跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.83) 您好!臺灣時間:2025/01/25 17:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林鼎騫
研究生(外文):Ding-Cheng Lin
論文名稱:採用基體效應調節技術的多級導通電晶體應用於無外部電容式低壓降穩壓器
論文名稱(外文):A CMOS CASPACITORLESS LOW- DROUPOUT VOLTAGE REGULATOR WITH MULTI-STAGE PASS TRANSISTOR USING BODY-EFFECT MODULATION TECHNIQUE
指導教授:林明郎
指導教授(外文):Ming-Lang Lin
口試委員:林明郎
口試委員(外文):Ming-Lang Lin
口試日期:2017-07-28
學位類別:碩士
校院名稱:大同大學
系所名稱:電機工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:82
中文關鍵詞:TSMC T18低壓降穩壓器LAKER多級導通電晶體HSPICE電源管理系統
外文關鍵詞:TSMC T18Power Management SystemLDO RegulatorHSPICEMulti-Stage Pass TransistorLAKER
相關次數:
  • 被引用被引用:0
  • 點閱點閱:129
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
電子產品技術的發展可說是日新月異的發展,而在可攜式電子產品中,電源管理系統也非常重要,其中低變動的穩壓性能及快速的負載暫態響應也是重要的考量。而在這個電子產品快速發展的時代,體積越來越小亦是市場上的趨勢,電源管理系統的面積也是電路設計的研究重點,本篇論文將針對這些性能去做探討。
本篇論文所提出的LDO架構使用T18製程實現,設計一個低壓降穩壓器,以穩壓器的基本原理做延伸擴展,研究如何大幅提升穩壓器對負載端提供電流的傳遞能力,使得穩壓器具有優異的暫態響應性能,且有效的降低功率電晶體(Mp)的面積,藉由提升電流傳遞能力、顯著的提升了穩壓器的工作速度,使得穩壓器有優異的負載暫態響應,在突升(Overshoot)、突降(Undershoot)、回復時間(Recovery Time)上得到改善、並在負載於重載(Full Load)時有穩定的輸出電壓(Vo)。
電路架構包含了兩個誤差放大器電路、電流鏡、動態偏壓電路、偏壓產生器、補償電容、以及多級導通電晶體所組成,並利用HSPICE等工具軟體來模擬調整電晶體至適當的尺寸,最後由LAKER來實現整體晶片,電路設計當輸入電壓在1.2V時 ,此穩壓器的輸出電壓能維持在1.0伏特,最大輸出負載電流為6mA,米勒補償電容為1.5pf。
The technology of electronic products develop rapidly. In the development of portable electronic products, the power management system is also becoming more and more important. The low change of regulator performance and fast load transient response are also important considerations. In this era of rapid development of electronic products, the volume getting smaller is needed in the market tendency, the area pf power management system is also important in circuit design. This thesis will discuss these considerations.
This thesis proposes a LDO regulator which has been implemented in TSMC T18 process technology. It shows how to significantly increase the regulator current transfer capacity, making the regulator have excellent transient response, effectively reducing the power transistor (Mp) area, enhancing the regulator's operating speed, having a good performance on overshoot, undershoot, recovery time, and has a stable output voltage at full load.
The circuit of the proposed LDO consists of two error amplifiers, a current mirror, a dynamic bias circuit, a bias generator, a compensation capacitor, and multi-stage pass transistor. The HSPICE tool is used to simulate and adjustment the pass transistors to the appropriate size. Finally the LAKER tool is used to achieve the layout of the whole chip of the proposed LDO. When the input voltage is given at 1.2V, the regulator's output voltage can be maintained at 1.0V. The maximum output load current of 6mA, the miller compensation capacitor is 1.5pf.
誌謝 i
摘要 ii
Abstract iii
目錄 v
圖表 ix
表格 xiv
第一章 緒論1
1.1 研究背景1
1.2 研究動機1
1.3 研究發展及流程 2
1.4 論文組織及架構 3
第二章 低壓降線性穩壓器工作原理以及重要參數之介紹 4
2.1 低壓降穩壓器介紹與基本工作原理 4
2.2 低壓降穩壓器的重要參數定義 5
2.2.1 輸入輸出電壓差(Dropout Voltage) 6
2.2.2 負載調節律(Load Regulation) 7
2.2.3 線性調節律(Line Regulation) 8
2.2.4 暫態響應(Transient Response) 9
2.2.5 靜態電流(Quiescent Current) 11
2.2.6 電流效率(Current Efficiency) 12
2.2.7 電源效率(Power Efficiency) 12
2.2.8 電源拒斥比(Power Suply Rejection Ratio) 13
2.2.9 輸出雜訊(Noise) 13
2.2.10 頻率響應(Frequency Response). 14
2.2.11 電壓精確度(Accuracy) 18
第三章 低壓降線性穩壓器的設計與模擬比較22
3.1 研究動機22
3.2 穩壓器電路的設計與想法22
3.2.1 誤差放大器(Error amplifier)工作原理23
3.2.2 動態偏壓技術(Dynamic biasing) 24
3.2.3 回授電路(Feedback Circuit) 25
3.3 二級導通電晶體架構 25
3.4 基體效應(Body Effect)調節架構 27
3.5 文獻回顧 29
3.6 架構設計 32
3.7 各級電路架構模擬與比較 34
3.7.1模擬想法 34
3.7.2暫態響應(TransientResponse) 36
3.7.2.1 暫態響應-固定Mp Size 36
3.7.2.2暫態響應-固定輸出電壓 42
3.7.3線性調節率(Line Regulation) 46
3.7.3.1 線性調節率-電源變化@1.1V~1.3V 46
3.7.3.2 線性調節率-電源變化@0~1.2V–啟動時間 47
3.7.3.3 線性調節率-電源變化@0V~1.37V-最低啟動電壓 48
3.7.4頻率響應(Frequency Response) 49
3.7.5電源拒斥比(Power Suply Rejection Ration) 54
第四章 電路模擬與實現 56
4.1 電路模擬-TSMCT18製程-Pre Simulation 56
4.1.1本篇穩壓器架構電路圖 56
4.1.2暫態響應(Transient Response)-負載調節(Load Regulation) 56
4.1.3暫態響應-線性調節(Line Regulation) 61
4.1.4頻率響應(Frequency Response) 63
4.1.5電源拒斥比(Power Suply Regection Ratio) 66
4.2 電路模擬-TSMCT18製程-Postsimulation 67
4.2.1 本論文電路圖 67
4.2.2 本論文晶片layout圖 67
4.2.3 暫態響應-負載調節(Load Regulation) 68
4.2.4 暫態響應-線性調節(Line Regulation) 72
4.2.5 頻率響應(Frequency Response) 74
4.2.6 電源拒斥比(Power Suply Regection Ratio) 77
第五章 結論與規格比較 78
5.1結論 78
5.2各低壓降線性穩壓器規格比較表 79
參考文獻 80
[1] K. Keikhosravy, “A 0.13- CMOS low-power capacitor-less LDO regulator using bulk-modulation technique,” IEEE transactions on circuits and systems, vol. 61, no. 11, pp. 3105-3114, November 2014.
[2] J. H. Wang, C. H. Tsai, and S. W. Lai, “A low-dropout regulator with tail current control for dpwm clock correction,” IEEE transactions on circuits and systems, vol. 59, no. 1, pp. 45–49, December 2012.
[3] C. Zheng , D. Ma, “Design of monolithic low dropout regulator for wireless powered brain cortical implants using a line ripple rejection technique,” IEEE transactions circuits system, vol. 57, no. 9, pp. 686–690, August 2010.
[4] S. S. Chong, “A 0.9- A Quiescent current output-capacitorless LDO regulator with adaptive power transistors in 65-nm CMOS,” IEEE transactions on circuits and systems, vol. 60, no. 4, pp. 1072-1081, April 2013.
[5] N. Y. Edward , K. T. Philip, “A capacitor-less CMOS active feedback low-dropout regulator with slew-rate enhancement for portable on-chip application,” IEEE transactions on circuits and systems, vol. 57, no. 2, pp. 80-84, February 2010.
[6] C. M. Chen , C. C. Hung, “A fast self-reacting capacitor-less low-dropout regulator,” 2011 proceedings of the ESSCIRC, pp. 357-378, October 2011.
[7] G. Thiele , E. Bayer, “Current-mode LDO with active dropout optimization,” 2005 IEEE 36th power electronics specialists conference, pp. 1203-1208, June 2005.
[8] C. Lovaraju , A. Maity, and A. Patra, “A capacitor-less low drop-out(LDO) regulator with improved transient response for system-on-chip applications,” 2013 26th international conference on VLSI design and the 12th international conference on embedded systems, pp. 130-135, March 2013.
[9] H. Gupta, G. K. Mishra, N. Z. Rizvi, and S. K. Patnaik, “design of high PSRR folded cascode operational amplifier for LDO applications,” 2016 international conference on electrical, electronics, and optimization techniques, pp. 4617-4621, November 2016.
[10]王國華,王鴻麟,羊彥, “便攜電子設備電源管理技術,” 西安電子科技大學出版社, January 2004.
[11] X. Ming, Z. k. Zhou, and B. Z. Member, “A low-power ultra-fast capacitor-less LDO with advanced dynamic push-pull techniques,” 2011 IEEE/IFIP 19th international conference on VLSI and system-on-chip, pp. 54-59, November 2011.
[12] Application Report, “Technical review of low dropout voltage regulator operation and performance,” texas instruments, August 1999.
[13]K. C. Chang, “Two voltage-buffered LDO regulators for light and heavy capacitive loads,” thesis for master of science department of electrical enginerring tatung university, June 2014.
[14]C. T. Chien, “Full on-chip low-voltage LDO regulator with robust miller compensation,” thesis for master of science department of electrical enginerring tatung university, July 2014.
[15]B. S. Lee, “Understanding the terms and definitions of LDO voltage regulators,” application report SLVA079 , October 1999.
[16] M. C. Lee, C. S. Wang, M. D. Lee, S. H. Sze, J. W. Lin, and S. I. Lin, “Analysis and design of low dropout linear regulator,” department of electronics engineering oriental institute of technology, pp. 81~90, June 2009.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top