跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.81) 您好!臺灣時間:2024/12/08 04:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:楊勝凱
研究生(外文):Sheng-kai Yang
論文名稱:透過奈米晶鑽石薄膜改善奈米碳管之電子場發射特性
論文名稱(外文):Enhancing the electron field emission properties of carbon nanotubes by nanocrystalline diamond films
指導教授:施文欽
口試委員:施文欽
口試日期:2017-07-24
學位類別:碩士
校院名稱:大同大學
系所名稱:電機工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:106
中文關鍵詞:奈米碳管超奈米晶鑽石微波電漿化學氣相沉積電子場發射
外文關鍵詞:CNTUNCDMPCVDEFE
相關次數:
  • 被引用被引用:5
  • 點閱點閱:432
  • 評分評分:
  • 下載下載:24
  • 收藏至我的研究室書目清單書目收藏:0
在本研究中,我們利用微波電漿化學氣相沉積系統成長奈米晶鑽石薄膜,再將奈米碳管複合在鑽石薄膜之上,以改善奈米碳管之電子場發射特性。透過Raman光譜儀量測複合材料之微結構,掃描式電子顯微鏡觀察其表面與側邊形貌,並藉由Hall效應量測表面導電率。經場發射特性量測後得知奈米晶鑽石薄膜複合奈米碳管可將起始電場由3.04 V/μm下降1.6 V/μm,電流密度由311 μA/cm2提升至1352 μA/cm2。而在場發射電流穩定性量測方面,超奈米晶鑽石複合奈米碳管後其電流穩定性相較奈米碳管而言來的好。研究結果顯示:透過奈米晶鑽石薄膜可有效改善奈米碳管之電子場發射特性。
In this study, we use the microwave plasma chemical vapor deposition system to grow the nanocrystalline diamond (NCD) film, and then grow the carbon nanotube (CNT) on above to improve the electron field emission properties of CNTs. We use the the Raman spectrometer to measure the microstructure of the film. The surface and side views of the film were characterized by scanning electron microscope. The surface conductivity was evaluated by the Hall effect measurement. From the electron field emission measurement of CNT/UNCD/si, the turn-on field was reduced from 3.04 V/μm to 1.6 V/μm. Besides, the current density was increased from 311 to 1352 μA/cm2. The stability of the electron field emission current becomes more stable with the introduction of the UNCD film. The results show that with the introduction of the UNCD film, the electron field emission properties of the CNTs were greatly improved.
致謝I
摘要II
AbstractIII
目錄IV
圖目錄VIII
表目錄XIII
第一章 緒論1
1.1 碳材料簡介1
1.1.1 碳六十 (C60,Fullerene) 3
1.1.2 石墨 (Graphite) 4
1.1.3 類鑽碳 (Diamond like carbon,DLC) 5
1.1.4 奈米碳片 (Carbon nanoflakes,CNF) 7
1.2 奈米碳管 (Carbon nanotube,CNT) 9
1.2.1 奈米碳管的特性9
1.2.2 奈米碳管的應用10
1.2.2.1 場發射顯示器簡介10
1.2.2.2 以SPINDT做為陰極場發射源12
1.2.2.3 以奈米碳管做為陰極場發射源13
1.2.2.4 場發射燈源 (Field Emission Lighting)介紹14
1.3 鑽石薄膜15
1.3.1 鑽石的晶體結構15
1.3.2 鑽石薄膜的特性16
1.3.3 鑽石薄膜的應用17
1.4 研究動機21
第二章 實驗原理與方法23
2.1 鑽石薄膜的分類與成長23
2.1.1 鑽石薄膜的分類23
2.1.2 鑽石薄膜之合成方法27
2.1.3 鑽石薄膜的成長前處理31
2.2 電漿原理39
2.3 奈米碳管的成長機制40
2.3.1 成核理論40
2.3.2 成長機制43
2.3.3 成長模式45
2.4 奈米碳管的成長方法46
2.4.1 電弧放電法 (Arc-Discharge) 46
2.4.2 雷射剝蝕法 (Laser Ablation) 48
2.4.3 化學氣相沉積法 (Chemicsl Vapor Deposition) 50
2.5 電子場發射理論52
第三章 實驗設備58
3.1 實驗流程58
3.2 製程設備與方法59
3.2.1 微波電漿化學氣相沉積系統59
3.2.2 金屬濺鍍系統63
3.2.3 熱化學氣相沉積系統65
3.3 分析設備68
3.3.1 光放射光譜儀68
3.3.2 顯微拉曼光譜69
3.3.3 掃描式電子顯微鏡71
3.3.4 霍爾電性測量72
3.3.5 電子場發射量測75
3.3.6 電流穩定性量測方法76
第四章 結果與討論77
4.1 氣體含量對超奈米晶鑽石薄膜的電子場發射特性之影響77
4.2 沉積時間對超奈米晶鑽石薄膜的電子場發射特性之影響84
4.3 奈米碳管與超奈米晶鑽石薄膜複合材料90
4.3.1 單一與複合奈米碳材料之霍爾電性量測、電子場發射特性及電流穩定性之比較91
第五章 結論及未來展望95
5.1 結論95
5.2 未來展望95
參考文獻96
[1] J. Roberson, “Diamond-like amorphous carbon,” Materials Science and Engineering R, 37 , 129 (2002).
[2] H.W. Kroto, J.R. Heath, S.C. O'Brien, R.F. Curl, and R.E. Smalley, “C60: Buckminsterfullerene,” Nature, 318 , 162 (1985).
[3] J.H. Schon, Ch. Kloc, and B. Batlogg, “High-Temperature Superconductivity in Lattice-Expanded C60,” Science, 293 , 2432 (2001).
[4] W. Jacob, W. Moller, “On the structure of thin hydrocarbon flims,” Appl. Phys. Lett, 63 , 1771 (1993).
[5] N.G. Shang, F.C.K. Au, X.M. Meng, C.S. Lee, I. Bello, S.T. Lee,“Uniform carbon nanoflake films and their field emissions,” Chem Phys Lett, 358 , 187 (2002).
[6] M. Zhu, J. Wang, B. C. Holloway, R. A. Outlaw, X. Zhao, K. Hou, V. Shutthanandan, D. M. Manos, “A mechanism for carbon nanosheet formation,” Carbon, 45 , 2229 (2007).
[7] J. Wang, M. Zhu, R. A. Outlaw, X. Zhao, D. M. Manos, B. C. Holloway, “Synthesis of carbon nanosheets by inductively coupled radio-frequency plasma enhanced chemical vapor deposition,” Carbon, 42 , 2867 (2004).
[8] S. Wang, J. Wang, Peter Miraldo, M. Zhu, R. Outlaw, K. Hou, X. Zhao, B. C. Holloway, D. Manos, “High field emission reproducibility and stability of carbon nanosheets and nanosheet-based backgated triode emission devices,” Appl. Phys. Lett, 89 , 183103 (2006).
[9] S. Iijima, “Helical microtubules of graphitic carbon,” Nature, 354 , 56 (1991).
[10] S. Iijima, T. Ichihashi, “Single-shell carbon nanotubes of 1-nm diameter,” Nature, 363 , 603 (1993).
[11] S. Jiao, A. Sumant, M. A. Kirk, D. M. Gruen, A. R. Krauss, and O. Auciello, ”Microstructure of ultrananocrystalline diamond films grown by microwave Ar-CH4 plasma chemical vapor deposition with or without added H2”, J. Appl. Phys. 90 , 118 (2001).
[12] H. Liu, and David S. Dandy, “Diamond Chemical Vapor Deposition Nucleation and Early Growth Stages”, Noyes Publication, Park Ridge, New Jersey (1995).
[13] A. Lamouri, Y. Wang, G. T. Mearini, I. L. Krainsky, J. A. Dayton Jr., and W. Mueller, “Electron emission observations from as‐grown and vacuum‐coated chemical vapor deposited diamond”, J. Vac. Sci. Technol. B 14 , 2046 (1996).
[14] J. van der Weide, Z. Zhang, P. K. Baumann, M. G. Wensell, J. Bernholc, and R. J. Nemanich, “Negative-electron-affinity effects on the diamond (100) surface”, Phy. Rev. B 50 , 5803 (1994).
[15] M. W. Geis, N. N. Efremow, J. D. Woodhouse, M. D. Mcaleese, M. Marchywka, D. G. Socker, and J. F. Hochedez, “Diamond cold cathode”, IEEE Electr. Dev. Lett. 12 , 456 (1991).
[16] W. P. Kang, J. L. Davidson, A. Wisitsora-at, D. V. Kerns, and S. Kerns, ”Recent development of diamond microtip field emitter cathodes and devices”, J. Vac. Sci. Technol. B 19 , 936 (2001).
[17] A. T. Sowers, B. L. Ward, S. L. English, and R. J. Nemanich, “Field emission properties of nitrogen-doped diamond films”, Jpn. J. Appl. Phys. 86 , 3973 (1999).
[18] P. T. Joseph, N. H. Tai, H. Niu, U. A. Palnitkar, W. F. Pong, H.F. Cheng, and I. N. Lin, “Structural modification and enhanced field emission on ultrananocrystalline diamond films by nitrogen ion implantation”, Diamond Relat. Mater. 17 , 1812 (2008).
[19] Y. C. Lee, S. J. Lin, I. N. Lin, and H. F. Cheng, “Effect of boron doping on the electron-field-emission properties of nanodiamond films”, J. Appl. Phys. 97 , 054310-1 (2005).
[20] C. F. Shih, K. S. Liu, and I. N. Lin, “Effect of nitrogen doping on the electron field emission properties of chemical vapor deposited diamond films”, Diamond Relat. Mater. 9 , 1591 (2000).
[21] Y. H. Chen, C. T. Hu, and I. N. Lin, “Defect structure and electron field-emission properties of boron-doped diamond films”, Appl. Phys. Lett. 75 , 2857 (1999).
[22] V. I. Polyakov, N. M. Rossukanyi, A. I. Rukovishnikov, S. M. Pimenov, A. V. Karabutov, and V. I. Konov, “Effects of post-growth treatment and coating with ultrathin metal layers on the band bending and field electron emission of diamond films”, J. Appl. Phys. 84 , 2882 (1998).
[23] I. N. Lin, Y. H. Chen, and H. F. Cheng, “Modification of emission properties of diamond films due to surface treatment process”, Diamond Relat. Mater. 9 , 1574 (2000).
[24] C. Y. Wang, F. L. Zhang, T. C. Kuang, and C. L. Chen,“Chemical/mechanical polishing of diamond films assisted by molten mixture of LiNO3 and KNO3,”, Thin Solid Films 496 (2), 698 (2006).
[25] W. Zhu, “Vacuum Microelectronics,” John Wiley & Sons (2001).
[26] A.R. Krauss, O. Auciello, D.M. Gruen, A. Jayatissa, A. Sumant, J. Tucek, D.C. Mancini, N. Moldovan, A. Erdemir, D. Ersoy, M.N. Gardos, H.G. Busmann, E.M. Meyer, M.Q. Ding, “Ultrananocrystalline diamond thin films for MEMS and moving mechanical assembly devices” Diamond and Related Materials 10,(2001).
[27] Ferrari, Andrea Carlo, Robertson, and John, “Raman spectroscopy of amorphous, nanostructured, diamond-like carbon, and nanodiamond,” Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 362 , 2477 (2004).
[28] M. Veres, S. Tóth, and M. Koós, “Grain boundary fine structure of ultrananocrystalline diamond thin films measured by Raman scattering,” Appl. Phys. Lett,, 91 031913-1- 031913-3 (2007).
[29] M. Veres, S. Tóth, E. Perevedentseva, A.Karmenyan, and M. Koós, “Raman spectroscopy of UNCD grain boundaries,”Volume .ISBN 978-1-4020-9915-1. Springer Netherlands, 115 (2009).
[30] A. C. Ferrari and J. Robertson , “Origin of the 1150-cm-1 Raman mode in nanocrystalline diamond,” Physical Review B 63 , 121405-1-121405-4 (2001).
[31] James Birrell, J. E. Gerbi, O. Auciello, J. M. Gibson, D. M. Gruen, and J. A. Carlisle, “ Bonding structure in nitrogen doped ultrananocrystalline diamond,” Journal of Appl. Phys. Lett, 93 , 5606 (2003).
[32] H. Yamada, A. Chayahara, Y. Mokuno, Y. Horino, S. Shikata, "Numerical analyses of a microwave plasma chemical vapor deposition reactor for thick diamond syntheses", Diamond and Related Material (2006).
[33] D. M. Bhusari, J. R. Yang, T. Y. Wang, and K. H. Chen, “Novel two stage method for growth of highly transparent nano-crystalline diamond films”, Materials Letter 36 , 279 (1998).
[34] A. T. Sowers, B. L. Ward, S. L. Englih and R. J. Nemanich, “Field emission properties of nitrogen-doped diamond films”, J. Appl. Phys. 86 , 3937 (1999).
[35] A. Hatta, K. Kadota, Y. Mori, T. Ito, T. Sasake, and A. Hiraki, S. Okada, "Pulse modulated electron cyclotron resonance plasma for chemical vapor deposition of diamond films." Appl. Phys. Lett, 66 (13), (1995).
[36] S. Iijima, Y. Aikawa, and K. Baba, “Early formation of chemical vapor deposition diamond films”, Appl. Phys. Lett. 57 (25), 2646 (1990).
[37] N. Jiang, K. Sugimoto, K. Nishimura, Y. Shintani, and A. Hiraki, “Synthesis and structural study of nano/micro diamond overlayer films”, J. Cryst. Growth 242 (3-4), 362 (2002).
[38] H. Liu and D. S. Dandy, “Diamond chemical vapor deposition: Nucleation and Early Growth Stages”, Noyes, (1995).
[39] Z. Li, L. Wang, T. Suzuki, and Pirouz, “Orientation relationship between chemical vapor deposited diamond and graphite substrates”, J. Appl. Phys. 73(2), 711 (1993).
[40] D. N. Belton, S. J. Harris, S. J. Schmieg, A. M. Wiener, and T. A. Perry, “In situ characteristic of diamond nucleation and growth”, Appl. Phys. Lett. 54 (5), 416 (1989).
[41] N. Jiang, B. W. Sun, Z. Zhang, and Z. Lin, “Nucleation and initial growth of diamond film on Si substrate”, Journal of Materials Research 9 (10), 2695 (1994).
[42] W. L. Wang, K. J. Liao, L. Fang, J. Esteve, and M. C. Polo, “Analysis of diamond nucleation on molybdenum by biased hot filament chemical vapor deposition”, Diamond Relat. Mater. 10 (3-7), 383 (2001).
[43] B. R. Stoner, G.-H. M. Ma, S. D. Wolter, and J. T. Glass, “ Characterization of bias-enhanced nucleation of diamond on silicon by invacuo surface analysis and transmission electron microscopy”, Phy. Rev. B 45 (19), 11067 (1992).
[44] J. Gerber, S. Sattel, H. Ehrhardt, J. Robertson, P. Wurzinger, and P. Pongratz, “Investigation of bias enhanced nucleation of diamond on silicon”, J. Appl. Phys. 79 (8), 4388 (1996).
[45] P. Reinke and P. Oelhafen, “Photoelectron spectroscopic investigation of the bias-enhanced nucleation of polycrystalline diamond films”, Phy. Rev. B 56 (4), 2183 (1997).
[46] R. Stöckel, K. Janischowsky, S. Rohmfeld, J. Ristein, M. Hundhausen, and L. Ley, “Growth of diamond on silicon during the bias pretreatment in chemical vapor deposition of polycrystalline diamond films”, J. Appl. Phys. 79 , 768 (1996).
[47] R. Stöckel, M. Stammler, K. Janischowsky, and L. Ley, “Diamond nucleation under bias conditions”, J. Appl. Phys. 83 , 531 (1998).
[48] J. Robertson, J. Gerber, S. Sattel, M. Weiler, K. Jung, and H. Ehrhardt, “Mechanism of bias-enhanced nucleation of diamond on Si”, Appl. Phys. Lett. 66 (24), 3287 (1995).
[49] S. P. McGinnis, M. A. Kelly, and S. B. Hagstrom, “Evidence of an energetic ion bombardment mechanism for bias-enhanced nucleation of diamond”, Appl. Phys. Lett. 66 (23), 3117 (1995).
[50] L. J. Huang, I. Bello, W. M. Lau, S. T. Lee, P. A. Stevens, and B. D. DeVries, “Synchrotron radiation x-ray absorption of ion bombardment induced defects on diamond(100)”, J. Appl. Phys. 76 (11), 7483 (1994).
[51] S. Barrat, S. Saada, I. Dieguez, and E, Bauer-Grosse, “Diamond deposition by chemical vapor deposition process: Study of the bias enhanced nucleation step”, J. Appl. Phys. 84 (4), 1870 (1998).
[52] D. Pradhan, L. J. Chen, Y. C. Lee, C. Y. Lee, N. H. Tai, and I. N. Lin, “Effect of titanium metal in the prenucleation of ultrananocrystalline diamond film growth at low substrate temperature”, Diamond Relat. Mater. 15 , 1779 (2006).
[53] B. Chapman, “Glow Discharge Process”, John Wiley&Sons, New York, 49 (1980).
[54] A. Grill, Cold Plasma in Materials Fabrication, IEEE Press, New York, (1994).
[55] F. A Lindemann, “The Calculation of Molecular Vibration Frequencies,” Physik. Z., 11 , 609 (1910).
[56] F. G. Shi, “Size dependent thermal vibrations and melting in nanocrystals,” Journal of Materials Research, 9 , 1307 (1994).
[57] E. F. Kukovitsky, S. G. L’vov, and N. A. Sainov, “VLS-growth of carbon nanotubes from the vapor,” Chemical Physics Letters, 317 , 65 (2000).
[58] De-Chang Li, Liming Dai, Shaoming Huang, Albert W. H. Mau, Zhong L. Wang,“Structure and growth of aligned carbon nanotube films by pyrolysis,” Chemical Physics Letters, 316 , 349 (2000).
[59] S. B. Sinnott, R. Andrews, D. Qian, A. M. Rao, Z. Mao, E. C. Dickey, F. Derbyshire,“Model of carbon nanotube growth through chemical vapor deposition,” Chemical Physics Letters, 315 , 25 (1999).
[60] Yahachi Saito, Sashiro Uemura, “Field emission from carbom nanotubes and its application to electron sources,” Carbon, 38 , 169 (2000).
[61] S. Iijima, Ichihashi T.,“Single-shell carbon nanotubes of l-nm diameter, ” Nature, 363 , 603 (1993).
[62] T. Guo, P. Nikolaev, A.Thess, D.T. Colbert, R.E.Smalley, “Catalytic growth of single-walled nanotubes by laservaporization,” Chemical Physics Letters, 243 , 49 (1995).
[63] W. K Master, E.Munoz, M.T.Maryinez, A.M.Benito, G.F.de la Fuente, “Study of parameters important for the growth of single wall carbon nanotubes,” Optical Materials, 17 , 331 (2001).
[64] Masako Yudasaka,Toshinari Ichihashi,Toshiki Komatsu,Sumio Iijima, “Single-wall csrbon nanotubed formed by a single laser-beam Pulse,”Chemical Physical Letters, 299 , 91 (1999).
[65] A. C. Dillon, P. A. Parilla, J. L. Alleman, J. D. Perkins, M. J. Heben, “Controlling single-wall nanotube diameters with variatiov laser pulse power,” Chemical Physical Letters, 316 , 13 (2000).
[66]M. Cheng, F. LU, G. SU, H. Y. Pan, L. L. HE, X. Sun, M. S, Dreeelhaus, “Large-scale and low-cost synthesis of single-walled carbon nanotubes by the catalytic pyrolysis of hydrocarbons,” Appl. Phys. Lett., 72 , 3282 (1988).
[67] Chris Bower, Wei Zhu, Sungho Jin and Otto Zhou, “Plasma-induced alignment of carbon nanotubes,” Appl. Phys. Lett.,77 , 830 (2000).
[68] M. Okai, T. Muneyoshi, T. Yaguchi, and S. Sasaki, “Structure of carbon nanotubes grown by microwave-plasma-enhanced chemical vapor deposition,” AppL. Phys. Lett., 77 , 3468 (2000).
[69] R. H. Fowler, L. Nordheim, “Electron Emission in Intense Electric Field,” Proceedings of the Royal Society of London, 119 , 173(1928).
[70] R. Saito, “Physical Properties of Carbon Nanotubes,” Imperial College Press, 11 (1998).
[71]王全盛,“微波電漿法合成鑽石薄膜機制探討及場發射特性之研究”,淡江大學物理學系博士班博士論文, (2010).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊