|
[1]Bends?e, M. P., & Kikuchi, N. (1988). Generating optimal topologies in structural design using a homogenization method. Computer methods in applied mechanics and engineering, 71(2), 197-224. [2]Bends?e, M. P. (1989). Optimal shape design as a material distribution problem. Structural and multidisciplinary optimization, 1(4), 193-202. [3]Rozvany, G. I., Zhou, M., & Birker, T. (1992). Generalized shape optimization without homogenization. Structural and Multidisciplinary Optimization, 4(3), 250-252. [4]Xie, Y. M., & Steven, G. P. (2012). Evolutionary structural optimization. Springer. [5]Querin, O. M., Steven, G. P., & Xie, Y. M. (1998). Evolutionary structural optimisation (ESO) using a bidirectional algorithm. Engineering computations, 15(8), 1031-1048. [6]Allaire, G., Jouve, F., & Toader, A. M. (2004). Structural optimization using sensitivity analysis and a level-set method. Journal of computational physics, 194(1), 363-393. [7]Wang, M. Y., Chen, S., Wang, X., & Mei, Y. (2005). Design of multimaterial compliant mechanisms using level-set methods. Journal of Mechanical Design, 127(5), 941-956. [8]Chapman C. D., Saitou K., Jakiela M. J. (1994) Genetic algorithms as an approach to configuration and topology design. Journal of Mechanical Design, 116, 1005-1012. [9]Jakiela, M. J., Chapman, C., Duda, J., Adewuya, A., & Saitou, K. (2000). Continuum structural topology design with genetic algorithms. Computer Methods in Applied Mechanics and Engineering, 186(2), 339-356. [10]Fanjoy, D. W., & Crossley, W. A. (2002). Topology design of planar cross-sections with a genetic algorithm: part 1—overcoming the obstacles. Engineering Optimization, 34(1), 1-22. [11]Hamda, H., Jouve, F., Lutton, E., Schoenauer, M., & Sebag, M. (2002). Compact unstructured representations for evolutionary design. Applied intelligence, 16(2), 139-155. [12]Su, Y. H., Shyr, W. J., & Su, T. J. (2005). Optimal design using clonal selection algorithm. In Knowledge-Based Intelligent Information and Engineering Systems (pp. 153-153). Springer Berlin/Heidelberg. [13]Hamda, H., & Schoenauer, M. (2000). Adaptive techniques for evolutionary topological optimum design. In Evolutionary design and manufacture (pp. 123-136). Springer, London. [14]Wu, C. Y. & Luh, G. C. (2002). Multi-model topological optimization of structure using subpopulation-based niche genetic algorithms. The Second China-Japan-Korea Joint Symposium on Optimization of Structure and Mechanical Systems, 63-68. [15]Wang, S. Y., & Tai, K. (2005). Structural topology design optimization using genetic algorithms with a bit-array representation. Computer methods in applied mechanics and engineering, 194(36), 3749-3770. [16]Wang, S. Y., Tai, K., & Wang, M. Y. (2006). An enhanced genetic algorithm for structural topology optimization. International Journal for Numerical Methods in Engineering, 65(1), 18-44. [17]Balamurugan, R., Ramakrishnan, C. V., & Singh, N. (2008). Performance evaluation of a two stage adaptive genetic algorithm (TSAGA) in structural topology optimization. Applied Soft Computing, 8(4), 1607-1624. [18]Li, C., Hiroyasu, T., & Miki, M. (2008, June). Mesh dependency of stress-based crossover for structural topology optimization. In Evolutionary Computation, 2008. CEC 2008.(IEEE World Congress on Computational Intelligence). IEEE Congress on (pp. 1856-1861). IEEE. [19]De Castro, L. N., & Von Zuben, F. J. (2000, July). The clonal selection algorithm with engineering applications. In Proceedings of GECCO (Vol. 2000, pp. 36-39). [20]De Castro, L. N., & Von Zuben, F. J. (2002). Learning and optimization using the clonal selection principle. IEEE transactions on evolutionary computation, 6(3), 239-251. [21]Cutello, V., & Nicosia, G. (2002). An immunological approach to combinatorial optimization problems. Advances in Artificial Intelligence—IBERAMIA 2002, 361-370. [22]Luh, G. C., & Chueh, C. H. (2004). Multi-modal topological optimization of structure using immune algorithm. Computer Methods in Applied Mechanics and Engineering, 193(36), 4035-4055. [23]Campelo, F., Guimarães, F. G., Igarashi, H., Watanabe, K., & Ramirez, J. A. (2006). An immune-based algorithm for topology optimization. In Evolutionary Computation, 2006. CEC 2006. IEEE Congress on (pp. 3204-3211). IEEE. [24]Dong, W., Shi, G., & Zhang, L. (2007). Immune memory clonal selection algorithms for designing stack filters. Neurocomputing, 70(4), 777-784. [25]Gao, S., Tang, Z., Dai, H., & Zhang, J. (2007). An improved clonal selection algorithm and its application to traveling salesman problems. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 90(12), 2930-2938. [26]Panigrahi, B. K., Yadav, S. R., Agrawal, S., & Tiwari, M. K. (2007). A clonal algorithm to solve economic load dispatch. Electric Power Systems Research, 77(10), 1381-1389. [27]Das, S., Natarajan, B., Stevens, D., & Koduru, P. (2008). Multi-objective and constrained optimization for DS-CDMA code design based on the clonal selection principle. Applied Soft Computing, 8(1), 788-797. [28]Batista, L. D. S., Guimaraes, F. G., & Ramirez, J. A. (2009). A distributed clonal selection algorithm for optimization in electromagnetics. IEEE Transactions on magnetics, 45(3), 1598-1601. [29]Li, F., Gao, S., Wang, W., & Tang, Z. (2009). An adaptive clonal selection algorithm for edge linking problem. IJCSNS International Journal of Computer Science and Network Security, 9(7), 57-65. [30]Hart, E., & Timmis, J. (2008). Application areas of AIS: The past, the present and the future. Applied soft computing, 8(1), 191-201. [31]Bernardino, H., & Barbosa, H. (2009). Artificial immune systems for optimization. Nature-Inspired Algorithms for Optimisation, 389-411. [32]Poulsen, T. A. (2002). A simple scheme to prevent checkerboard patterns and one-node connected hinges in topology optimization. Structural and Multidisciplinary Optimization, 24(5), 396-399. [33]DasGupta, D. (1999). An overview of artificial immune systems and their applications. Artificial immune systems and their applications, 15, 3-21. [34]Cutello, V., Lee, D., Leone, S., Nicosia, G., & Pavone, M. (2006). Clonal selection algorithm with dynamic population size for bimodal search spaces. Advances in Natural Computation, 949-958. [35]He, Y., & Jian, C. (2007, December). Clonal selection algorithm with adaptive mutation and roulette wheel selection. In Computational Intelligence and Security Workshops, 2007. CISW 2007. International Conference on (pp. 93-96). IEEE. [36]Khilwani, N., Prakash, A., Shankar, R., & Tiwari, M. K. (2008). Fast clonal algorithm. Engineering Applications of Artificial Intelligence, 21(1), 106-128. [37]Deb, K. (2000). An efficient constraint handling method for genetic algorithms. Computer methods in applied mechanics and engineering, 186(2), 311-338. [38]Beghi, A., Cecchinato, L., Cosi, G., & Rampazzo, M. (2012). A PSO-based algorithm for optimal multiple chiller systems operation. Applied Thermal Engineering, 32, 31-40. [39]Chang, Y. C., Lin, J. K., & Chuang, M. H. (2005). Optimal chiller loading by genetic algorithm for reducing energy consumption. Energy and Buildings, 37(2), 147-155. [40]Chang, Y. C. (2005). Genetic algorithm based optimal chiller loading for energy conservation. Applied Thermal Engineering, 25(17), 2800-2815. [41]Chang, Y. C. (2007). Optimal chiller loading by evolution strategy for saving energy. Energy and Buildings, 39(4), 437-444. [42]Chang, Y. C. (2006). An innovative approach for demand side management—optimal chiller loading by simulated annealing. Energy, 31(12), 1883-1896. [43]Lee, W. S., Chen, Y. T., & Kao, Y. (2011). Optimal chiller loading by differential evolution algorithm for reducing energy consumption. Energy and Buildings, 43(2), 599-604. [44]Ardakani, A. J., Ardakani, F. F., & Hosseinian, S. H. (2008). A novel approach for optimal chiller loading using particle swarm optimization. Energy and Buildings, 40(12), 2177-2187. [45]Askarzadeh, A., & dos Santos Coelho, L. (2015). Using two improved particle swarm optimization variants for optimization of daily electrical power consumption in multi-chiller systems. Applied Thermal Engineering, 89, 640-646. [46]dos Santos Coelho, L., & Mariani, V. C. (2013). Improved firefly algorithm approach applied to chiller loading for energy conservation. Energy and Buildings, 59, 273-278. [47]dos Santos Coelho, L., Klein, C. E., Sabat, S. L., & Mariani, V. C. (2014). Optimal chiller loading for energy conservation using a new differential cuckoo search approach. Energy, 75, 237-243. [48]Kramer, O. (2010). A review of constraint-handling techniques for evolution strategies. Applied Computational Intelligence and Soft Computing, 2010. [49]Coello, C. A. C., & Carlos, A. (1999). A survey of constraint handling techniques used with evolutionary algorithms. Lania-RI-99-04, Laboratorio Nacional de Informática Avanzada. [50]Oyama, A., Shimoyama, K., & Fujii, K. (2007). New constraint-handling method for multi-objective and multi-constraint evolutionary optimization. Transactions of the Japan Society for Aeronautical and Space Sciences, 50(167), 56-62. [51]Yeniay, Ö. (2005). Penalty function methods for constrained optimization with genetic algorithms. Mathematical and Computational Applications, 10(1), 45-56. [52]Coello, C. A. C. (2002). Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: a survey of the state of the art. Computer methods in applied mechanics and engineering, 191(11), 1245-1287. [53]Michalewicz, Z., & Schoenauer, M. (1996). Evolutionary algorithms for constrained parameter optimization problems. Evolutionary computation, 4(1), 1-32. [54]Michalewicz, Z., & NAZHIYATH, G. G. 3 (1995). A co-evolutionary algorithm for numerical optimization problems with non-linear constraints. In Proceedings of the 2nd IEEE International Conference on Evolutionary Computation (pp. 647-651). [55]Michalewicz, Z., & Janikow, C. Z. (1991, July). Handling constraints in genetic algorithms. In ICGA (pp. 151-157). [56]Schoenauer, M., & Michalewicz, Z. (1996). Evolutionary computation at the edge of feasibility. Parallel Problem Solving from Nature—PPSN IV, 245-254. [57]Wu, C. Y., & Tseng, K. Y. (2010). Topology optimization of structures using modified binary differential evolution. Structural and Multidisciplinary Optimization, 42(6), 939-953. [58]Wu, C. Y., & Ku, C. C. (2012). Stress‐enhanced clonal selection algorithm for structural topology optimization. International Journal for Numerical Methods in Engineering, 89(8), 957-974. [59]Deb, K., Agrawal, S., Pratap, A., & Meyarivan, T. (2000, September). A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II. In PPSN (Vol. 1917, pp. 849-858). [60]Mezura-Montes, E., & Coello, C. A. C. (2008). Constrained optimization via multiobjective evolutionary algorithms. Multiobjective problem solving from nature, 53-75. [61]Li, L. D., Li, X., & Yu, X. (2008, July). Power generation loading optimization using a multi-objective constraint-handling method via PSO algorithm. In Industrial Informatics, 2008. INDIN 2008. 6th IEEE International Conference on (pp. 1632-1637). IEEE. [62]Deb, K. (2001). Multi-objective optimization using evolutionary algorithms (Vol. 16). John Wiley & Sons.
|