跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.168) 您好!臺灣時間:2024/12/06 00:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:葉上銘
研究生(外文):Shang-Ming Yeh
論文名稱:具有老化效應之鋰離子電池殘電量估測
論文名稱(外文):State of Charge Estimation for Lithium-ion Battery with Aging Effect
指導教授:龔宗鈞
指導教授(外文):Chung-Chun Kung
口試委員:龔宗鈞
口試委員(外文):Chung-Chun Kung
口試日期:2017-07-25
學位類別:碩士
校院名稱:大同大學
系所名稱:電機工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:62
中文關鍵詞:粒子濾波器自適應卡爾曼濾波器模糊C回歸模型直流內電阻法老化模型等校電路模型殘電量
外文關鍵詞:Particle FilterFuzzy C-Regression ModelUpdating MethodDCIREquivalent Circuit ModelAging modelState of ChargeAdaptive Extended Kalman Filter
相關次數:
  • 被引用被引用:0
  • 點閱點閱:202
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文探討具有老化效應的鋰離子(Li-ion)電池的殘電量估測。吾人採用一階 等效電路模型(ECM)描述電池特性,並採用開路電壓測試法(OCV)及直流內電阻(DCIR)方法找出 的離線參數。此外,吾人更進一步地採用參數適應法修正 ECM 的在線參數值,由此可看出 ECM 的參數值隨著電池的 及容量衰減而變化。本論文建立五種老化的 ECM 模型以描述電池的老化效應,並採用模糊C回歸模型(FCRM)描述 ECM 之參數與 SOC 之關聯性。吾人採用自適應擴展卡爾曼濾波器(AEKF)搭配 ECM 來估計電池的老化效應,且將選擇具有最小平方誤差的最佳老化模型做為測試電池的模型。最後,吾人分別採用自適應擴展卡爾曼濾波器與粒子演算法估測電池SOC,實驗結果顯示本文所提出的方法具有良好的估測成效。
In thesis, the state of charge (SOC) of lithium-ion (Li-ion) battery with aging effect will be estimated. The first-order RC equivalent circuit model (ECM) is adopted to describe the characteristics of the battery. The open-circuit voltage (OCV) method and direct current internal resistance (DCIR) test are applied to find the numerical values of the off-line parameters of the ECM. Further, a parameter updating method is applied to find and modify the numerical values of the on-line parameters of the ECM. It is observed that the numerical values of the parameters of the ECM vary with both the ECM and the capacity fading of the battery. Five aging ECM models are built to reflect the aging effect of the battery. The fuzzy c-regression models (FCRMs) are adopted to describe the relationships between the parameters of the ECM and the SOC. Finally, the adaptive extended Kalman filter (AEKF) with parameter characteristics will be employed to estimate the SOC of the battery with aging effect. The best aging model which has the minimum squares error will be selected as the model of the tested battery. The experimental results adopting AEKF and the modified particle filter (PF) will show the effectiveness of the proposed method.
ENGLISH ABSTRACT III
CHINESE ABSTRACT IV
TABLE OF CONTENTS V
LIST OF FIGURES VII
LIST OF TABLES X
1. INTRODUCTION 1
2. LITHIUM BATTERY MODEL 4
2.1 Lithium Battery Model for SOC Estimation 4
2.2 Equivalent Circuit Model 4
3. PARAMETER ESTIMATION 9
3.1 Experimental Setup 9
3.2 Measure of Rated Capacity 11
3.3 Open Circuit Voltage Test 13
3.4 Direct Current Internal Resistance ( ) Test 16
3.5 FCRM Clustering Algorithms 24
3.6 The Parameters Updating Method 30
4. SOC ESTIMATION ALGORITHM 33
4.1 Adaptive Extended Kalman Filter 33
4.2 Particle Filter 37
5. EXPERIMENTAL RESULTS 41
5.1 Federal Urban Driving Schedule (FUDS) Test 41
5.2 SOC Estimation by AEKF 43
5.2.1 SOC Estimation by AEKF with Static Test 44
5.2.2 SOC Estimation by AEKF with Dynamic Test 47
5.3 SOC Estimation by PF 50
6. CONCLUSIONS 55
REFERENCES 56
[1]P. Weicker, A systems approach to lithium-ion battery management, Artech House, 2014.
[2]C. D. Rahn and C. Y. Wang, Battery systems engineering, Wiley, 2013.
[3]D. Andrea, Battery management systems for large lithium-ion battery packs, Artech House, 2010.
[4]T. B. Reddy, Linden’s handbook of batteries, Mcgraw-Hill, 2011.
[5]B. Kenndey, D. Patterson, and S. Camilleri, “Use of lithium-ion batteries in electric vehicles,” J. Power Sources, vol. 90, pp. 156–162, 2000.
[6]T. Horiba, T. Maeshima, T. Matsumura, M. Koseki, J. Arai, and Y. Muranaka, “Applications of high power density lithium ion batteries,” J. Power Sources, vol. 146, no. 1/2, pp. 107–110, Aug. 2005.
[7]S.I. Tobishima, K. Takei, Y. Sakurai, J.I. Yamaki, ”Lithium ion cell safety,” J. Power Sources, vol. 90, no. 2, pp.188-195, 2000.
[8]C. Wu, J. Sun, C. Zhu, Y. Ge, and Y. Zhao, “Research on overcharge and over-discharge effect on lithium-ion batteries,” in Proc. IEEE Vehicle Power and Propulsion Conference (VPPC), pp. 1-6, 2015.
[9]R. Guo, L. Lu, M. Ouyang, and X. Feng, ”Mechanism of the entire over-discharge process and over-discharge-induced internal short circuit in lithium-ion batteries,” Scientific Reports, 2016.
[10]F. Huet, “A review of impedance measurements for determination of the state of charge or state of health of secondary batteries,” J. Power Sources, vol. 70, no. 1, pp. 59–69, Jan. 1998.
[11]M. Gholizadeh and F. R. Salmasi, “Estimation of State of Charge, Unknown Nonlinearities, and State of Health of a Lithium-Ion Battery Based on a Comprehensive Unobervable Model,” IEEE Transctions on Industrial Electronics, vol. 61, no. 3, Mar. 2014.
[12]D. Andre, C. Appel, T. Soczka-Guth, and D. U. Sauer, “Advanced mathematical methods of SOC and SOH estimation for lithium-ion batteries,” J. Power Sources, , vol. 224, pp. 20–27, Feb. 2013.
[13]P. Malysz, R. Gu, J. Ye, H. Yang and A. Emadi, "State-of-charge and state-of-health estimation with state constraints and current sensor bias correction for electrified powertrain vehicle batteries," in IET Electrical Systems in Transportation, vol. 6, no. 2, pp. 136-144, Jun. 2016.
[14]N. A. Chaturvedi, R. Klein, J. Christensen, J. Ahmed, and A Kojic, “Algorithms for advanced battery-management systems-modeling, estimation, and control challenges for lithium-ion batteries,” IEEE Control Systems Magazine, Jun. 2010.
[15]S. Piller, M. Perrin and A. Jossen, “Methods for state-of-charge determination their applications,” J.Power Sources, vol.96, pp. 113-120, 2001.
[16]D. W. Dees, V. S. Battaglia, and A. Bėlanger, “Electrochemical modeling of lithium polymer batteries,” J. Power Sources, vol. 110, no. 2, pp. 310– 320, Aug. 2002.
[17]M. Chen and G. A. Rincon-Mora, "Accurate electrical battery model capable of predicting runtime and I-V performance," in IEEE Transactions on Energy Conversion, vol. 21, no. 2, pp. 504-511, Jun. 2006.
[18]H. He, R. Xiong, and J. Fan, “Evaluation of lithium-ion battery equivalent circuit models for state of charge estimation by an experimental approach,” Energies, pp. 582-598, Apr. 2011.
[19]C. R. Birkl, E. McTurk, M. R. Roberts, P. G. Bruce, and D. A. Howey,” A parameteric open circuit voltage model for lithium ion batteries,” J. Electrochem. Soc., vol. 162, no. 12, pp. A2271–A2280, 2015.
[20]I. Snihir, W. Rey, E. Verbitskiy, A. Belfadhel-Ayeb, and P. H. L. Notten, ”Battery open-circuit voltage estimation by a method of statistical analysis,” J. Power Sources , vol. 159, no. 2, pp. 1484–1487, Sep. 2006.
[21]J. H. Kim, S. J. Lee, J. M. Lee, and B. H. Cho, “A new direct current internal resistance and state of charge relationship for the li-ion battery pulse power estimation,” The 7th International Conference on Power Electronics, pp.1173-1178, Oct. 2007.
[22]L.X. Wang, A Course in Fuzzy Systems and Control, Pearson Education Taiwan Ltd, 2005.
[23]C. C. Kung and S. C. Chang, “The estimation of the state of charge for lithium-ion battery by fuzzy c-regression model (FCRM) clustering algorithm,” Proc. of 2011 IEEE International Conference on Systems, Man, and Cybernetics, pp.1568-1573, Oct. 2011.
[24]C. C. Kung and S. C. Chang, “The fuzzy c-regression model of the lithium battery and its application to the estimation of the state of charge,” Proc. of 2012 IEEE International Conference on Fuzzy Systems, pp. 1-6, Jun. 2012.
[25]C. C. Kung, S. C. Chang, and T. H. Chen, “The fuzzy c-regression model for lithium battery,” Proc. of 2012 IEEE International Conference on Systems, Man, and Cybernetics, pp.1675–1680, Oct. 2012.
[26]C. C. Kung, C. C. Weng, and T. H. Chen, “Fuzzy c-regression model based state of charge estimation for lithium battery using adaptive extended Kalman filter,” Proc. of the 2016 International Conference on Machine Learning and Cybernetics, pp. 958-963, Jul. 2016.
[27]C. C. Kung, and J. Y. Su, “Affine Takagi-Sugeno fuzzy modelling algorithm by fuzzy c-regression models clustering with a novel cluster validity criterion,” IET Control Theory Appl, vol. 1, no. 5, pp. 1255-1265, Sep. 2007.
[28]J. Han, D. Kim, and M. Sunwoo, “State-of-charge estimation of lead-acid batteries using an adaptive extended Kalman filter,” J. Power Sources, vol. 188, pp. 606-612, 2009.
[29]R. Xiong, X. Gong, C. C. Mi, and F. Sun, “A robust state-of-charge estimator for multiple types of lithium-ion batteries using adaptive extended Kalman filter,” J. Power Sources, vol. 243, pp. 805-816, 2013.
[30]R. Xiong, H. He, F. Sun, and K. Zhao, “Evaluation on state of charge estimation of batteries with adaptive extended Kalman filter by experiment approach,” in IEEE Transactions on Vehicular Technology, vol. 62, no. 1, pp. 108-117, Jan. 2013.
[31]S. Sepasi, R. Ghorbani, and B. Y. Liaw, “SOC estimation for aged lithium-ion batteries using model adaptive extended Kalman filter,” 2013 IEEE Transportation Electrification Conference and Expo (ITEC), pp. 1-6, Jun. 2013.
[32]C. C. Kung, C. C. Weng, and T. H. Chen, “Fuzzy c-regression model based state of charge estimation for lithium battery using adaptive extended Kalman filter,” Proc. of the 2016 International Conference on Machine Learning and Cybernetics, pp. 958-963, Jul. 2016.
[33]A. Doucet, S. Godsill, and C. Andrieu, “On sequential Monte Carlo sampling methods for Bayesian filtering,” Statist. Comput., vol. 10, no. 3, pp. 197-208, Jul. 2000.
[34]M. S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, “A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking,” in IEEE Transactions on Signal Processing, vol. 50, no. 2, pp. 174-188, Feb. 2002.
[35]M. Gao, Y. Liu, and Z. He, “Battery state of charge online estimation based on particle filter,” Proc. of 2011 4th International Congress on Image and Signal, pp. 2233-2236, Oct. 2011.
[36]T. Zahid, G. Xu, W. Li, L. Zhao, and K. Xu, “Performance analysis of particle filter for SOC estimation of LiFeP04 battery pack for electric vehicles,” 2014 IEEE International Conference on Information and Automation (ICIA), pp. 1061-1065, 2014.
[37]T. Zahid, F. Qin, W. Li, K. Xu, and Y. Zhou, “Sequential Monte Carlo based technique for SOC estimation of LiFePO4 battery pack for electric vehicles,” 2016 IEEE International Conference on Information and Automation (ICIA), pp. 1308-1312, 2016.
[38]X. Hu, S. Li, and H. Peng, “A comparative study of equivalent circuit models for Li-ion batteries,” J. Power Sources, vol. 198, pp. 359–367, Jan. 2012.
[39]H. W. He, R. Xiong, and J. X. Fan, “Evaluation of lithium-ion battery equivalent circuit models for state of charge estimation by an experimental approach,” Energies, vol. 4, no. 4, pp. 582–598, Mar. 2011.
[40]A. R. Michael, S. B. Oliver, and U. S. Dirk, “Reliable state estimation of multicell lithium-ion battery systems, ” IEEE Transactions on Energy Conversion, vol. 26, no. 3, pp.737-743, Sep. 2011.
[41]W. Y. Low and J.A. Aziz, “Modeling of lithium ion battery with nonlinear transfer resistance,” IEEE Applied Power Electronics Colloquium, pp.104-109, 2011.
[42]Technical Specification of Battery Management System for Electric Vehicles. [Online].Available:http://www.catarc.org.cn/Upload/file/bzyj/PDF/zhengqiuyijian-sc27-19-bzsm.pdf.
[43]T. C. Hsia, System Identification, 1st ed., Lexington Books, 1977.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊