). Genetic algorithm based optimal chiller loading for energy conservation. Applied Thermal Engineering, 25(17), 2800-2815.
[41]Chang, Y. C. (2007). Optimal chiller loading by evolution strategy for saving energy. Energy and Buildings, 39(4), 437-444.
[42]Chang, Y. C. (2006). An innovative approach for demand side management—optimal chiller loading by simulated annealing. Energy, 31(12), 1883-1896.
[43]Lee, W. S., Chen, Y. T., & Kao, Y. (2011). Optimal chiller loading by differential evolution algorithm for reducing energy consumption. Energy and Buildings, 43(2), 599-604.
[44]Ardakani, A. J., Ardakani, F. F., & Hosseinian, S. H. (2008). A novel approach for optimal chiller loading using particle swarm optimization. Energy and Buildings, 40(12), 2177-2187.
[45]Askarzadeh, A., & dos Santos Coelho, L. (2015). Using two improved particle swarm optimization variants for optimization of daily electrical power consumption in multi-chiller systems. Applied Thermal Engineering, 89, 640-646.
[46]dos Santos Coelho, L., & Mariani, V. C. (2013). Improved firefly algorithm approach applied to chiller loading for energy conservation. Energy and Buildings, 59, 273-278.
[47]dos Santos Coelho, L., Klein, C. E., Sabat, S. L., & Mariani, V. C. (2014). Optimal chiller loading for energy conservation using a new differential cuckoo search approach. Energy, 75, 237-243.
[48]Kramer, O. (2010). A review of constraint-handling techniques for evolution strategies. Applied Computational Intelligence and Soft Computing, 2010.
[49]Coello, C. A. C., & Carlos, A. (1999). A survey of constraint handling techniques used with evolutionary algorithms. Lania-RI-99-04, Laboratorio Nacional de Informática Avanzada.
[50]Oyama, A., Shimoyama, K., & Fujii, K. (2007). New constraint-handling method for multi-objective and multi-constraint evolutionary optimization. Transactions of the Japan Society for Aeronautical and Space Sciences, 50(167), 56-62.
[51]Yeniay, Ö. (2005). Penalty function methods for constrained optimization with genetic algorithms. Mathematical and Computational Applications, 10(1), 45-56.
[52]Coello, C. A. C. (2002). Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: a survey of the state of the art. Computer methods in applied mechanics and engineering, 191(11), 1245-1287.
[53]Michalewicz, Z., & Schoenauer, M. (1996). Evolutionary algorithms for constrained parameter optimization problems. Evolutionary computation, 4(1), 1-32.
[54]Michalewicz, Z., & NAZHIYATH, G. G. 3 (1995). A co-evolutionary algorithm for numerical optimization problems with non-linear constraints. In Proceedings of the 2nd IEEE International Conference on Evolutionary Computation (pp. 647-651).
[55]Michalewicz, Z., & Janikow, C. Z. (1991, July). Handling constraints in genetic algorithms. In ICGA (pp. 151-157).
[56]Schoenauer, M., & Michalewicz, Z. (1996). Evolutionary computation at the edge of feasibility. Parallel Problem Solving from Nature—PPSN IV, 245-254.
[57]Wu, C. Y., & Tseng, K. Y. (2010). Topology optimization of structures using modified binary differential evolution. Structural and Multidisciplinary Optimization, 42(6), 939-953.
[58]Wu, C. Y., & Ku, C. C. (2012). Stress‐enhanced clonal selection algorithm for structural topology optimization. International Journal for Numerical Methods in Engineering, 89(8), 957-974.
[59]Deb, K., Agrawal, S., Pratap, A., & Meyarivan, T. (2000, September). A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II. In PPSN (Vol. 1917, pp. 849-858).
[60]Mezura-Montes, E., & Coello, C. A. C. (2008). Constrained optimization via multiobjective evolutionary algorithms. Multiobjective problem solving from nature, 53-75.
[61]Li, L. D., Li, X., & Yu, X. (2008, July). Power generation loading optimization using a multi-objective constraint-handling method via PSO algorithm. In Industrial Informatics, 2008. INDIN 2008. 6th IEEE International Conference on (pp. 1632-1637). IEEE.
[62]Deb, K. (2001). Multi-objective optimization using evolutionary algorithms (Vol. 16). John Wiley & Sons.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top